Excitation Threshold Reduction Techniques for Organic Semiconductor Lasers: A Review
Abstract
:1. Introduction
2. Basic Theory of Excitation Threshold Reduction in Organic Semiconductor Lasers
2.1. The Building Blocks of Lasers
2.2. Quasi Four-Level Laser Structure of Organic Semiconductors
2.3. Optical Feedback Structure
2.4. Excitonic and Photonic Losses
3. Measures of Threshold Reduction of Optically Pumped Organic Laser in Terms of Materials
3.1. Organic Dyes
3.2. Organic Semiconductor Materials
3.2.1. Organic Crystals
3.2.2. Small Organic Molecules
3.2.3. Dendritic Starburst Molecules
3.2.4. Conjugated Polymers
3.3. Other New Materials
4. Measures of Threshold Reduction of Optically Pumped Organic Laser in Terms of Structures
4.1. Plane Cavity
4.2. Distributed Feedback Structure
4.3. Whispering Gallery Mode Resonators
4.4. Organic Crystal Cavity
4.5. Structure of Organic Nanowires
4.6. Structure of Film
5. Measures of Threshold Reduction of Optically Pumped Organic Laser
5.1. Building a New Doping System to Reduce the Influence of Triplet States
5.2. Improving Carrier Transmission Efficiency and Reducing Losses through Structural Design
5.2.1. Improving Device Carrier Transport Efficiency
5.2.2. Reducing Electrode Loss
5.2.3. Polaronic Loss Reduction
6. Summary and Prospect
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schäfer, F.P.; Schmidt, W.; Volze, J. Organic Dye Solution Laser. Appl. Phys. Lett. 1966, 9, 306–309. [Google Scholar] [CrossRef]
- Kuehne, A.J.C.; Gather, M.C. Organic Lasers: Recent Developments on Materials, Device Geometries, and Fabrication Techniques. Chem. Rev. 2016, 116, 12823–12864. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Liu, Y.-Y.; Liu, X.; Lin, H.; Gao, K.; Lai, W.-Y.; Huang, W. Organic solid-state lasers: A materials view and future development. Chem. Soc. Rev. 2020, 49, 5885–5944. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Yan, Y.; Gao, Z.; Du, Y.; Dong, H.; Yao, J.; Zhao, Y.S. Full-color laser displays based on organic printed microlaser arrays. Nat. Commun. 2019, 10, 870. [Google Scholar] [CrossRef] [PubMed]
- Gather, M.C.; Yun, S.H. Single-cell biological lasers. Nat. Photonics 2011, 5, 406–410. [Google Scholar] [CrossRef]
- Balslev, S.; Bilenberg, B.; Geschke, O.; Jorgensen, A.M.; Kristensen, A.; Kutter, J.P.; Mogensen, K.B.; Snakenborg, D. Fully integrated optical systems for lab-on-a-chip applications. In Proceedings of the SPIE—The International Society for Optical Engineering, Maastricht, The Netherlands, 25–29 January 2004; Volume 5730, p. 7. [Google Scholar]
- Zhou, Z.; Qiao, W.; Wang, Q.; Chenab, L.; Huang, W. Microfluidic channels incorporating organic distributed Bragg reflector lasers for in situ sensing applications. J. Mater. Chem. C 2018, 6, 2565–2572. [Google Scholar] [CrossRef]
- Hide, F.; Díaz-García, M.A.; Schwartz, B.J.; Andersson, M.R.; Pei, Q.; Heeger, A.J. Semiconducting polymers: A new class of solid-state laser materials. Science 1996, 273, 1833–1836. [Google Scholar] [CrossRef]
- Tessler, N.; Denton, G.J.; Friend, R.H. Lasing from conjugated-polymer microcavities. Nature 1996, 382, 695–697. [Google Scholar] [CrossRef]
- Giebink, N.C.; Forrest, S.R. Temporal response of optically pumped organic semiconductor lasers and its implication for reaching threshold under electrical excitation. Phys. Rev. B 2009, 79, 073302. [Google Scholar] [CrossRef]
- Yazdani, S.A.; Mikaeili, A.; Bencheikh, F.; Adachi, C. Impact of excitonic and photonic loss mechanisms on the threshold and slope efficiency of organic semiconductor lasers. Jpn. J. Appl. Phys. 2022, 61, 074003. [Google Scholar] [CrossRef]
- Steer, R.P. Electronic energy pooling in organic systems: A cross-disciplinary tutorial review. Can. J. Chem. 2017, 95, 1025–1040. [Google Scholar] [CrossRef]
- Kersting, R.; Lemmer, U.; Mahrt, R.F.; Leo, K.; Kurz, H.; Bässler, H.; Göbel, E.O. Femtosecond Energy Relaxation in Pi-Conjugated Polymers. Phys. Rev. Lett. 1993, 70, 3820–3823. [Google Scholar] [CrossRef] [PubMed]
- Samuel, I.; Crystall, B.; Rumbles, G.; Burn, P.; Holmes, A.; Friend, R. Time-Resolved Luminescence Measurements in Poly(p-phenylenevinylene). Synth. Met. 1993, 54, 281–288. [Google Scholar] [CrossRef]
- Kozlov, V.G.; Bulović, V.; Burrows, P.E.; Forrest, S.R. Laser action in organic semiconductor waveguide and double-heterostructure devices. Nature 1997, 389, 362–364. [Google Scholar] [CrossRef]
- Rauscher, U.; Bässler, H.; Bradley, D.D.C.; Hennecke, M. Exciton Versus Band Description of the Absorption and Luminescence Spectra in Poly(Para-Phenylenevinylene). Phys. Rev. B 1990, 42, 9830–9836. [Google Scholar] [CrossRef] [PubMed]
- Rudenko, A.I.; Bässler, H. Spectral Diffusion in Random Media: A Master Equation Approach. Chem. Phys. Lett. 1991, 182, 581–587. [Google Scholar] [CrossRef]
- Brouwer, H.-J.; Krasnikov, V.V.; Hilberer, A.; Wildeman, J.; Hadziioannou, G. Novel High Efficiency Copolymer Laser Dye in the Blue Wavelength Region. Appl. Phys. Lett. 1995, 66, 3404–3406. [Google Scholar] [CrossRef]
- Rabe, T.; Hoping, M.; Schneider, D.; Becker, E.; Johannes, H.-H.; Kowalsky, W.; Weimann, T.; Wang, J.; Hinze, P.; Nehls, B.S.; et al. Threshold reduction in polymer lasers based on poly(9,9-dioctylfluorene) with statistical binaphthyl units. Adv. Funct. Mater. 2005, 15, 1188–1192. [Google Scholar] [CrossRef]
- Clark, J.; Lanzani, G. Organic photonics for communications. Nat. Photonics 2010, 4, 438–446. [Google Scholar] [CrossRef]
- Cabanillas-Gonzalez, J.; Grancini, G.; Lanzani, G. Pump-Probe Spectroscopy in Organic Semiconductors: Monitoring Fundamental Processes of Relevance in Optoelectronics. Adv. Mater. 2011, 23, 5468–5485. [Google Scholar] [CrossRef] [PubMed]
- Lehnhardt, M.; Riedl, T.; Weimann, T.; Kowalsky, W. Impact of triplet absorption and triplet-singlet annihilation on the dynamics of optically pumped organic solid-state lasers. Phys. Rev. B 2010, 81, 165206. [Google Scholar] [CrossRef]
- Samuel, I.D.W.; Turnbull, G.A. Organic semiconductor lasers. Chem. Rev. 2007, 107, 1272–1295. [Google Scholar] [CrossRef]
- Gritsai, Y.; Sakhno, O.; Goldenberg, L.M.; Stumpe, J. Dye-doped PQ-PMMA phase holographic materials for DFB lasing. J. Opt. 2014, 16, 035101. [Google Scholar] [CrossRef]
- Ahmad, M.; King, T.A.; Ko, D.-K.; Cha, B.H.; Lee, J. Performance and photostability of xanthene and pyrromethene laser dyes in sol-gel phases. J. Phys. D Appl. Phys. 2002, 35, 1473–1476. [Google Scholar] [CrossRef]
- Wallikewitz, B.H.; Nikiforov, G.O.; Sirringhaus, H.; Friend, R.H. A nanoimprinted, optically tuneable organic laser. Appl. Phys. Lett. 2012, 100, 173301. [Google Scholar] [CrossRef]
- Liu, L.; Huang, W.; Diao, Z.; Peng, Z.; Mu, Q.Q.; Liu, Y.; Yang, C.; Hu, L.; Xuan, L. Low threshold of distributed feedback lasers based on scaffolding morphologic holographic polymer dispersed liquid crystal gratings: Reduced losses through Forster transfer. Liq. Cryst. 2014, 41, 145–152. [Google Scholar] [CrossRef]
- Dogariu, A.; Gupta, R.; Heeger, A.J.; Wang, H. Time-resolved Förster energy transfer in polymer blends. Synth. Met. 1999, 100, 95–100. [Google Scholar] [CrossRef]
- Sheridan, A.K.; Buckley, A.R.; Fox, A.M.; Bacher, A.; Bradley, D.D.C.; Samuel, I.D.W. Efficient energy transfer in organic thin films—Implications for organic lasers. J. Appl. Phys. 2002, 92, 6367–6371. [Google Scholar] [CrossRef]
- Zhang, Y.; Forrest, S.R. Existence of continuous-wave threshold for organic semiconductor lasers. Phys. Rev. B 2011, 84, 241301. [Google Scholar] [CrossRef]
- Ye, H.; Cui, L.-S.; Matsushima, T.; Qin, C.; Adachi, C. Deep-Red Amplified Spontaneous Emission from cis-Configured Squaraine. ACS Appl. Mater. Interfaces 2018, 10, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.W.; Vanslyke, S.A. Organic electroluminescent diodes. Appl. Phys. Lett. 1987, 51, 913. [Google Scholar] [CrossRef]
- Wu, C.; DeLong, M.; Vardeny, Z.; Ferraris, J. Structual and optical studies of distyrylbenzene single crystals. Synth. Met. 2003, 137, 939–941. [Google Scholar] [CrossRef]
- Nakanotani; Adachi, C. Amplified Spontaneous Emission and Electroluminescence from Thiophene/Phenylene Co-Oligomer-Doped p-bis(p-Styrylstyryl)Benzene Crystals. Adv. Opt. Mater. 2013, 1, 422–427. [Google Scholar] [CrossRef]
- Nakanotani, H.; Saito, M.; Nakamura, H.; Adachi, C. Highly balanced ambipolar mobilities with intense electroluminescence in field-effect transistors based on organic single crystal oligo(p-phenylenevinylene) derivatives. Appl. Phys. Lett. 2009, 95, 033308. [Google Scholar] [CrossRef]
- Gierschner, J.; Park, S.Y. Luminescent distyrylbenzenes: Tailoring molecular structure and crystalline morphology. J. Mater. Chem. C 2013, 1, 5818–5832. [Google Scholar] [CrossRef]
- Kabe, R.; Nakanotani, H.; Sakanoue, T.; Yahiro, M.; Adachi, C. Effect of Molecular Morphology on Amplified Spontaneous Emission of Bis-Styrylbenzene Derivatives. Adv. Mater. 2009, 21, 4034–4038. [Google Scholar] [CrossRef]
- Ishow, E.; Brosseau, A.; Clavier, G.; Nakatani, K.; Tauc, P.; Fiorini-Debuisschert, C.; Neveu, S.; Sandre, O.; Léaustic, A. Multicolor Emission of Small Molecule-Based Amorphous Thin Films and Nanoparticles with a Single Excitation Wavelength. Chem. Mater. 2008, 20, 6597–6599. [Google Scholar] [CrossRef]
- Rabbani-Haghighi, H.; Forget, S.; Chénais, S.; Siove, A.; Castex, M.-C.; Ishow, E. Laser operation in nondoped thin films made of a small-molecule organic red-emitter. Appl. Phys. Lett. 2009, 95, 033305. [Google Scholar] [CrossRef]
- Forget, S.; Chenais, S.; Tondelier, D.; Geffroy, B.; Gozhyk, I.; Lebental, M.; Ishow, E. Red-emitting fluorescent organic light emitting diodes with low sensitivity to self-quenching. J. Appl. Phys. 2010, 108, 064509. [Google Scholar] [CrossRef]
- Choi, E.Y.; Mazur, L.; Mager, L.; Gwon, M.; Pitrat, D.; Mulatier, J.C.; Monnereau, C.; Fort, A.; Attias, A.J.; Dorkenoo, K.; et al. Photophysical, amplified spontaneous emission and charge transport properties of oligofluorene derivatives in thin films. Phys. Chem. Chem. Phys. 2014, 16, 16941–16956. [Google Scholar] [CrossRef]
- Sandanayaka, A.S.D.; Zhao, L.; Pitrat, D.; Mulatier, J.-C.; Matsushima, T.; Andraud, C.; Kim, J.-H.; Ribierre, J.-C.; Adachi, C. Improvement of the quasi-continuous-wave lasing properties in organic semiconductor lasers using oxygen as triplet quencher. Appl. Phys. Lett. 2016, 108, 223301. [Google Scholar] [CrossRef]
- Nakanotani, H.; Akiyama, S.; Ohnishi, D.; Moriwake, M.; Yahiro, M.; Yoshihara, T.; Tobita, S.; Adachi, C. Extremely low-threshold amplified spontaneous emission of 9,9′-spirobifluorene derivatives and electroluminescence from field-effect transistor structure. Adv. Funct. Mater. 2007, 17, 2328–2335. [Google Scholar] [CrossRef]
- Zhang, W.; Yan, Y.; Gu, J.; Yao, J.; Zhao, Y.S. Low-threshold wavelength-switchable organic nanowire lasers based on excited-state intramolecular proton transfer. Angew. Chem. Int. Ed. Engl. 2015, 54, 7125–7129. [Google Scholar] [CrossRef]
- Tsiminis, G.; Montgomery, N.A.; Kanibolotsky, A.L.; Ruseckas, A.; Perepichka, I.F.; Skabara, P.J.; Turnbull, G.A.; Samuel, I.D.W. Laser characteristics of a family of benzene-cored star-shaped oligofluorenes. Semicond. Sci. Technol. 2012, 27, 94005. [Google Scholar] [CrossRef]
- Guilhabert, B.; Laurand, N.; Herrnsdor, J.; Chen, Y.; Mackintosh, A.R.; Kanibolotsky, A.L.; Gu, E.; Skabara, P.J.; Pethrick, R.A.; Dawson, M.D. Amplified spontaneous emission in free-standing membranes incorporating star-shaped monodisperse pi-conjugated truxene oligomers. J. Opt. 2010, 12, 035503. [Google Scholar] [CrossRef]
- Tsiminis, G.; Wang, Y.; Shaw, P.E.; Kanibolotsky, A.L.; Perepichka, I.F.; Dawson, M.D.; Skabara, P.J.; Turnbull, G.A.; Samuel, I.D.W. Low-threshold organic laser based on an oligofluorene truxene with low optical losses. Appl. Phys. Lett. 2009, 94, 243304. [Google Scholar] [CrossRef]
- Ribierre, J.C.; Tsiminis, G.; Richardson, S.; Turnbull, G.A.; Samuel, I.D.W.; Barcena, H.S.; Burn, P.L. Amplified spontaneous emission and lasing properties of bisfluorene-cored dendrimers. Appl. Phys. Lett. 2007, 91, 081108. [Google Scholar] [CrossRef]
- Lai, W.-Y.; Xia, R.; Bradley, D.D.C.; Huang, W. 2,3,7,8,12,13-Hexaaryltruxenes: An ortho-Substituted Multiarm Design and Microwave-Accelerated Synthesis toward Starburst Macromolecular Materials with Well-Defined pi Delocalization. Chem. Eur. J. 2010, 16, 8471–8479. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.-Y.; Xia, R.; He, Q.; Levermore, P.A.; Huang, W.; Bradley, D.D.C. Enhanced Solid-State Luminescence and Low-Threshold Lasing from Starburst Macromolecular Materials. Adv. Mater. 2009, 21, 355–360. [Google Scholar] [CrossRef]
- Chen, S.; Kwok, H.-S. Alleviate microcavity effects in top-emitting white organic light-emitting diodes for achieving broadband and high color rendition emission spectra. Org. Electron. 2011, 12, 2065–2070. [Google Scholar] [CrossRef]
- Yap, B.K.; Xia, R.; Campoy-Quiles, M.; Stavrinou, P.N.; Bradley, D.D.C. Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films. Nat. Mater. 2008, 7, 376–380. [Google Scholar] [CrossRef]
- Stavrinou, P.N.; Ryu, G.; Campoy-Quiles, M.; Bradley, D.D.C. The change in refractive index of poly(9,9-dioctylfluorene) due to the adoption of the beta-phase chain conformation. J. Phys. Condens. Matter 2007, 19, 466107. [Google Scholar] [CrossRef]
- Xia, R.; Campoy-Quiles, M.; Heliotis, G.; Stavrinou, P.; Whitehead, K.S.; Bradley, D.D. Significant improvements in the optical gain properties of oriented liquid crystalline conjugated polymer films. Synth. Met. 2005, 155, 274–278. [Google Scholar] [CrossRef]
- Lin, J.-Y.; Zhu, W.-S.; Liu, F.; Xie, L.-H.; Zhang, L.; Xia, R.; Xing, G.-C.; Huang, W. A Rational Molecular Design of beta-Phase Polydiarylfluorenes: Synthesis, Morphology, and Organic Lasers. Macromolecules 2014, 47, 1001–1007. [Google Scholar] [CrossRef]
- Zhang, B.; Pinky, S.K.; Kwansa, A.L.; Ferguson, S.; Yingling, Y.G.; Stiff-Roberts, A.D. Correlation of Emulsion Chemistry, Film Morphology, and Device Performance in Polyfluorene LEDs Deposited by RIR-MAPLE. ACS Appl. Mater. Interfaces 2023, 15, 18153–18165. [Google Scholar] [CrossRef] [PubMed]
- Kuehne, A.J.C.; Kaiser, M.; Mackintosh, A.R.; Wallikewitz, B.H.; Hertel, D.; Pethrick, R.A.; Meerholz, K. Sub-Micrometer Patterning of Amorphous- and beta-Phase in a Crosslinkable Poly(9,9-dioctylfluorene): Dual-Wavelength Lasing from a Mixed-Morphology Device. Adv. Funct. Mater. 2011, 21, 2564–2570. [Google Scholar] [CrossRef]
- Kallinger, C.; Hilmer, M.; Haugeneder, A.; Perner, M.; Spirkl, W.; Lemmer, U.; Feldmann, J.; Scherf, U.; Müllen, K.; Gombert, A.; et al. A flexible conjugated polymer laser. Adv. Mater. 1998, 10, 920–923. [Google Scholar] [CrossRef]
- Xia, R.; Heliotis, G.; Bradley, D.D.C. Fluorene-based polymer gain media for solid-state laser emission across the full visible spectrum. Appl. Phys. Lett. 2003, 82, 3599–3601. [Google Scholar] [CrossRef]
- Xia, R.; Stavrinou, P.N.; Bradley, D.D.C.; Kim, Y. Efficient optical gain media comprising binary blends of poly(3-hexylthiophene) and poly(9,9-dioctylfluorene-co-benzothiadiazole). J. Appl. Phys. 2012, 111, 123107. [Google Scholar] [CrossRef]
- Qin, C.; Sandanayaka, A.S.D.; Zhao, C.; Matsushima, T.; Zhang, D.; Fujihara, T.; Adachi, C. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature 2020, 585, 53–57. [Google Scholar] [CrossRef]
- Veldhuis, S.A.; Boix, P.P.; Yantara, N.; Li, M.; Sum, T.C.; Mathews, N.; Mhaisalkar, S.G. Perovskite Materials for Light-Emitting Diodes and Lasers. Adv. Mater. 2016, 28, 6804–6834. [Google Scholar] [CrossRef] [PubMed]
- Stranks, S.D.; Wood, S.M.; Wojciechowski, K.; Deschler, F.; Saliba, M.; Khandelwal, H.; Patel, J.B.; Elston, S.J.; Herz, L.M.; Johnston, M.B.; et al. Enhanced Amplified Spontaneous Emission in Perovskites Using a Flexible Cholesteric Liquid Crystal Reflector. Nano Lett. 2015, 15, 4935–4941. [Google Scholar] [CrossRef] [PubMed]
- Xing, G.; Mathews, N.; Lim, S.S.; Yantara, N.; Liu, X.; Sabba, D.; Grätzel, M.; Mhaisalkar, S.; Sum, T.C. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 2014, 13, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Hung, Y.-C.; Su, C.-H.; Huang, H.-W. Low threshold amplified spontaneous emission from dye-doped DNA biopolymer. J. Appl. Phys. 2012, 111, 113107. [Google Scholar] [CrossRef]
- Ramos-Ortiz, G.; Spiegelberg, C.; Peyghambarian, N.; Kippelen, B. Temperature dependence of the threshold for laser emission in polymer microlasers. Appl. Phys. Lett. 2000, 77, 2783–2785. [Google Scholar] [CrossRef]
- Rotschild, C.; Tomes, M.; Mendoza, H.; Andrew, T.L.; Swager, T.M.; Carmon, T.; Baldo, M.A. Cascaded Energy Transfer for Efficient Broad-Band Pumping of High-Quality, Micro-Lasers. Adv. Mater. 2011, 23, 3057–3060. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Özdemir, K.; Yang, L. Whispering gallery microcavity lasers. Laser Photonics Rev. 2012, 7, 60–82. [Google Scholar] [CrossRef]
- Grossmann, T.; Schleede, S.; Hauser, M.; Christiansen, M.B.; Vannahme, C.; Eschenbaum, C.; Klinkhammer, S.; Beck, T.; Fuchs, J.; Nienhaus, G.U.; et al. Low-threshold conical microcavity dye lasers. Appl. Phys. Lett. 2010, 97, 063304. [Google Scholar] [CrossRef]
- Gather, M.C.; Yun, S.H. Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers. Nat. Commun. 2014, 5, 5722. [Google Scholar] [CrossRef]
- Canazza, G.; Scotognella, F.; Lanzani, G.; De Silvestri, S.; Zavelani-Rossi, M.; Comoretto, D. Lasing from all-polymer microcavities. Laser Phys. Lett. 2014, 11, 035804. [Google Scholar] [CrossRef]
- Kogelnik, H.; Shank, C.V. Coupled-Wave Theory of Distributed Feedback Lasers. J. Appl. Phys. 1972, 43, 2327–2335. [Google Scholar] [CrossRef]
- Holzer, W.; Penzkofer, A.; Pertsch, T.; Danz, N.; Bräuer, A.; Kley, E.; Tillmann, H.; Bader, C.; Hörhold, H.-H. Corrugated neat thin-film conjugated polymer distributed-feedback lasers. Appl. Phys. B Laser Opt. 2002, 74, 333–342. [Google Scholar] [CrossRef]
- Rose, A.; Zhu, Z.; Madigan, C.F.; Swager, T.M.; Bulović, V. Sensitivity gains in chemosensing by lasing action in organic polymers. Nature 2005, 434, 876–879. [Google Scholar] [CrossRef]
- Karnutsch, C.; Pflumm, C.; Heliotis, G.; Demello, J.C.; Bradley, D.D.C.; Wang, J.; Weimann, T.; Haug, V.; Gärtner, C.; Lemmer, U. Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design. Appl. Phys. Lett. 2007, 90, 131104. [Google Scholar] [CrossRef]
- Karnutsch, C.; Gýrtner, C.; Haug, V.; Lemmer, U.; Farrell, T.; Nehls, B.S.; Scherf, U.; Wang, J.; Weimann, T.; Heliotis, G.; et al. Low threshold blue conjugated polymer lasers with first- and second-order distributed feedback. Appl. Phys. Lett. 2006, 89, 201108. [Google Scholar] [CrossRef]
- Schneider, D.; Rabe, T.; Riedl, T.; Dobbertin, T.; Kröger, M.; Becker, E.; Johannes, H.-H.; Kowalsky, W.; Weimann, T.; Wang, J.; et al. Ultrawide tuning range in doped organic solid-state lasers. Appl. Phys. Lett. 2004, 85, 1886–1888. [Google Scholar] [CrossRef]
- Goossens, M.; Ruseckas, A.; Turnbull, G.A.; Samuel, I.D.W. Subpicosecond pulses from a gain-switched polymer distributed feedback laser. Appl. Phys. Lett. 2004, 85, 31–33. [Google Scholar] [CrossRef]
- Heliotis, G.; Xia, R.; Turnbull, G.A.; Andrew, P.; Barnes, W.L.; Samuel, I.D.W.; Bradley, D.D.C. Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback. Adv. Funct. Mater. 2004, 14, 91–97. [Google Scholar] [CrossRef]
- Forberich, K.; Diem, M.; Crewett, J.; Lemmer, U.; Gombert, A.; Busch, K. Lasing action in two-dimensional organic photonic crystal lasers with hexagonal symmetry. Appl. Phys. B Laser Opt. 2006, 82, 539–541. [Google Scholar] [CrossRef]
- Notomi, M.; Suzuki, H.; Tamamura, T. Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps. Appl. Phys. Lett. 2001, 78, 1325–1327. [Google Scholar] [CrossRef]
- Dodabalapur, A.; Berggren, M.; Slusher, R.; Bao, Z.; Timko, A.; Schiortino, P.; Laskowski, E.; Katz, H.; Nalamasu, O. Resonators and materials for organic lasers based on energy transfer. IEEE J. Sel. Top. Quantum Electron. 1998, 4, 67–74. [Google Scholar] [CrossRef]
- Turnbull, G.A.; Andrew, P.; Barnes, W.L.; Samuel, I.D.W. Operating characteristics of a semiconducting polymer laser pumped by a microchip laser. Appl. Phys. Lett. 2003, 82, 313–315. [Google Scholar] [CrossRef]
- Senevirathne, C.A.M.; Sandanayaka, A.S.D.; Karunathilaka, B.S.B.; Fujihara, T.; Bencheikh, F.; Qin, C.; Goushi, K.; Matsushima, T.; Adachi, C. Markedly Improved Performance of Optically Pumped Organic Lasers with Two-Dimensional Distributed-Feedback Gratings. ACS Photonics 2021, 8, 1324–1334. [Google Scholar] [CrossRef]
- Grudinin, I.S.; Ilchenko, V.S.; Maleki, L. Ultrahigh optical Q factors of crystalline resonators in the linear regime. Phys. Rev. A 2006, 74, 063806. [Google Scholar] [CrossRef]
- Wienhold, T.; Kraemmer, S.; Wondimu, S.F.; Siegle, T.; Bog, U.; Weinzierl, U.; Schmidt, S.; Becker, H.; Kalt, H.; Mappes, T.; et al. All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers. Lab Chip 2015, 15, 3800–3806. [Google Scholar] [CrossRef]
- Baktur, R.; Pearson, L.W.; Ballato, J. Theoretical determination of lasing resonances in a microring. J. Appl. Phys. 2007, 101, 043102. [Google Scholar] [CrossRef]
- Mizuno, H.; Haku, U.; Marutani, Y.; Ishizumi, A.; Yanagi, H.; Sasaki, F.; Hotta, S. Single Crystals of 5,5′-Bis(4′-methoxybiphenyl-4-yl)-2,2′-bithiophene for Organic Laser Media. Adv. Mater. 2012, 24, 5744–5749. [Google Scholar] [CrossRef]
- Xu, Z.; Liao, Q.; Shi, Q.; Zhang, H.; Yao, J.; Fu, H. Low-Threshold Nanolasers Based on Slab-Nanocrystals of H-Aggregated Organic Semiconductors. Adv. Mater. 2012, 24, OP216–OP220. [Google Scholar] [CrossRef]
- Dhayal, R.S.; Liao, J.-H.; Liu, Y.-C.; Chiang, M.-H.; Kahlal, S.; Saillard, J.-Y.; Liu, C.W. [Ag21{S2P(OiPr)2}12]+: An Eight-Electron Superatom. Angew. Chem. Int. Ed. 2015, 54, 3702–3706. [Google Scholar] [CrossRef]
- Wang, X.; Liao, Q.; Kong, Q.; Zhang, Y.; Xu, Z.; Lu, X.; Fu, H. Whispering-Gallery-Mode Microlaser Based on Self-Assembled Organic Single-Crystalline Hexagonal Microdisks. Angew. Chem. Int. Ed. 2014, 53, 5863–5867. [Google Scholar] [CrossRef]
- Wang, X.; Liao, Q.; Lu, X.; Li, H.; Xu, Z.; Fu, H. Shape-Engineering of Self-Assembled Organic Single Microcrystal as Optical Microresonator for laser Applications. Sci. Rep. 2014, 4, 7011. [Google Scholar] [CrossRef]
- Camposeo, A.; Di Benedetto, F.; Stabile, R.; Neves, A.A.R.; Cingolani, R.; Pisignano, D. Laser Emission from Electrospun Polymer Nanofibers. Small 2009, 5, 562–566. [Google Scholar] [CrossRef]
- Di Benedetto, F.; Camposeo, A.; Pagliara, S.; Mele, E.; Persano, L.; Stabile, R.; Cingolani, R.; Pisignano, D. Patterning of light-emitting conjugated polymer nanofibres. Nat. Nanotechnol. 2008, 3, 614–619. [Google Scholar] [CrossRef]
- Calzado, E.M.; Villalvilla, J.M.; Boj, P.G.; Quintana, J.A.; Díaz-García, M.A. Tuneability of amplified spontaneous emission through control of the thickness in organic-based waveguides. J. Appl. Phys. 2005, 97, 093103. [Google Scholar] [CrossRef]
- Baldo, M.A.; Holmes, R.J.; Forrest, S.R. Prospects for electrically pumped organic lasers. Phys. Rev. B 2002, 66, 035321. [Google Scholar] [CrossRef]
- Tessler, N.; Pinner, D.; Friend, R. Semiconductor device model applied to electrically pulsed polymer LEDs. Synth. Met. 2000, 111–112, 269–272. [Google Scholar] [CrossRef]
- Sun, Y.; Borek, C.; Hanson, K.; Djurovich, P.I.; Thompson, M.E.; Brooks, J.; Brown, J.J.; Forrest, S.R. Photophysics of Pt-porphyrin electrophosphorescent devices emitting in the near infrared. Appl. Phys. Lett. 2007, 90, 213503. [Google Scholar] [CrossRef]
- Susdorf, T.; Álvarez, M.; Holzer, W.; Penzkofer, A.; Amat-Guerri, F.; Liras, M.; Costela, A.; García-Moreno, I.; Sastre, R. Photophysical characterisation of some dipyrromethene dyes in ethyl acetate and covalently bound to poly(methyl methacrylate). Chem. Phys. 2005, 312, 151–158. [Google Scholar] [CrossRef]
- Wallikewitz, B.H.; de la Rosa, M.; Kremer, J.H.-W.; Hertel, D.; Meerholz, K. A Lasing Organic Light-Emitting Diode. Adv. Mater. 2010, 22, 531–534. [Google Scholar] [CrossRef]
- Sandanayaka, A.S.D.; Matsushima, T.; Bencheikh, F.; Terakawa, S.; Potscavage, W.J.P., Jr.; Qin, C.; Fujihara, T.; Goushi, K.; Ribierre, J.-C.; Adachi, C. Indication of current-injection lasing from an organic semiconductor. Appl. Phys. Express 2019, 12, 061010. [Google Scholar] [CrossRef]
- Kozlov, V.; Parthasarathy, G.; Burrows, P.; Khalfin, V.; Wang, J.; Chou, S.; Forrest, S. Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations. IEEE J. Quantum Electron. 2000, 36, 18–26. [Google Scholar] [CrossRef]
- McGehee, M.D.; Heeger, A.J. Semiconducting (conjugated) polymers as materials for solid-state lasers. Adv. Mater. 2000, 12, 1655–1668. [Google Scholar] [CrossRef]
- Tessler, N.; Harrison, N.T.; Friend, R.H. High peak brightness polymer light-emitting diodes. Adv. Mater. 1998, 10, 64–68. [Google Scholar] [CrossRef]
- Song, M.H.; Kabra, D.; Wenger, B.; Friend, R.H.; Snaith, H.J. Optically-Pumped Lasing in Hybrid Organic-Inorganic Light-Emitting Diodes. Adv. Funct. Mater. 2009, 19, 2130–2136. [Google Scholar] [CrossRef]
- Kabra, D.; Lu, L.P.; Song, M.H.; Snaith, H.J.; Friend, R.H. Efficient Single-Layer Polymer Light-Emitting Diodes. Adv. Mater. 2010, 22, 3194–3198. [Google Scholar] [CrossRef]
- Lattante, S.; Romano, F.; Caricato, A.P.; Martino, M.; Anni, M. Low electrode induced optical losses in organic active single layer polyfluorene waveguides with two indium tin oxide electrodes deposited by pulsed laser deposition. Appl. Phys. Lett. 2006, 89, 031108. [Google Scholar] [CrossRef]
- Gong, Q.X.; Zhang, W.; He, J.; Ma, F.; Song, L.; Cheng, L.; Zhang, J.; Wang, L.; Hu, Y. Simultaneously improving the quality factor and outcoupling efficiency of organic light-emitting field-effect transis-tors with planar microcavity. Opt. Express 2023, 31, 2480–2491. [Google Scholar] [CrossRef]
- Görrn, P.; Rabe, T.; Riedl, T.; Kowalsky, W. Loss reduction in fully contacted organic laser waveguides using TE2 modes. Appl. Phys. Lett. 2007, 91, 041113. [Google Scholar] [CrossRef]
- Capelli, R.; Toffanin, S.; Generali, G.; Usta, H.; Facchetti, A.; Muccini, M. Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes. Nat. Mater. 2010, 9, 496–503. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, H.; Dong, H.; Meng, L.; Jiang, L.; Jiang, L.; Wang, Y.; Yu, J.; Sun, Y.; Hu, W.; et al. High mobility emissive organic semiconductor. Nat. Commun. 2015, 6, 10032. [Google Scholar] [CrossRef]
- Rabe, T.; Görrn, P.; Lehnhardt, M.; Tilgner, M.; Riedl, T.; Kowalsky, W. Highly Sensitive Determination of the Polaron-Induced Optical Absorption of Organic Charge-Transport Materials. Phys. Rev. Lett. 2009, 102, 137401. [Google Scholar] [CrossRef] [PubMed]
- Samsonas, D.; Skliutas, E.; Čiburys, A.; Kontenis, L.; Gailevičius, D.; Berzinš, J.; Narbutis, D.; Jukna, V.; Vengris, M.; Juodkazis, S.; et al. 3D nanopolymerization and damage threshold dependence on laser wavelength and pulse duration. Nanophotonics 2023, 12, 1537–1548. [Google Scholar] [CrossRef]
- Tanase, C.; Meijer, E.J.; Blom, P.W.M.; de Leeuw, D.M. Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes. Phys. Rev. Lett. 2003, 91, 216601. [Google Scholar] [CrossRef]
- Namdas, E.B.; Ledochowitsch, P.; Yuen, J.D.; Moses, D.; Heeger, A.J. High performance light emitting transistors. Appl. Phys. Lett. 2008, 92, 183304. [Google Scholar] [CrossRef]
- Diroll, B.T.; Guzelturk, B.; Po, H.; Dabard, C.; Fu, N.; Makke, L.; Lhuillier, E.; Ithurria, S. 2D II–VI Semiconductor Nanoplatelets: From Material Synthesis to Optoelectronic Integration. Chem. Rev. 2023, 123, 3543–3624. [Google Scholar] [CrossRef] [PubMed]
Mechanism | Reaction Formula | Optical Excitation | Electnical Excitation |
---|---|---|---|
Inter-system crossing (ISC) | √ | √ | |
Reverse inter.syslem crossing (RISC) | √ | √ | |
Singlet-triplet annihilation (STA) | √ | √ | |
Singlet-singlet annihilation (SSA) | √ | √ | |
Triplet.triplet annihilation (TTA) | √ | √ | |
Singlet-polaron annihilation (SPA) | × | √ | |
Triplet.polaron annihilation (TPA) | × | √ | |
Singlet absorption (SA) | √ | √ | |
Triplet absorption (TA) | √ | √ |
Materials | Threshold (μJ/cm2) | Reference | Advantages | Disadvantages |
---|---|---|---|---|
PMMA | 50 | [26] | easy operation | low performance |
DNA | 3 | [27] | Strong inhibition | not easy operate |
PM567 | 1.35 | [28] | Strong inhibition | dopant dyes |
cis-DCSQ1 | 10 | [29] | good stability | discrete |
p-MSB and o-MSB | 14 | [37] | good continuity | not easy operate |
linear oligomer fluorene of hexyl chains | 0.4 | [41] | good stability | reasonable handling |
liquid 9-(2-ethylhexyl)carbazole | 2 | [42] | good stability | dopant dyes |
spiro-SBCz | 0.197 | [43] | good stability | not easy operate |
bisfluorene-cored dendrimers in solids | 4.5 | [48] | Good self-performance | discrete |
T6-truxene | 1.3 | [49,50] | good continuity | not easy operate |
VE-PFO | 1 | [57] | Strong inhibition | discrete |
LPPP | 4.8 | [58] | More flexible | low performance |
F8BT | 26 | [60] | easy operation | dopant dyes |
Perovskite | 12 | [64] | good stability | discrete |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Han, X.; Jin, L.; Meng, Y.; Jiang, C.; Asare-Yeboah, K.; He, Z.; Bi, S. Excitation Threshold Reduction Techniques for Organic Semiconductor Lasers: A Review. Coatings 2023, 13, 1815. https://doi.org/10.3390/coatings13101815
Wang Y, Han X, Jin L, Meng Y, Jiang C, Asare-Yeboah K, He Z, Bi S. Excitation Threshold Reduction Techniques for Organic Semiconductor Lasers: A Review. Coatings. 2023; 13(10):1815. https://doi.org/10.3390/coatings13101815
Chicago/Turabian StyleWang, Yao, Xu Han, Linze Jin, Yuhui Meng, Chengming Jiang, Kyeiwaa Asare-Yeboah, Zhengran He, and Sheng Bi. 2023. "Excitation Threshold Reduction Techniques for Organic Semiconductor Lasers: A Review" Coatings 13, no. 10: 1815. https://doi.org/10.3390/coatings13101815
APA StyleWang, Y., Han, X., Jin, L., Meng, Y., Jiang, C., Asare-Yeboah, K., He, Z., & Bi, S. (2023). Excitation Threshold Reduction Techniques for Organic Semiconductor Lasers: A Review. Coatings, 13(10), 1815. https://doi.org/10.3390/coatings13101815