Sustainable New Technology for the Improvement of Metallic Materials for Future Energy Applications
Abstract
:1. Introduction
Production of Electricity per Year for Different Energy Sector
Type of Energy Sector | Cost (EUR/MWh) | Capacity Factor (%) |
---|---|---|
Hydroelectric energy
| ||
53–326 | 31–66 | |
130–280 | 39–45 | |
Geothermal energy | 49–353 | 80–90 |
Biomass | 128 | 64 |
Solar energy | 27–130 | 12–30 |
Wind energy
| ||
24–67 | 29–52 | |
60–130 | 12–48 | |
Advanced nuclear energy | 73 | 94 |
2. Future Energy Sector
2.1. Energy Sector and Selection of the Right Material
2.1.1. Advanced Nuclear Energy
2.1.2. Hydroelectric Renewable Energy
2.1.3. Biomass Renewable Energy
2.1.4. Onshore and Off-Shore Renewable Energy
2.1.5. Solar Renewable Energy
2.1.6. Geothermal Renewable Energy
2.2. Cost of Maintenance and Repairs in Future Energy Sector and Search of the Solutions for Lowering the Costs
Cost of Maintenance and Repairs of Future Energy Sector
2.3. Metallic Mateirals Used in the Energy Sector
Energy Sector | Metallic Materials | Application | |
---|---|---|---|
Ferrous Alloys | Non-Ferrous Alloys | ||
Advanced Nuclear Energy | Zr-based alloys (Zircoaloy-4 (Zr-Sn-Fe-Cr), Zirlo, and M4 (Nb-based alloy)) [30,31] | Water reactors [30,31] | |
Advanced Nuclear Energy | Austenitic stainless steel (AISI 316 [31], AISI 316 SS [31], AISI 316L [156], AISI 316 LN [157], AISI 304 [31,157,158,159,160], AISI 304L [161,162,163,164], AISI 304 N [161], AISI 304 SS [31], AISI 347 [31], AISI 308L [157], AISI 308 SS [31], AISI 310 SS [156,165], AISI 309L [31], AISI 309 SS [31], AISI 321 SS [31], AISI 403 [31], AISI 410 [31]; AISI 347 SS [31], AISI 630 [31], AISI D9 [31], HT-UPS [31], AISI 4340) | Water reactors, piping, pressurizer, steam generator, pump, valve casing, plunger, control rod drive mechanism, and core internal structure [30,31] | |
Advanced Nuclear Energy | Cast-austenitic stainless steel (CF3, CF3A, CF3M, CF8, CF8A, CF8M, AISI 304 SS, AISI 304L SS, AISI 316 SS, AISI 316L SS, AISI 321 SS, AISI 347 SS) [31] | Primary cooling piping system, reactor coolant, auxiliary system, pump casing, valve bodies, and cooling circuit [30,31] | |
Advanced Nuclear Energy | Ni-based alloys (600 [161,166,167], 690 [161,168], 625 [31], 718 [31], X-750 [31], 800 [31], 800 H [165], 182 [31], 82 [31]) | Piping, steam generators, tubes, and working component in high corrosive environments [30,31] | |
Advanced Nuclear Energy | Low-alloyed steel (Ferritic steels: A105 [169], A106 GrB [31], A182 [169], A216 GrWCB [31], A302 GrB [169,170], A333 Gr6 [31], SA212 B [169]; A508 Gr3 [169,171,172,173,174], A516 Gr70 [31], A533 A [31], A555 B [31], 15Kh2NMFA [175,176], 08Kh18N10T [177]; bainitic steels: 1Cr1Mo0.25v [31], 2Cr1MoGr 22 [31], NiCrMoV [31]; duplex steel: 2507 [159], DSS [178], Fe20Cr9Ni [179]; carbon steel: AISI 1018 [159]) | Steamless piping, gorging, casting, bolting, plate, pressure vessels, piping, and feedwater lines; internal stainless steel cladding; steam generator channel heads [30,31] | |
Advanced Nuclear Energy | *Fusion RAFM steel (Eurofer97 [180,181,182,183], CLAM [31], Infrafm [31], FB2h [31]; Rusfer [31]; 9Cr-2WVTa [31]) Ferritic steel [31] | First wall at reactor, blanket, shield, vacuum vessel, and divertor [30,31] | |
Advanced Nuclear Energy | Fusion ODS alloy [31] ODS ferritic alloy [31] | ||
Advanced Nuclear Energy | Fusion other alloys SiC composites [31] W and W-based alloys [184,185,186] Cu-based alloys [186] Pb-Al alloy [187,188] HEA [189] Mo-based alloys [184] Nb-based alloy [184] V-based alloy [184] C-fiber components [190] | Structural and insulating application, joints, and filaments [30,31] | |
Hydroelectrical Renewable Energy | Austenitic stainless steel (AISI 316/AISI 316L [71,191,192,193], AISI 304/AISI 304L [66,79,194,195], AISI 325 [71], ASTM A743 [79,196], ASTM CF20 [71]) | Turbines and other components [66] | |
Hydroelectrical Renewable Energy | Non-ferrous alloys Al-based alloys [66,71,77] Ti-based alloys [66,78] Cu-based alloys [76,79,80] Ni-based alloys ([81,89]) | ||
Hydroelectrical Renewable Energy | Martensitic stainless steel (AISI 410 [197,198,199,200] ASTM F6NM [201,202], 13Cr4Ni [202,203,204], AISI 410T [79], AISI 410 [71], AISI 430 [69], ASTM FV520B [205], ASTM CA6NM [196]) | Turbines, shear pins, and other components [66] | |
Hydroelectrical Renewable Energy | Other steels High-strength steel [56,70,206] ACSR [71,77] Stainless steel [72,77,79,199,206] Cast steel [71] Nitronic steel [202] Carbon steel [72] High-speed steel [207] Electric steel [69] Constructional steel [69] | Supporting systems and other components [66] | |
Biomass Renewable Energy | Carbon steels and low-alloyed steels (2.25Cr-1Mo [97,98], 5Cr-1Mo [98], 9Cr-1Mo [98,208]) | Construction of the plant, pumps, pipes, valves, fittings, and digester tanks [82,83,84,105,209] | |
Biomass Renewable Energy | Non-ferrous alloys Al-based alloys [97,210,211] Ni-based alloys [97,212] NCA [213] | Specialized components [82,83,84] | |
Biomass Renewable Energy | Stainless steels Austenitic (AISI 304 L [97,214], AISI 316 L [74]) Martensitic (AISI 409 [74], AISI 410 [74], AISI 416 [74]) | Construction of the plant, pumps, pipes, valves, fittings, and digester tanks [82,83,84,105,209] | |
Biomass Renewable Energy | Cr-steels (12-13Cr [208], 13Cr [208], 14.5Cr [208], 16Cr [208], 12Cr-5Ni-2Mo [208], 11.5Cr-2Mo [208]) | ||
Wind and Offshore Wind Renewable Energy | Structural steel (S235J2 [215,216], S355J2 [215], S500G1 [215,216], S35G10 [217], S460 [216], S690 [216], S355 [216], S420M3Z [218], S500M3Z [219]) | Foundation, tower, gear, and casing of the wind turbines [105] | |
Wind and Offshore Wind Renewable Energy | Stainless steel Duplex stainless steel (mostly AISI 2205 [220]) Austenitic stainless steel (22Cr25NiWCoCu [221], AISI 304L [222,223,224], AISI 904L [225,226]) Martensitic stainless steel (mainly from 4xx series, such as AISI 440 C [227,228]) | ||
Wind and Off-shore Wind Renewable Energy | Non-ferrous alloys Cu-based alloys [229,230] Al-based alloys mostly from 2xxx and 6xxx series [218,231,232] | ||
Wind and Off-shore Wind Renewable Energy | Other types of steel Electric steels [233] Cast iron [234,235] High-Si nodular cast iron (EN GJS500-14 [235], EN GJS450-18 [235], EN GJS600-10 [235]) Bearing steels (mainly AISI 52100 [227,228]) High-Cr steel [227,228] Low-C nitrogen steel [227,228] | ||
Solar Renewable Energy | Austenitic stainless steel (AISI 304 [236,237], AISI 304L [238], AISI 316 [236,239], AISI 316L [237,240,241], AISI 321 [242,243], AISI 347 [242], AISI 347H [236]) | Are used for base in solar-thermal panels, pumps, tanks, and heat exchangers [105] | |
Solar Renewable Energy | Martensitic stainless steel (AISI 420 [244], EN 1.4903 [236], EN 1.4923 [236], AISI T91 [245], VM12 [246]) | ||
Solar Renewable Energy | Ni-based alloy (IN 230 [247], IN 600 [248,249], IN 617 [247,249], IN 625 [236,239,247], IN HT700 [250], IN 800H [251], C-276 [252], XH [249], H230 [249], HR120 [249]) | ||
Solar Renewable Energy | Other steels Carbon steels [236,253] Cr-Mo steels [254] Duplex steels [255] FeCrAl steels [241] Ferritic-martensitic P91 [248] | ||
Solar Renewable Energy | Other non-ferrous alloys Al-based alloys, mostly from series 7xxx [256,257,258,259] HEA [260,261] Mg-based alloys, mostly Ti-Y combination [262,263] | ||
Geothermal Renewable Energy | Duplex steels (2205 [264], 2507 [264], 2707 [264]) | Heat exchangers, filters, pumps, valves, piping, and condensers [209] | |
Geothermal Renewable Energy | Austenitic and superaustenitic steels (AISI 304 [265], AISI 304L [264], AISI 310S [264], AISI 316L [264,266], AISI 321 [264], UNS N08031 [266], N08020 [267], N08026 [267], N08825 [267], N08330 [267], S31254 [267]) | Construction of the plant [267] | |
Geothermal Renewable Energy | Martensitic stainless steels (mostly from 4xx series, AISI 400 [268,269], AISI 430 [269], AISI 431 [269]) | ||
Geothermal Renewable Energy | Non-ferrous alloys Ti-based alloys [138] Ni-based alloys [138,264] Cu-based alloys [269] | ||
Geothermal Renewable Energy | Other steels Low-alloyed steels [266] Carbon steel [270] Superferritic steels (S44627 [267], S44700 [267], S44800 [267]) |
2.4. Solutions for Lowering the Costs of Maintenance and Prolonging the Component Durability
3. Cryogenic Treatments in Energy Sector
3.1. Mechanisms of Cryogenic Treatments
3.2. Energy Sector and Position of Cryogenic Treatments
3.3. Effect of Cryogenic Treatments on Surface, Interface, and Corrosion Properties of Metallic Mateirals Used in the Energy Sector
3.3.1. Metallic Materials Being Tested for the Use in the Energy Sector
3.4. Effect of Cryogenic Treatments on Metallic Materials Potenitally Used in the Energy Sector
3.4.1. Oxide Formation
3.4.2. Corrosion Resistance
Corrosion Resistance of Ferrous Alloys
Corrosion Resistance of Non-Ferrous Alloys
4. Economic and Ecological Aspects and Future Role of Cryogenic Treatment in Future Energy Sector
5. Conclusions
- The energy sector has a great demand for the improvement of metallic materials;
- Available green and cost-effective CT technology has been proven to effectively improve the bulk and surface properties of metallic materials;
- CT improves corrosion resistance by up to 90% depending on metallic materials and environmental conditions;
- CT also produces a unique sequence of oxide formation that effectively influences the improved corrosion resistance of cryogenically treated metallic materials;
- The result of CT is a reduction in material degradation and a possible 3-fold increase in the service life of the treated metallic material;
- Further detailed and systematic investigation of the effectiveness of CT is required, using both experiments and modeling of both ferrous and non-ferrous alloys. Combined with detailed microstructural investigations, the mechanisms responsible for changes in metallic material properties can be clearly identified, and standards for the application of CT in the energy sector can be established.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Candra, O.; Chammam, A.; Alvarez, J.R.N.; Muda, I.; Aybar, H. The Impact of Renewable Energy Sources on the Sustainable Development of the Economy and Greenhouse Gas Emissions. Sustainability 2023, 15, 2104. [Google Scholar] [CrossRef]
- Owusu, P.A.; Asumadu-Sarkodie, S. A Review of Renewable Energy Sources, Sustainability Issues and Climate Change Mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Sinha, A.; Sengupta, T. Impact of Natural Resource Rents on Human Development: What Is the Role of Globalization in Asia Pacific Countries? Resour. Policy 2019, 63, 101413. [Google Scholar] [CrossRef]
- Zallé, O. Natural Resources and Economic Growth in Africa: The Role of Institutional Quality and Human Capital. Resour. Policy 2019, 62, 616–624. [Google Scholar] [CrossRef]
- Kumar, M. Social, Economic, and Environemtal of Renewable Energy Resources. In Wind Solar Hybrid Renewable Energy System; DoB-Books on Demand: Norderstedt, Germany, 2020; pp. 237–247. [Google Scholar]
- Zohuri, B.; McDaniel, P. Energy Insight: An Energy Essential Guide. In Introduction to Energy Essentials; Academic Press: Cambridge, MA, USA, 2021; pp. 321–370. [Google Scholar] [CrossRef]
- Smith, C.L.; Cowley, S. The Path to Fusion Power. Philos. Trans. A Math. Phys. Eng. Sci. 2010, 368, 1091. [Google Scholar] [CrossRef] [PubMed]
- Dream of Unlimited, Clean Nuclear Fusion Energy within Reach|Research and Innovation. Available online: https://ec.europa.eu/research-and-innovation/en/horizon-magazine/dream-unlimited-clean-nuclear-fusion-energy-within-reach (accessed on 23 July 2023).
- Carter, T.; Baalrud, S.; Betti, R.; Ellis, T.; Foster, J.; Geddes, C.; Gleason, A.; Holland, C.; Humrickhouse, P.; Kessel, C.; et al. Powering the Future: Fusion and Plasmas; US Department of Energy (USDOE): Loa Alamos, NM, USA, 2018.
- EU Energy Outlook 2050—How Will Europe Evolve over the Next 30 Years?—Energy BrainBlog. Available online: https://blog.energybrainpool.com/en/eu-energy-outlook-2050-how-will-europe-evolve-over-the-next-30-years-3/ (accessed on 28 June 2023).
- Renewable Energy on the Rise: 37% of EU’s Electricity—Products Eurostat News—Eurostat. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20220126-1 (accessed on 28 June 2023).
- Forbes Home. Solar. Available online: https://www.forbes.com/home-improvement/solar/ (accessed on 23 July 2023).
- How Much Energy Does a Solar Farm Produce? [Solar Farms Explained]. Available online: https://solarenergyhackers.com/how-much-energy-does-a-solar-farm-produce/ (accessed on 23 July 2023).
- U.S. Energy Information Administration (EIA). Frequently Asked Questions (FAQs). Available online: https://www.eia.gov/tools/faqs/faq.php?id=104&t=3 (accessed on 23 July 2023).
- Pearce-Higgins, J.W.; Stephen, L.; Douse, A.; Langston, R.H.W. Greater Impacts of Wind Farms on Bird Populations during Construction than Subsequent Operation: Results of a Multi-Site and Multi-Species Analysis. J. Appl. Ecol. 2012, 49, 386–394. [Google Scholar] [CrossRef]
- Kjeld, A.; Bjarnadottir, H.J.; Olafsdottir, R. Life Cycle Assessment of the Theistareykir Geothermal Power Plant in Iceland. Geothermics 2022, 105, 102530. [Google Scholar] [CrossRef]
- Whole Building Design Guide. Biomass for Electricity Generation|WBDG. Available online: https://www.wbdg.org/resources/biomass-electricity-generation (accessed on 23 July 2023).
- Fachagentur Nachwachsende Rohstoffe eV Agency for Renewable Resources. Bioenergy in Germany Facts and Figures 2020; Fachagentur Nachwachsende Rohstoffe eV Agency for Renewable Resources: Gülzow-Prüzen, Germany, 2020. [Google Scholar]
- Tidal Energy: Can It Be Used to Generate Electricity. Available online: https://justenergy.com/blog/tidal-energy-electricity/ (accessed on 23 July 2023).
- Hallidays. How Much Energy Does Hydropower Produce Each Year. Available online: https://www.hallidayshydropower.com/how-much-energy-hydropower/ (accessed on 23 July 2023).
- IEA. Hydropower. Available online: https://www.iea.org/energy-system/renewables/hydropower (accessed on 23 July 2023).
- Global Offshore Wind Capacity Factor 2021|Statista. Available online: https://www.statista.com/statistics/1368679/global-offshore-wind-capacity-factor/ (accessed on 23 July 2023).
- Agency, I.R.E. Renewable Power Generation Costs in 2019; International Renewable Energy Agency (IRENA): Abu Dhabi, United Arab Emirates, 2020; ISBN 978-92-9260-244-4. [Google Scholar]
- IEA. Executive Summary—The Role of Critical Minerals in Clean Energy Transitions—Analysis. Available online: https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions/executive-summary (accessed on 23 July 2023).
- Watari, T.; Nansai, K.; Nakajima, K. Review of Critical Metal Dynamics to 2050 for 48 Elements. Resour. Conserv. Recycl. 2020, 155, 104669. [Google Scholar] [CrossRef]
- Zepf, V.; Simmons, J.; Reller, A.; Ashfield, M.; Rennie, C. Materials Critical to the Energy Industry An Introduction, 2nd ed.; BP p.l.c.: London, UK, 2014. [Google Scholar]
- McKinsey. The Raw-Materials Challenge: How the Metals and Mining Sector Will Be at the Core of Enabling the Energy Transition. Available online: https://www.mckinsey.com/industries/metals-and-mining/our-insights/the-raw-materials-challenge-how-the-metals-and-mining-sector-will-be-at-the-core-of-enabling-the-energy-transition (accessed on 23 July 2023).
- Fu, M.; Ma, X.; Zhao, K.; Li, X.; Su, D. High-Entropy Materials for Energy-Related Applications. iScience 2021, 24, 102177. [Google Scholar] [CrossRef]
- Xin, Y.; Li, S.; Qian, Y.; Zhu, W.; Yuan, H.; Jiang, P.; Guo, R.; Wang, L. High-Entropy Alloys as a Platform for Catalysis: Progress, Challenges, and Opportunities. ACS Catal. 2020, 10, 11280–11306. [Google Scholar] [CrossRef]
- Allen, T.; Busby, J.; Meyer, M.; Petti, D. Materials Challenges for Nuclear Systems. Mater. Today 2010, 13, 14–23. [Google Scholar] [CrossRef]
- Odette, R.G.; Zinkle, S.J. (Eds.) Structural Alloys for Nuclear Energy Applications; Elsevier: Amsterdam, The Netherlands, 2019; Available online: https://books.google.de/books?hl=en&lr=&id=KAF0AwAAQBAJ&oi=fnd&pg=PP1&dq=alloys+in+nuclear+energy&ots=kPDtxJjGm_&sig=0_gOE-NqXXv-PV27O1LfuvFqJBM&redir_esc=y#v=onepage&q=alloys%20in%20nuclear%20energy&f=false (accessed on 3 July 2023).
- Advanced Nuclear Reactors 101. Available online: https://www.rff.org/publications/explainers/advanced-nuclear-reactors-101/ (accessed on 23 July 2023).
- IAEA. Advanced Large Water Cooled Reactors. A Supplement to: IAEA Advanced Reactors Information System (ARIS) 2020 Edition; IAEA: Vienna, Austria, 2020. [Google Scholar]
- Tian, W. Grand Challenges in Advanced Nuclear Reactor Design. Front. Nucl. Eng. 2022, 1, 1000754. [Google Scholar] [CrossRef]
- Xiao, C.; Gulfam, R. Opinion on Ocean Thermal Energy Conversion (OTEC). Front. Energy Res. 2023, 11, 1115695. [Google Scholar] [CrossRef]
- Elahee, K.; Jugoo, S. Ocean Thermal Energy for Air-Conditioning: Case Study of a Green Data Center. Energy Sources Part A Recovery Util. Environ. Eff. 2013, 35, 679–684. [Google Scholar] [CrossRef]
- Hunt, J.D.; Zakeri, B.; Nascimento, A.; Garnier, B.; Pereira, M.G.; Bellezoni, R.A.; de Assis Brasil Weber, N.; Schneider, P.S.; Machado, P.P.B.; Ramos, D.S. High Velocity Seawater Air-Conditioning with Thermal Energy Storage and Its Operation with Intermittent Renewable Energies. Energy Effic. 2020, 13, 1825–1840. [Google Scholar] [CrossRef]
- Etemadi, A.; Emami, Y.; AsefAfshar, O.; Emdadi, A. Electricity Generation by the Tidal Barrages. Energy Procedia 2011, 12, 928–935. [Google Scholar] [CrossRef]
- Ringwood, J.V.; Faedo, N. Tidal Barrage Operational Optimisation Using Wave Energy Control Techniques. IFAC-PapersOnLine 2022, 55, 148–153. [Google Scholar] [CrossRef]
- Walker, S.R.J.; Thies, P.R. A Life Cycle Assessment Comparison of Materials for a Tidal Stream Turbine Blade. Appl. Energy 2022, 309, 118353. [Google Scholar] [CrossRef]
- Zheng, J.; Dai, P.; Zhang, J. Tidal Stream Energy in China. Procedia Eng. 2015, 116, 880–887. [Google Scholar] [CrossRef]
- Radfar, S.; Panahi, R.; Javaherchi, T.; Filom, S.; Mazyaki, A.R. A Comprehensive Insight into Tidal Stream Energy Farms in Iran. Renew. Sustain. Energy Rev. 2017, 79, 323–338. [Google Scholar] [CrossRef]
- Blunden, L.S.; Bahaj, A.S. Tidal Energy Resource Assessment for Tidal Stream Generators. Proc. Inst. Mech. Eng. Part A J. Power Energy 2007, 221, 137–146. [Google Scholar] [CrossRef]
- Watson, S.; Moro, A.; Reis, V.; Baniotopoulos, C.; Barth, S.; Bartoli, G.; Bauer, F.; Boelman, E.; Bosse, D.; Cherubini, A.; et al. Future Emerging Technologies in the Wind Power Sector: A European Perspective. Renew. Sustain. Energy Rev. 2019, 113, 109270. [Google Scholar] [CrossRef]
- Majidi, A.G.; Bingölbali, B.; Akpınar, A.; Rusu, E. Wave Power Performance of Wave Energy Converters at High-Energy Areas of a Semi-Enclosed Sea. Energy 2021, 220, 119705. [Google Scholar] [CrossRef]
- Langhamer, O.; Haikonen, K.; Sundberg, J. Wave Power—Sustainable Energy or Environmentally Costly? A Review with Special Emphasis on Linear Wave Energy Converters. Renew. Sustain. Energy Rev. 2010, 14, 1329–1335. [Google Scholar] [CrossRef]
- Clément, A.; McCullen, P.; Falcão, A.; Fiorentino, A.; Gardner, F.; Hammarlund, K.; Lemonis, G.; Lewis, T.; Nielsen, K.; Petroncini, S.; et al. Wave Energy in Europe: Current Status and Perspectives. Renew. Sustain. Energy Rev. 2002, 6, 405–431. [Google Scholar] [CrossRef]
- Rusu, L. The Wave and Wind Power Potential in the Western Black Sea. Renew. Energy 2019, 139, 1146–1158. [Google Scholar] [CrossRef]
- Rahman, A.; Farrok, O.; Haque, M.M. Environmental Impact of Renewable Energy Source Based Electrical Power Plants: Solar, Wind, Hydroelectric, Biomass, Geothermal, Tidal, Ocean, and Osmotic. Renew. Sustain. Energy Rev. 2022, 161, 112279. [Google Scholar] [CrossRef]
- Zhang, Z.; Wen, L.; Jiang, L. Nanofluidics for Osmotic Energy Conversion. Nat. Rev. Mater. 2021, 6, 622–639. [Google Scholar] [CrossRef]
- Xin, W.; Zhang, Z.; Huang, X.; Hu, Y.; Zhou, T.; Zhu, C.; Kong, X.Y.; Jiang, L.; Wen, L. High-Performance Silk-Based Hybrid Membranes Employed for Osmotic Energy Conversion. Nat. Commun. 2019, 10, 3876. [Google Scholar] [CrossRef]
- Wang, Q.; Gao, X.; Zhang, Y.; He, Z.; Ji, Z.; Wang, X.; Gao, C. Hybrid RED/ED System: Simultaneous Osmotic Energy Recovery and Desalination of High-Salinity Wastewater. Desalination 2017, 405, 59–67. [Google Scholar] [CrossRef]
- Han, G.; Zhang, S.; Li, X.; Chung, T.S. Progress in Pressure Retarded Osmosis (PRO) Membranes for Osmotic Power Generation. Prog. Polym. Sci. 2015, 51, 1–27. [Google Scholar] [CrossRef]
- Kim, J.; Jeong, K.; Park, M.J.; Shon, H.K.; Kim, J.H. Recent Advances in Osmotic Energy Generation via Pressure-Retarded Osmosis (PRO): A Review. Energies 2015, 8, 11821–11845. [Google Scholar] [CrossRef]
- Llamosas, C.; Sovacool, B.K. The Future of Hydropower? A Systematic Review of the Drivers, Benefits and Governance Dynamics of Transboundary Dams. Renew. Sustain. Energy Rev. 2021, 137, 110495. [Google Scholar] [CrossRef]
- Kumar, R.; Singal, S.K. Penstock Material Selection in Small Hydropower Plants Using MADM Methods. Renew. Sustain. Energy Rev. 2015, 52, 240–255. [Google Scholar] [CrossRef]
- Gemechu, E.; Kumar, A. A Review of How Life Cycle Assessment Has Been Used to Assess the Environmental Impacts of Hydropower Energy. Renew. Sustain. Energy Rev. 2022, 167, 112684. [Google Scholar] [CrossRef]
- Borkowski, D.; Cholewa, D.; Korzeń, A. Run-of-the-River Hydro-PV Battery Hybrid System as an Energy Supplier for Local Loads. Energies 2021, 14, 5160. [Google Scholar] [CrossRef]
- Venus, T.E.; Hinzmann, M.; Bakken, T.H.; Gerdes, H.; Godinho, F.N.; Hansen, B.; Pinheiro, A.; Sauer, J. The Public’s Perception of Run-of-the-River Hydropower across Europe. Energy Policy 2020, 140, 111422. [Google Scholar] [CrossRef]
- François, B.; Hingray, B.; Raynaud, D.; Borga, M.; Creutin, J.D. Increasing Climate-Related-Energy Penetration by Integrating Run-of-the River Hydropower to Wind/Solar Mix. Renew. Energy 2016, 87, 686–696. [Google Scholar] [CrossRef]
- Douglas, T.; Broomhall, P.; Orr, C. Run-of-River Hydropower in BC A Citizen’s Guide to Understanding Approvals, Impacts and Sustainability of Independent Power Projects; British Columbia Ministry of Environment: Coquitlam, BC, Canada, 2007.
- Ramadan, A.; Nawar, M.A.A.; Mohamed, M.H. Performance Evaluation of a Drag Hydro Kinetic Turbine for Rivers Current Energy Extraction—A Case Study. Ocean Eng. 2020, 195, 106699. [Google Scholar] [CrossRef]
- Badrul Salleh, M.; Kamaruddin, N.M.; Mohamed-Kassim, Z. Savonius Hydrokinetic Turbines for a Sustainable River-Based Energy Extraction: A Review of the Technology and Potential Applications in Malaysia. Sustain. Energy Technol. Assess. 2019, 36, 100554. [Google Scholar] [CrossRef]
- EduRev. Which One of the Following Turbines Is Used in under Water Powerstations? (a) Pelton Turbine (b) Deriaz Turbine (c) Tubular Turbined (d) Turgo-Impulse Turbine. Correct Answer Is Option “C”. Can You Explain This Answer?|EduRev Mechanical Engineering Question. Available online: https://edurev.in/question/1587343/Which-one-of-the-following-turbines-is-used-in-under-water-powerstations-a-Pelton-turbineb-Deriaz-tu (accessed on 24 July 2023).
- Farr, H.; Ruttenberg, B.; Walter, R.K.; Wang, Y.H.; White, C. Potential Environmental Effects of Deepwater Floating Offshore Wind Energy Facilities. Ocean Coast. Manag. 2021, 207, 105611. [Google Scholar] [CrossRef]
- Quaranta, E.; Davies, P. Emerging and Innovative Materials for Hydropower Engineering Applications: Turbines, Bearings, Sealing, Dams and Waterways, and Ocean Power. Engineering 2022, 8, 148–158. [Google Scholar] [CrossRef]
- Tong, C. Introduction to Materials for Advanced Energy Systems. MRS Bull. 2020, 45, 317. [Google Scholar] [CrossRef]
- Quaranta, E. Estimation of the Permanent Weight Load of Water Wheels for Civil Engineering and Hydropower Applications and Dataset Collection. Sustain. Energy Technol. Assess. 2020, 40, 100776. [Google Scholar] [CrossRef]
- Hoffer, A.E.; Tapia, J.A.; Petrov, I.; Pyrhönen, J. Design of a Stainless Core Submersible Permanent Magnet Generator for Tidal Energy. In Proceedings of the IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; pp. 1010–1015. [Google Scholar] [CrossRef]
- Rodiouchkina, M.; Lindsjö, H.; Berglund, K.; Hardell, J. Effect of Stroke Length on Friction and Wear of Self-Lubricating Polymer Composites during Dry Sliding against Stainless Steel at High Contact Pressures. Wear 2022, 502–503, 204393. [Google Scholar] [CrossRef]
- Arun, K.; Kumar, K.M.; Karthikeyan, K.M.B.; Mohanasutan, S. Analysis on Influence of Bucket Angle of Pelton Wheel Turbine for Its Structural Integrity Using Aluminium Alloy (A390), Austenitic Stainless Steel (CF20), Grey Cast Iron (325) and Martensitic Stainless Steel (410). Mater. Today Proc. 2022, 62, 1045–1053. [Google Scholar] [CrossRef]
- Musabikha, S.; Pratikno, H.; Utama, I.K.A.P.; Mukhtasor. Material Selection for Vertical Axis Tidal Current Turbine Using Multiple Attribute Decision Making (MADM). IOP Conf. Ser. Mater. Sci. Eng. 2021, 1158, 012001. [Google Scholar] [CrossRef]
- Salter, S.H.; Taylor, J.R.M.; Caldwell, N.J. Power Conversion Mechanisms for Wave Energy. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2002, 216, 1–27. [Google Scholar] [CrossRef]
- Kofoed, J.P.; Frigaard, P.; Friis-Madsen, E.; Sørensen, H.C. Prototype Testing of the Wave Energy Converter Wave Dragon. Renew. Energy 2006, 31, 181–189. [Google Scholar] [CrossRef]
- Jiang, X.; Overman, N.; Canfield, N.; Ross, K. Friction Stir Processing of Dual Certified 304/304L Austenitic Stainless Steel for Improved Cavitation Erosion Resistance. Appl. Surf. Sci. 2019, 471, 387–393. [Google Scholar] [CrossRef]
- Suwanit, W.; Gheewala, S.H. Life Cycle Assessment of Mini-Hydropower Plants in Thailand. Int. J. Life Cycle Assess. 2011, 16, 849–858. [Google Scholar] [CrossRef]
- Azevedo, C.R.F.; Cescon, T. Failure Analysis of Aluminum Cable Steel Reinforced (ACSR) Conductor of the Transmission Line Crossing the Paraná River. Eng. Fail. Anal. 2002, 9, 645–664. [Google Scholar] [CrossRef]
- Ujwala, M.M.; Chaithanya, M.P.; Chowdary, K.; Naik, M.L.S. Design and Analysis of Low Head, Light Weight Kaplan Turbine Blade. Int. Ref. J. Eng. Sci. IRJES 2017, 6, 17–25. [Google Scholar]
- Marangoni, P.R.D.; Robl, D.; Berton, M.A.C.; Garcia, C.M.; Bozza, A.; Porsani, M.V.; Dalzoto, P.D.R.; Vicente, V.A.; Pimentel, I.C. Occurrence of Sulphate Reducing Bacteria (SRB) Associated with Biocorrosion on Metallic Surfaces in a Hydroelectric Power Station in Ibirama (SC)—Brazil. Braz. Arch. Biol. Technol. 2013, 56, 801–809. [Google Scholar] [CrossRef]
- Linhardt, P. Unusual Corrosion of Nickel-Aluminium Bronze in a Hydroelectric Power Plant. Mater. Corros. 2015, 66, 1536–1541. [Google Scholar] [CrossRef]
- Ebrahimi, A. Advances in Modelling and Control of Wind and Hydrogenerators Edited, 1st ed.; Ebrahimi, A., Ed.; IntechOpen: London, UK, 2020. [Google Scholar]
- Suopajärvi, H.; Umeki, K.; Mousa, E.; Hedayati, A.; Romar, H.; Kemppainen, A.; Wang, C.; Phounglamcheik, A.; Tuomikoski, S.; Norberg, N.; et al. Use of Biomass in Integrated Steelmaking—Status Quo, Future Needs and Comparison to Other Low-CO2 Steel Production Technologies. Appl. Energy 2018, 213, 384–407. [Google Scholar] [CrossRef]
- Ropital, F. Current and Future Corrosion Challenges for a Reliable and Sustainable Development of the Chemical, Refinery, and Petrochemical Industries. Mater. Corros. 2009, 60, 495–500. [Google Scholar] [CrossRef]
- Mousa, E.; Wang, C.; Riesbeck, J.; Larsson, M. Biomass Applications in Iron and Steel Industry: An Overview of Challenges and Opportunities. Renew. Sustain. Energy Rev. 2016, 65, 1247–1266. [Google Scholar] [CrossRef]
- ORNL. Degradation of Structural Alloys In Biomass-Derived Pyrolysis Oil. Available online: https://www.ornl.gov/publication/degradation-structural-alloys-biomass-derived-pyrolysis-oil (accessed on 12 July 2023).
- Giudicianni, P.; Gargiulo, V.; Grottola, C.M.; Alfè, M.; Ferreiro, A.I.; Mendes, M.A.A.; Fagnano, M.; Ragucci, R. Inherent Metal Elements in Biomass Pyrolysis: A Review. Energy Fuels 2021, 35, 5407–5478. [Google Scholar] [CrossRef]
- Biomass Energy. Available online: https://education.nationalgeographic.org/resource/biomass-energy/ (accessed on 12 July 2023).
- Miandad, R.; Rehan, M.; Barakat, M.A.; Aburiazaiza, A.S.; Khan, H.; Ismail, I.M.I.; Dhavamani, J.; Gardy, J.; Hassanpour, A.; Nizami, A.S. Catalytic Pyrolysis of Plastic Waste: Moving toward Pyrolysis Based Biorefineries. Front. Energy Res. 2019, 7, 27. [Google Scholar] [CrossRef]
- Wei, L.; Wang, S.; Liu, G.; Hao, W.; Liang, K.; Yang, X.; Diao, W. Corrosion Behavior of High-Cr-Ni Materials in Biomass Incineration Atmospheres. ACS Omega 2022, 7, 21546–21553. [Google Scholar] [CrossRef] [PubMed]
- Berlanga, C.; Ruiz, J.A. Study of Corrosion in a Biomass Boiler. J. Chem. 2013, 2013, 272090. [Google Scholar] [CrossRef]
- Perego, P.; Fabiano, B.; Pastorino, R.; Randi, G. Microbiological Corrosion in Aerobic and Anaerobic Waste Purification Plants: Safety and Efficiency Problems. Bioprocess Eng. 1997, 17, 103–109. [Google Scholar] [CrossRef]
- Miryalkar, P.; Chavitlo, S.; Tandekar, N.; Valleti, K. Improving the Abrasive Wear Resistance of Biomass Briquetting Machine Components Using Cathodic Arc Physical Vapor Deposition Coatings: A Comparative Study. J. Vac. Sci. Technol. A Vac. Surf. Film. 2021, 39, 63404. [Google Scholar] [CrossRef]
- Bojanowska, M.; Chmiel, J.; Sozańska, M.; Chmiela, B.; Grudzień, J.; Halska, J. Issues of Corrosion and Degradation under Dusty Deposits of Energy Biomass. Energies 2021, 14, 534. [Google Scholar] [CrossRef]
- Calmunger, M.; Wärner, H.; Chai, G.; Segersäll, M. Thermomechanical Fatigue of Heat Resistant Austenitic Alloys. Procedia Struct. Integr. 2023, 43, 130–135. [Google Scholar] [CrossRef]
- Wärner, H.; Chai, G.; Moverare, J.; Calmunger, M. High Temperature Fatigue of Aged Heavy Section Austenitic Stainless Steels. Materials 2021, 15, 84. [Google Scholar] [CrossRef] [PubMed]
- Wärner, H.; Calmunger, M.; Chai, G.; Johansson, S.; Moverare, J. Thermomechanical Fatigue Behaviour of Aged Heat Resistant Austenitic Alloys. Int. J. Fatigue 2019, 127, 509–521. [Google Scholar] [CrossRef]
- Jun, J.; Warrington, G.L.; Keiser, J.R.; Connatser, R.M.; Sulejmanovic, D.; Brady, M.P.; Kass, M.D. Corrosion of Ferrous Structural Alloys in Biomass Derived Fuels and Organic Acids. Energy Fuels 2021, 35, 12175–12186. [Google Scholar] [CrossRef]
- Jun, J.; Frith, M.G.; Connatser, R.M.; Keiser, J.R.; Brady, M.P.; Lewis, S. Corrosion Susceptibility of Cr-Mo Steels and Ferritic Stainless Steels in Biomass-Derived Pyrolysis Oil Constituents. Energy Fuels 2020, 34, 6220–6228. [Google Scholar] [CrossRef]
- Vinnes, M.K.; Worth, N.A.; Segalini, A.; Hearst, R.J. The Flow in the Induction and Entrance Regions of Lab-Scale Wind Farms. Wind Energy 2023, 26, 1049–1065. [Google Scholar] [CrossRef]
- Wind Energy. Available online: https://www.irena.org/Energy-Transition/Technology/Wind-energy (accessed on 19 July 2023).
- NREL. Wind Energy Basics. Available online: https://www.nrel.gov/research/re-wind.html (accessed on 19 July 2023).
- National Grid Group. Onshore vs Offshore Wind Energy: What’s the Difference? Available online: https://www.nationalgrid.com/stories/energy-explained/onshore-vs-offshore-wind-energy (accessed on 19 July 2023).
- Greco, A.; Sheng, S.; Keller, J.; Erdemir, A. Material Wear and Fatigue in Wind Turbine Systems. Wear 2013, 302, 1583–1591. [Google Scholar] [CrossRef]
- Reddy, S.S.P.; Suresh, R.; Hanamantraygouda, M.B.; Shivakumar, B.P. Use of Composite Materials and Hybrid Composites in Wind Turbine Blades. Mater. Today Proc. 2021, 46, 2827–2830. [Google Scholar] [CrossRef]
- Worldsteel.Org. Energy. Available online: https://worldsteel.org/steel-topics/steel-markets/energy/ (accessed on 16 July 2023).
- Khalfallah, M.G.; Koliub, A.M. Effect of Dust on the Performance of Wind Turbines. Desalination 2007, 209, 209–220. [Google Scholar] [CrossRef]
- German Energy Solutions. Solar Thermal Energy. Available online: https://www.german-energy-solutions.de/GES/Redaktion/EN/Text-Collections/EnergySolutions/EnergyGeneration/solar-thermal-energy.html (accessed on 23 July 2023).
- Kannan, N.; Vakeesan, D. Solar Energy for Future World:—A Review. Renew. Sustain. Energy Rev. 2016, 62, 1092–1105. [Google Scholar] [CrossRef]
- Department of Energy. How Does Solar Work? Available online: https://www.energy.gov/eere/solar/how-does-solar-work (accessed on 19 July 2023).
- Negi, C.; Kandwal, P.; Rawat, J.; Sharma, M.; Sharma, H.; Dalapati, G.; Dwivedi, C. Carbon-Doped Titanium Dioxide Nanoparticles for Visible Light Driven Photocatalytic Activity. Appl. Surf. Sci. 2021, 554, 149553. [Google Scholar] [CrossRef]
- Yang, X.; Wang, D. Photocatalysis: From Fundamental Principles to Materials and Applications. ACS Appl. Energy Mater. 2018, 1, 6657–6693. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Wahid, M.A. Hydrogen from Solar Energy, a Clean Energy Carrier from a Sustainable Source of Energy. Int. J. Energy Res. 2020, 44, 4110–4131. [Google Scholar] [CrossRef]
- Guillot, S.; Faik, A.; Rakhmatullin, A.; Lambert, J.; Veron, E.; Echegut, P.; Bessada, C.; Calvet, N.; Py, X. Corrosion Effects between Molten Salts and Thermal Storage Material for Concentrated Solar Power Plants. Appl. Energy 2012, 94, 174–181. [Google Scholar] [CrossRef]
- Walczak, M.; Pineda, F.; Fernández, Á.G.; Mata-Torres, C.; Escobar, R.A. Materials Corrosion for Thermal Energy Storage Systems in Concentrated Solar Power Plants. Renew. Sustain. Energy Rev. 2018, 86, 22–44. [Google Scholar] [CrossRef]
- González-Gómez, P.A.; Rodríguez-Sánchez, M.R.; Laporte-Azcué, M.; Santana, D. Calculating Molten-Salt Central-Receiver Lifetime under Creep-Fatigue Damage. Sol. Energy 2021, 213, 180–197. [Google Scholar] [CrossRef]
- Rabelo, M.; Zahid, M.A.; Khokhar, M.Q.; Sim, K.; Oh, H.; Cho, E.C.; Yi, J. Mechanical Fatigue Life Analysis of Solar Panels under Cyclic Load Conditions for Design Improvement. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 87. [Google Scholar] [CrossRef]
- Galiullin, T.; Gobereit, B.; Naumenko, D.; Buck, R.; Amsbeck, L.; Neises-von Puttkamer, M.; Quadakkers, W.J. High Temperature Oxidation and Erosion of Candidate Materials for Particle Receivers of Concentrated Solar Power Tower Systems. Sol. Energy 2019, 188, 883–889. [Google Scholar] [CrossRef]
- Ali, H.M. Phase Change Materials Based Thermal Energy Storage for Solar Energy Systems. J. Build. Eng. 2022, 56, 104731. [Google Scholar] [CrossRef]
- Ma, T.; Yang, C.; Guo, W.; Lin, H.; Zhang, F.; Liu, H.; Zhao, L.; Zhang, Y.; Wang, Y.; Cui, Y.; et al. Flexible Pt3Ni-S-Deposited Teflon Membrane with High Surface Mechanical Properties for Efficient Solar-Driven Strong Acidic/Alkaline Water Evaporation. ACS Appl. Mater. Interfaces 2020, 12, 27140–27149. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Li, N.; Wang, S.; Qiao, L.; Yu, L.; Murto, P.; Xu, X.; Li, F.; Li, N.; Wang, S.; et al. Self-Repairing and Damage-Tolerant Hydrogels for Efficient Solar-Powered Water Purification and Desalination. Adv. Funct. Mater. 2021, 31, 2104464. [Google Scholar] [CrossRef]
- Rojas-Morín, A.; Flores-Salgado, Y.; Alvarez-Brito, O.; Jaramillo-Mora, J.; Barba-Pingarrón, A. Thermal Analysis Using Induction and Concentrated Solar Radiation for the Heating of Metals. Results Eng. 2022, 14, 1000431. [Google Scholar] [CrossRef]
- Department of Energy. Geothermal Basics. Available online: https://www.energy.gov/eere/geothermal/geothermal-basics (accessed on 19 July 2023).
- Wayback Machine. Available online: https://web.archive.org/web/20120217184740/http://geoheat.oit.edu/bulletin/bull28-3/art2.pdf (accessed on 19 July 2023).
- Geothermal Energy. Available online: https://education.nationalgeographic.org/resource/geothermal-energy/ (accessed on 19 July 2023).
- Vacquier, V. A Theory of the Origin of the Earth’s Internal Heat. Tectonophysics 1998, 291, 1–7. [Google Scholar] [CrossRef]
- Zarrouk, S.J.; Moon, H. Efficiency of Geothermal Power Plants: A Worldwide Review. Geothermics 2014, 51, 142–153. [Google Scholar] [CrossRef]
- Tomarov, G.V.; Borzenko, V.I.; Shipkov, A.A. Application of Hydrogen–Oxygen Steam Generators for Secondary Flash Steam Superheating at Geothermal Power Plants. Therm. Eng. 2021, 68, 45–53. [Google Scholar] [CrossRef]
- Farsi, A.; Rosen, M.A. Comparison of Thermodynamic Performances in Three Geothermal Power Plants Using Flash Steam. ASME Open J. Eng. 2022, 1, 011016. [Google Scholar] [CrossRef]
- Wu, Y.; Li, P. The Potential of Coupled Carbon Storage and Geothermal Extraction in a CO2-Enhanced Geothermal System: A Review. Geotherm. Energy 2020, 8, 19. [Google Scholar] [CrossRef]
- Kumari, W.G.P.; Ranjith, P.G. Sustainable Development of Enhanced Geothermal Systems Based on Geotechnical Research—A Review. Earth Sci. Rev. 2019, 199, 102955. [Google Scholar] [CrossRef]
- Nasruddin, N.; Dwi Saputra, I.; Mentari, T.; Bardow, A.; Marcelina, O.; Berlin, S. Exergy, Exergoeconomic, and Exergoenvironmental Optimization of the Geothermal Binary Cycle Power Plant at Ampallas, West Sulawesi, Indonesia. Therm. Sci. Eng. Prog. 2020, 19, 100625. [Google Scholar] [CrossRef]
- Duggal, R.; Rayudu, R.; Hinkley, J.; Burnell, J.; Wieland, C.; Keim, M. A Comprehensive Review of Energy Extraction from Low-Temperature Geothermal Resources in Hydrocarbon Fields. Renew. Sustain. Energy Rev. 2022, 154, 111865. [Google Scholar] [CrossRef]
- Van Nimwegen, D.; Van ‘t Westende, J.; Shoeibi-Omrani, P.; Dinkelman, D.; Peters, E. Sustainability of Geothermal Energy: Handling Co-Produced Gas. In Proceedings of the 3rd EAGE Global Energy Transition, GET 2022, The Hague, The Netherlands, 7–9 November 2022; Volume 2022, pp. 51–55. [Google Scholar] [CrossRef]
- Nash, S.S. Offshore Co-Produced Critical Minerals and Geothermal Energy Generation. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 2–5 May 2022. [Google Scholar] [CrossRef]
- Maddah, S.; Goodarzi, M.; Safaei, M.R. Comparative Study of the Performance of Air and Geothermal Sources of Heat Pumps Cycle Operating with Various Refrigerants and Vapor Injection. Alex. Eng. J. 2020, 59, 4037–4047. [Google Scholar] [CrossRef]
- Farzanehkhameneh, P.; Soltani, M.; Moradi Kashkooli, F.; Ziabasharhagh, M. Optimization and Energy-Economic Assessment of a Geothermal Heat Pump System. Renew. Sustain. Energy Rev. 2020, 133, 110282. [Google Scholar] [CrossRef]
- Mahmoud, M.; Ramadan, M.; Pullen, K.; Abdelkareem, M.A.; Wilberforce, T.; Olabi, A.G.; Naher, S. A Review of Grout Materials in Geothermal Energy Applications. Int. J. Thermofluids 2021, 10, 100070. [Google Scholar] [CrossRef]
- Kaya, T.; Hoşhan, P.; Jeotermal Mühendislik, O.; ve Ticaret AŞAnkara, S.; Araştırma Merkezi, T. Corrosion and Material Selection for Geothermal Systems. In Proceedings of the World Geothermal Congress, Antalya, Turkey, 24–29 April 2005; pp. 24–29. [Google Scholar]
- Kittel, J.; Ropital, F.; Grosjean, F.; Joshi, G. Evaluation of the Interactions Between Hydrogen and Steel in Geothermal Conditions with H2S. In Proceedings of the World Geothermal Congress, Antalya, Turkey, 24–29 April 2005. [Google Scholar]
- Brownlie, F.; Hodgkiess, T.; Pearson, A.; Galloway, A.M. A Study on the Erosion-Corrosion Behaviour of Engineering Materials Used in the Geothermal Industry. Wear 2021, 477, 203821. [Google Scholar] [CrossRef]
- Steel, Q.; Wang, P.; Qiu, B.; Chen, A.; Fink, C.G.; Turner, W.D.; Paul, G.T.; Wolf, M.; Pfennig, A. Failure of Standard Duplex Stainless Steel X2CrNiMoN22-5-3 under Corrosion Fatigue in Geothermal Environment. IOP Conf. Ser. Mater. Sci. Eng. 2020, 894, 012015. [Google Scholar] [CrossRef]
- Tayactac, R.G.; Basilia, B. Corrosion in the Geothermal Systems: A Review of Corrosion Resistance Alloy (CRA) Weld Overlay Cladding Applications. IOP Conf. Ser. Earth Environ. Sci. 2022, 1008, 012018. [Google Scholar] [CrossRef]
- Jasper, S.; Gradzki, D.P.; Bracke, R.; Hussong, J.; Petermann, M.; Lindken, R. Nozzle Cavitation and Rock Erosion Experiments Reveal Insight into the Jet Drilling Process. Chem. Ing. Tech. 2021, 93, 1610–1618. [Google Scholar] [CrossRef]
- Phi, T.; Elgaddafi, R.; Al Ramadan, M.; Fahd, K.; Ahmed, R.; Teodoriu, C. Well Integrity Issues: Extreme High-Pressure High-Temperature Wells and Geothermal Wells a Review. In Proceedings of the Society of Petroleum Engineers—SPE Thermal Well Integrity and Design Symposium 2019, TWID 2019, Banff, AB, Canada, 19–21 November 2019. [Google Scholar] [CrossRef]
- Boakye, G.O.; Kovalov, D.; Thorhallsson, A.I.; Karlsdottir, S.N.; Oppong Boakye, G.; Thórhallsson, A.Í.; Karlsdóttir, S.N.; Motoiu, V. Friction and Wear Behaviour of Surface Coatings for Geothermal Applications. In Proceedings of the World Geothermal Congress, Reykjavik, Iceland, 24–27 October 2021. [Google Scholar]
- Bates, M.; Valderrama, B.; Bickford, E.; Chan, V.; Tian, L.; Programs, L.; Shah, J.; Wagner, J. Pathways to Commercial Liftoff: Advanced Nuclear; US Department of Energy: Washington, DC, USA, 2023.
- Energy Options Network. An Energy Innovation Reform Project Report Prepared by the Energy Options Network What Will Advanced Nuclear Power Plants Cost? A Standardized Cost Analysis of Advanced Nuclear Technologies in Commercial Development; Energy Options Network: New York, NY, USA, 2018. [Google Scholar]
- Claverton Group. Owning and Operating Costs of Waste and Biomass Power Plants. Available online: https://claverton-energy.com/owning-and-operating-costs-of-waste-and-biomass-power-plants.html (accessed on 19 July 2023).
- International Renewable Energy Agency. Renewable Energy Technologies: Cost Analysis Series Biomass for Power Generation Acknowledgement; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2012. [Google Scholar]
- Blakers, A.; Stocks, M.; Lu, B.; Cheng, C. A Review of Pumped Hydro Energy Storage. Prog. Energy 2021, 3, 022003. [Google Scholar] [CrossRef]
- ETSAP. Giorgio Hydropower; Energy Technology Systems Analysis Programme: Paris, France, 2010. [Google Scholar]
- Whole Building Design Guide (WBDG). Geothermal Electric Technology. Available online: https://www.wbdg.org/resources/geothermal-electric-technology (accessed on 19 July 2023).
- LinkedIn. Cost of Geothermal Energy. Available online: https://www.linkedin.com/pulse/cost-geothermal-energy-abdelilah-soni/ (accessed on 19 July 2023).
- Carroll, J.; McDonald, A.; McMillan, D. Failure Rate, Repair Time and Unscheduled O&M Cost Analysis of Offshore Wind Turbines. Wind Energy 2016, 19, 1107–1119. [Google Scholar] [CrossRef]
- Deb, D.; Brahmbhatt, N.L. Review of Yield Increase of Solar Panels through Soiling Prevention, and a Proposed Water-Free Automated Cleaning Solution. Renew. Sustain. Energy Rev. 2018, 82, 3306–3313. [Google Scholar] [CrossRef]
- Sabzi, M.; Mousavi Anijdan, S.H.; Eivani, A.R.; Park, N.; Jafarian, H.R. The Effect of Pulse Current Changes in PCGTAW on Microstructural Evolution, Drastic Improvement in Mechanical Properties, and Fracture Mode of Dissimilar Welded Joint of AISI 316L-AISI 310S Stainless Steels. Mater. Sci. Eng. A 2021, 823, 141700. [Google Scholar] [CrossRef]
- Tan, J.; Zhang, Z.; Zheng, H.; Wang, X.; Gao, J.; Wu, X.; Han, E.H.; Yang, S.; Huang, P. Corrosion Fatigue Model of Austenitic Stainless Steels Used in Pressurized Water Reactor Nuclear Power Plants. J. Nucl. Mater. 2020, 541, 152407. [Google Scholar] [CrossRef]
- Jo, B.; Okamoto, K.; Kasahara, N. Creep Buckling of 304 Stainless-Steel Tubes Subjected to External Pressure for Nuclear Power Plant Applications. Metals 2019, 9, 536. [Google Scholar] [CrossRef]
- Sadawy, M.M.; El Shazly, R.M. Nuclear Radiation Shielding Effectiveness and Corrosion Behavior of Some Steel Alloys for Nuclear Reactor Systems. Def. Technol. 2019, 15, 621–628. [Google Scholar] [CrossRef]
- Deng, P.; Peng, Q.; Han, E.H.; Ke, W.; Sun, C. Proton Irradiation Assisted Localized Corrosion and Stress Corrosion Cracking in 304 Nuclear Grade Stainless Steel in Simulated Primary PWR Water. J. Mater. Sci. Technol. 2021, 65, 61–71. [Google Scholar] [CrossRef]
- Macdonald, D.D.; Engelhardt, G.R.; Petrov, A. A Critical Review of Radiolysis Issues in Water-Cooled Fission and Fusion Reactors: Part I, Assessment of Radiolysis Models. Corros. Mater. Degrad. 2022, 3, 470–535. [Google Scholar] [CrossRef]
- Chen, X.; Cheng, G.; Hou, Y.; Li, J. Oxide-Inclusion Evolution in the Steelmaking Process of 304L Stainless Steel for Nuclear Power. Metals 2019, 9, 257. [Google Scholar] [CrossRef]
- Yeh, C.P.; Tsai, K.C.; Huang, J.Y. Effects of Relative Humidity on Crevice Corrosion Behavior of 304L Stainless-Steel Nuclear Material in a Chloride Environment. Metals 2019, 9, 1185. [Google Scholar] [CrossRef]
- Yeom, H.; Dabney, T.; Pocquette, N.; Ross, K.; Pfefferkorn, F.E.; Sridharan, K. Cold Spray Deposition of 304L Stainless Steel to Mitigate Chloride-Induced Stress Corrosion Cracking in Canisters for Used Nuclear Fuel Storage. J. Nucl. Mater. 2020, 538, 152254. [Google Scholar] [CrossRef]
- Guo, X.; Liu, Z.; Li, L.; Cheng, J.; Su, H.; Zhang, L. Revealing the Long-Term Oxidation and Carburization Mechanism of 310S SS and Alloy 800H Exposed to Supercritical Carbon Dioxide. Mater. Charact. 2022, 183, 111603. [Google Scholar] [CrossRef]
- Scott, P.M.; Combrade, P. General Corrosion and Stress Corrosion Cracking of Alloy 600 in Light Water Reactor Primary Coolants. J. Nucl. Mater. 2019, 524, 340–375. [Google Scholar] [CrossRef]
- Ahn, T.M. Long-Term Initiation Time for Stress-Corrosion Cracking of Alloy 600 with Implications in Stainless Steel: Review and Analysis for Nuclear Application. Prog. Nucl. Energy 2021, 137, 103760. [Google Scholar] [CrossRef]
- Chakrabarti, C.K.; Kumar, N.; Mishra, R.K.; Bhattacharya, S.; Sengupta, P.; Kaushik, C.P. Palladium Telluride within Nuclear Waste Containing Borosilicate Glass. Prog. Nucl. Energy 2022, 148, 104236. [Google Scholar] [CrossRef]
- Zhou, L.; Dai, J.; Li, Y.; Dai, X.; Xie, C.; Li, L.; Chen, L. Research Progress of Steels for Nuclear Reactor Pressure Vessels. Materials 2022, 15, 8761. [Google Scholar] [CrossRef]
- Bandaru, S.V.R.; Villanueva, W.; Thakre, S.; Bechta, S. Multi-Nozzle Spray Cooling of a Reactor Pressure Vessel Steel Plate for the Application of Ex-Vessel Cooling. Nucl. Eng. Des. 2021, 375, 111101. [Google Scholar] [CrossRef]
- Gao, Z.; Lu, C.; He, Y.; Liu, R.; He, H.; Wang, W.; Zheng, W.; Yang, J. Influence of Phase Transformation on the Creep Deformation Mechanism of SA508 Gr.3 Steel for Nuclear Reactor Pressure Vessels. J. Nucl. Mater. 2019, 519, 292–301. [Google Scholar] [CrossRef]
- Hong, S.; Hyun, S.M.; Kim, J.M.; Lee, Y.S.; Kim, M.C. Effect of Mo and V Addition on Microstructure and Mechanical Properties of SA508 Gr.1A Steel for Pipeline in Nuclear Power Plants. Met. Mater. Trans. A Phys. Met. Mater. Sci. 2022, 53, 1499–1511. [Google Scholar] [CrossRef]
- Carter, M.; Gasparrini, C.; Douglas, J.O.; Riddle, N.; Edwards, L.; Bagot, P.A.J.; Hardie, C.D.; Wenman, M.R.; Moody, M.P. On the Influence of Microstructure on the Neutron Irradiation Response of HIPed SA508 Steel for Nuclear Applications. J. Nucl. Mater. 2022, 559, 153435. [Google Scholar] [CrossRef]
- Ma, X.; She, M.; Zhang, W.; Song, L.; Qiu, S.; Liu, X.; Zhang, R. Microstructure Characterization of Reactor Pressure Vessel Steel A508-3 Irradiated by Heavy Ion. J. Phys. Conf. Ser. 2021, 2133, 012015. [Google Scholar] [CrossRef]
- Vértesy, G.; Gasparics, A.; Szenthe, I.; Gillemot, F.; Uytdenhouwen, I. Inspection of Reactor Steel Degradation by Magnetic Adaptive Testing. Materials 2019, 12, 963. [Google Scholar] [CrossRef] [PubMed]
- Loktionov, V.; Lyubashevskaya, I.; Terentyev, E. The Regularities of Creep Deformation and Failure of the VVER’s Pressure Vessel Steel 15Kh2NMFA-A in Air and Argon at Temperature Range 500–900 °C. Nucl. Mater. Energy 2021, 28, 101019. [Google Scholar] [CrossRef]
- Voevodyn, V.; Mytrofanov, S.; Hozhenko, S.V.; Vasylenko, R.L.; Krainyuk, E.; Bazhukov, V.; Palii; Mel’nyk, P.E. Nonmetallic Inclusions in 08Kh18N10T Steel as the Cause of Initiation of Defects in Heat-Exchange Tubes of Steam Generators of Nuclear Power Plants. Mater. Sci. 2019, 55, 152–159. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, T.G.; Xin, L.; Han, Y.M.; Lu, Y.H.; Shoji, T. Thermal Aging Behaviors of Duplex Stainless Steels Used in Nuclear Power Plant: A Review. J. Nucl. Mater. 2021, 544, 152693. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, B.; Zhou, Y.; Wu, Y.; Zhu, H. Evaluation of Pitting Corrosion in Duplex Stainless Steel Fe20Cr9Ni for Nuclear Power Application. Acta Mater. 2020, 197, 172–183. [Google Scholar] [CrossRef]
- Rieth, M.; Dürrschnabel, M.; Bonk, S.; Jäntsch, U.; Bergfeldt, T.; Hoffmann, J.; Antusch, S.; Simondon, E.; Klimenkov, M.; Bonnekoh, C.; et al. Technological Processes for Steel Applications in Nuclear Fusion. Appl. Sci. 2021, 11, 11653. [Google Scholar] [CrossRef]
- Duerrschnabel, M.; Jäntsch, U.; Gaisin, R.; Rieth, M. Microstructural Insights into EUROFER97 Batch 3 Steels. Nucl. Mater. Energy 2023, 35, 101445. [Google Scholar] [CrossRef]
- Klimenkov, M.; Jäntsch, U.; Rieth, M.; Möslang, A. Correlation of Microstructural and Mechanical Properties of Neutron Irradiated EUROFER97 Steel. J. Nucl. Mater. 2020, 538, 152231. [Google Scholar] [CrossRef]
- Cabet, C.; Dalle, F.; Gaganidze, E.; Henry, J.; Tanigawa, H. Ferritic-Martensitic Steels for Fission and Fusion Applications. J. Nucl. Mater. 2019, 523, 510–537. [Google Scholar] [CrossRef]
- Snead, L.L.; Hoelzer, D.T.; Rieth, M.; Nemith, A.A.N. Refractory Alloys: Vanadium, Niobium, Molybdenum, Tungsten. In Structural Alloys for Nuclear Energy Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 585–640. [Google Scholar] [CrossRef]
- Fu, T.; Cui, K.; Zhang, Y.; Wang, J.; Shen, F.; Yu, L.; Qie, J.; Zhang, X. Oxidation Protection of Tungsten Alloys for Nuclear Fusion Applications: A Comprehensive Review. J. Alloys Compd. 2021, 884, 161057. [Google Scholar] [CrossRef]
- Terentyev, D.; Rieth, M.; Pintsuk, G.; Riesch, J.; Von Müller, A.; Antusch, S.; Mergia, K.; Gaganidze, E.; Schneider, H.C.; Wirtz, M.; et al. Recent Progress in the Assessment of Irradiation Effects for In-Vessel Fusion Materials: Tungsten and Copper Alloys. Nucl. Fusion 2022, 62, 026045. [Google Scholar] [CrossRef]
- Alzahrani, J.S.; Alrowaili, Z.A.; Eke, C.; Mahmoud, Z.M.M.; Mutuwong, C.; Al-Buriahi, M.S. Nuclear Shielding Properties of Ni-, Fe-, Pb-, and W-Based Alloys. Radiat. Phys. Chem. 2022, 195, 110090. [Google Scholar] [CrossRef]
- Alzahrani, J.S.; Alrowaili, Z.A.; Saleh, H.H.; Hammoud, A.; Alomairy, S.; Sriwunkum, C.; Al-Buriahi, M.S. Synthesis, Physical and Nuclear Shielding Properties of Novel Pb–Al Alloys. Prog. Nucl. Energy 2021, 142, 103992. [Google Scholar] [CrossRef]
- Pickering, E.J.; Carruthers, A.W.; Barron, P.J.; Middleburgh, S.C.; Armstrong, D.E.J.; Gandy, A.S. High-Entropy Alloys for Advanced Nuclear Applications. Entropy 2021, 23, 98. [Google Scholar] [CrossRef]
- Xin, Z.; Ma, Y.; Chen, Y.; Wang, B.; Xiao, H.; Duan, Y. Fusion-Bonding Performance of Short and Continuous Carbon Fiber Synergistic Reinforced Composites Using Fused Filament Fabrication. Compos. B Eng. 2023, 248, 110370. [Google Scholar] [CrossRef]
- Jiang, X.; Overman, N.; Smith, C.; Ross, K. Microstructure, Hardness and Cavitation Erosion Resistance of Different Cold Spray Coatings on Stainless Steel 316 for Hydropower Applications. Mater. Today Commun. 2020, 25, 101305. [Google Scholar] [CrossRef]
- Kumar, M.; Singh Sidhu, H.; Singh Sidhu, B. Influence of Ultra-Low Temperature Treatments on the Slurry Erosion Performance of Stainless Steel-316L. In Advances in Mechanical and Materials Technology; Lecture Notes in Mechanical Engineering; Springer: Singapore, 2022; pp. 1273–1286. [Google Scholar] [CrossRef]
- Pitsikoulis, S.A.; Tekumalla, S.; Sharma, A.; Wong, W.L.E.; Turkmen, S.; Liu, P. Cavitation Hydrodynamic Performance of 3-D Printed Highly Skewed Stainless Steel Tidal Turbine Rotors. Energies 2023, 16, 3675. [Google Scholar] [CrossRef]
- Jung, H.J.; Jabbar, H.; Song, Y.; Sung, T.H. Hybrid-Type (D33 and D31) Impact-Based Piezoelectric Hydroelectric Energy Harvester for Watt-Level Electrical Devices. Sens. Actuators A Phys. 2016, 245, 40–48. [Google Scholar] [CrossRef]
- Gavriilidis, I.; Huang, Y. Finite Element Analysis of Tidal Turbine Blade Subjected to Impact Loads from Sea Animals. Energies 2021, 14, 7208. [Google Scholar] [CrossRef]
- Saenz-Betancourt, C.C.; Rodríguez, S.A.; Coronado, J.J. Effect of Boronising on the Cavitation Erosion Resistance of Stainless Steel Used for Hydromachinery Applications. Wear 2022, 498–499, 204330. [Google Scholar] [CrossRef]
- Azevedo, C.R.F.; Magarotto, D.; Araújo, J.A.; Ferreira, J.L.A. Bending Fatigue of Stainless Steel Shear Pins Belonging to a Hydroelectric Plant. Eng. Fail. Anal. 2009, 16, 1126–1140. [Google Scholar] [CrossRef]
- Sankar, S.; Nataraj, M.; Raja, V.P. Failure Analysis of Shear Pins in Wind Turbine Generator. Eng. Fail. Anal. 2011, 18, 325–339. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Hu, L.; Hu, C.; Wu, H.G. Low-Cycle Fatigue Issue of Steel Spiral Cases in Pumped-Storage Power Plants under China’s and US’s Design Philosophies: A Comparative Numerical Case Study. Int. J. Press. Vessel. Pip. 2019, 172, 134–144. [Google Scholar] [CrossRef]
- Moreira, D.C.; Furtado, H.C.; Buarque, J.S.; Cardoso, B.R.; Merlin, B.; Moreira, D.D.C. Failure Analysis of AISI 410 Stainless-Steel Piston Rod in Spillway Floodgate. Eng. Fail. Anal. 2019, 97, 506–517. [Google Scholar] [CrossRef]
- Maekai, I.A.; Harmain, G.A.; Zehab-ud-Din; Masoodi, J.H. Resistance to Slurry Erosion by WC-10Co-4Cr and Cr3C2 − 25(Ni20Cr) Coatings Deposited by HVOF Stainless Steel F6NM. Int. J. Refract. Met. Hard Mater. 2022, 105, 105830. [Google Scholar] [CrossRef]
- Chauhan, A.K.; Goel, D.B.; Prakash, S. Erosion Behaviour of Hydro Turbine Steels. Bull. Mater. Sci. 2008, 31, 115–120. [Google Scholar] [CrossRef]
- Kumar, S.; Chaudhari, G.P.; Nath, S.K.; Basu, B. Effect of Preheat Temperature on Weldability of Martensitic Stainless Steel. Mater. Manuf. Process. 2012, 27, 1382–1386. [Google Scholar] [CrossRef]
- Rückle, D.; Schellenberg, G.; Ottens, W.; Leibing, B.; Locquenghien, F. Corrosion Fatigue of CrNi13-4 Martensitic Stainless Steel for Francis Runners in Dependency of Water Quality. In Proceedings of the Eurocorr 2022, Berlin, Germany, 28 August–1 September 2022. [Google Scholar]
- Kevin, P.S.; Tiwari, A.; Seman, S.; Mohamed, S.A.B.; Jayaganthan, R. Erosion-Corrosion Protection Due to Cr3C2-NiCr Cermet Coating on Stainless Steel. Coatings 2020, 10, 1042. [Google Scholar] [CrossRef]
- Titus, J.; Ayalur, B. Design and Fabrication of In-Line Turbine for Pico Hydro Energy Recovery in Treated Sewage Water Distribution Line. Energy Procedia 2019, 156, 133–138. [Google Scholar] [CrossRef]
- Turnock, S.R.; Muller, G.; Nicholls-Lee, R.F.; Denchfield, S.; Hindley, S.; Shelmerdine, R.; Stevens, S. Development of a Floating Tidal Energy System Suitable for Use in Shallow Water. In Proceedings of the 7th European Wave and Tidal Energy Conference, Porto, Portugal, 11–13 September 2007. [Google Scholar]
- Keiser, J. Materials Degradation of Biomass-Derived Oils; U.S. Department of Energy: Washington, DC, USA, 2021.
- Special Piping Materials. Stainless Steel and Renewable Energy. Available online: https://specialpipingmaterials.com/stainless-steel-and-renewable-energy/ (accessed on 16 July 2023).
- Guerrero, G.R.; Sevilla, L.; Soriano, C. Laser and Pyrolysis Removal of Fluorinated Ethylene Propylene Thin Layers Applied on EN AW-5251 Aluminium Substrates. Appl. Surf. Sci. 2015, 353, 686–692. [Google Scholar] [CrossRef]
- Divandari, M.; Jamali, V.; Shabestari, S.G. Effect of Strips Size and Coating Thickness on Fluidity of A356 Aluminium Alloy in Lost Foam Casting Process. Int. J. Cast Met. Res. 2013, 23, 23–29. [Google Scholar] [CrossRef]
- Jun, J.; Su, Y.F.; Keiser, J.R.; Wade, J.E.; Kass, M.D.; Ferrell, J.R.; Christensen, E.; Olarte, M.V.; Sulejmanovic, D. Corrosion Compatibility of Stainless Steels and Nickel in Pyrolysis Biomass-Derived Oil at Elevated Storage Temperatures. Sustainability 2022, 15, 22. [Google Scholar] [CrossRef]
- Diaz, F.; Wang, Y.; Moorthy, T.; Friedrich, B. Degradation Mechanism of Nickel-Cobalt-Aluminum (NCA) Cathode Material from Spent Lithium-Ion Batteries in Microwave-Assisted Pyrolysis. Metals 2018, 8, 565. [Google Scholar] [CrossRef]
- Brady, M.P.; Leonard, D.N.; Keiser, J.R.; Cakmak, E.; Whitmer, L.E. Degradation of Components After Exposure in a Biomass Pyrolysis System. Corrosion 2019, 75, 1136–1145. [Google Scholar] [CrossRef]
- Braun, M. Statistical Analysis of Sub-Zero Temperature Effects on Fatigue Strength of Welded Joints. Weld. World 2022, 66, 159–172. [Google Scholar] [CrossRef]
- Braun, M.; Scheffer, R.; Fricke, W.; Ehlers, S. Fatigue Strength of Fillet-Welded Joints at Subzero Temperatures. Fatigue Fract. Eng. Mater. Struct. 2020, 43, 403–416. [Google Scholar] [CrossRef]
- Igwemezie, V.; Mehmanparast, A.; Kolios, A. Materials Selection for XL Wind Turbine Support Structures: A Corrosion-Fatigue Perspective. Mar. Struct. 2018, 61, 381–397. [Google Scholar] [CrossRef]
- Momber, A. Corrosion and Corrosion Protection of Support Structures for Offshore Wind Energy Devices (OWEA). Mater. Corros. 2011, 62, 391–404. [Google Scholar] [CrossRef]
- Martin, F.; Schröter, F. Stahllösungen Für Offshore-Windkraftanlagen. Stahlbau 2005, 74, 435–442. [Google Scholar] [CrossRef]
- Ferro, P.; Berto, F.; Tang, K. UNS S32205 Duplex Stainless Steel SED-Critical Radius Characterization. Metall. Ital. 2020, 29–38. [Google Scholar]
- Sroka, M.; Zielinski, A.; Puszczalo, T.; Sówka, K.; Hadzima, B. Structure of 22Cr25NiWCoCu Austenitic Stainless Steel After Ageing. Arch. Metall. Mater. 2022, 67, 175–180. [Google Scholar] [CrossRef]
- Ermakova, A.; Mehmanparast, A.; Ganguly, S. A Review of Present Status and Challenges of Using Additive Manufacturing Technology for Offshore Wind Applications. Procedia Struct. Integr. 2019, 17, 29–36. [Google Scholar] [CrossRef]
- Nakagawa, T.; Matsushima, H.; Ueda, M.; Ito, H. Corrosion Behavior of SUS 304L Steel in Concentrated K2CO3 Solution. ECS Meet. Abstr. 2020, MA2020-02, 1228. [Google Scholar] [CrossRef]
- Röhsler, A.; Sobol, O.; Hänninen, H.; Böllinghaus, T. In-Situ ToF-SIMS Analyses of Deuterium Re-Distribution in Austenitic Steel AISI 304L under Mechanical Load. Sci. Rep. 2020, 10, 10545. [Google Scholar] [CrossRef]
- Yang, D.; Huang, Y.; Peng, P.; Liu, X.; Zhang, B. Passivation Behavior and Corrosion Resistance of 904L Austenitic Stainless Steels in Static Seawater. Int. J. Electrochem. Sci. 2019, 14, 6133–6146. [Google Scholar] [CrossRef]
- Sanni, O.; Popoola, A.P.I.; Fayomi, O.S.I. Electrochemical Analysis of Austenitic Stainless Steel (Type 904) Corrosion Using Egg Shell Powder in Sulphuric Acid Solution. Energy Procedia 2019, 157, 619–625. [Google Scholar] [CrossRef]
- Evans, M.H. White Structure Flaking (WSF) in Wind Turbine Gearbox Bearings: Effects of ‘Butterflies’ and White Etching Cracks (WECs). Mater. Sci. Technol. 2013, 28, 3–22. [Google Scholar] [CrossRef]
- Gooch, D.J. Materials Issues in Renewable Energy Power Generation. Int. Mater. Rev. 2013, 45, 1–14. [Google Scholar] [CrossRef]
- Chen, Y.; Cai, G.; Bai, R.; Ke, S.; Wang, W.; Chen, X.; Li, P.; Zhang, Y.; Gao, L.; Nie, S.; et al. Spatiotemporally Explicit Pathway and Material-Energy-Emission Nexus of Offshore Wind Energy Development in China up to the Year 2060. Resour. Conserv. Recycl. 2022, 183, 106349. [Google Scholar] [CrossRef]
- Lloberas-Valls, J.; Benveniste Perez, G.; Gomis-Bellmunt, O. Life-Cycle Assessment Comparison between 15-MW Second-Generation High Temperature Superconductor and Permanent-Magnet Direct-Drive Synchronous Generators for Offshore Wind Energy Applications. IEEE Trans. Appl. Supercond. 2015, 25, 5204209. [Google Scholar] [CrossRef]
- Kumar, A.; Dwivedi, A.; Paliwal, V.; Patil, P.P. Free Vibration Analysis of Al 2024 Wind Turbine Blade Designed for Uttarakhand Region Based on FEA. Procedia Technol. 2014, 14, 336–347. [Google Scholar] [CrossRef]
- Siddiqui, R.A.; Abdullah, H.A.; Al-Belushi, K.R. Influence of Aging Parameters on the Mechanical Properties of 6063 Aluminium Alloy. J. Mater. Process. Technol. 2000, 102, 234–240. [Google Scholar] [CrossRef]
- Wang, H.; Lamichhane, T.N.; Paranthaman, M.P. Review of Additive Manufacturing of Permanent Magnets for Electrical Machines: A Prospective on Wind Turbine. Mater. Today Phys. 2022, 24, 100675. [Google Scholar] [CrossRef]
- Lüddecke, F.; Rücker, W.; Seidel, M.; Assheuer, J. Tragverhalten von Stahlgussbauteilen in Offshore-Windenergie-Anlagen Unter Vorwiegend Ruhender Und Nicht Ruhender Beanspruchung. Stahlbau 2008, 77, 639–646. [Google Scholar] [CrossRef]
- Bleicher, C.; Niewiadomski, J.; Kansy, A.; Kaufmann, H. High-Silicon Nodular Cast Iron for Lightweight Optimized Wind Energy Components. Int. J. Offshore Polar Eng. 2022, 32, 201–209. [Google Scholar] [CrossRef]
- Soleimani Dorcheh, A.; Durham, R.N.; Galetz, M.C. Corrosion Behavior of Stainless and Low-Chromium Steels and IN625 in Molten Nitrate Salts at 600 °C. Sol. Energy Mater. Sol. Cells 2016, 144, 109–116. [Google Scholar] [CrossRef]
- Li, H.; Feng, X.; Wang, X.; Yang, X.; Tang, J.; Gong, J. Impact of Temperature on Corrosion Behavior of Austenitic Stainless Steels in Solar Salt for CSP Application: An Electrochemical Study. Sol. Energy Mater. Sol. Cells 2022, 239, 111661. [Google Scholar] [CrossRef]
- Pantelis, D.I.; Griniari, A.; Sarafoglou, C. Surface Alloying of Pre-Deposited Molybdenum-Based Powder on 304L Stainless Steel Using Concentrated Solar Energy. Sol. Energy Mater. Sol. Cells 2005, 89, 1–11. [Google Scholar] [CrossRef]
- Wang, M.; Zeng, S.; Zhang, H.; Zhu, M.; Lei, C.; Li, B. Corrosion Behaviors of 316 Stainless Steel and Inconel 625 Alloy in Chloride Molten Salts for Solar Energy Storage. High. Temp. Mater. Process. 2020, 39, 340–350. [Google Scholar] [CrossRef]
- Yin, Y.; Rumman, R.; Sarvghad, M.; Bell, S.; Ong, T.C.; Jacob, R.; Liu, M.; Flewell-Smith, R.; Sheoran, S.; Severino, J.; et al. Role of Headspace Environment for Phase Change Carbonates on the Corrosion of Stainless Steel 316L: High Temperature Thermal Storage Cycling in Concentrated Solar Power Plants. Sol. Energy Mater. Sol. Cells 2023, 251, 112170. [Google Scholar] [CrossRef]
- Cionea, C.; Abad, M.D.; Aussat, Y.; Frazer, D.; Gubser, A.J.; Hosemann, P. Oxide Scale Formation on 316L and FeCrAl Steels Exposed to Oxygen Controlled Static LBE at Temperatures up to 800 °C. Sol. Energy Mater. Sol. Cells 2016, 144, 235–246. [Google Scholar] [CrossRef]
- Liu, Q.; Qian, J.; Neville, A.; Pessu, F. Solar Thermal Irradiation Cycles and Their Influence on the Corrosion Behaviour of Stainless Steels with Molten Salt Used in Concentrated Solar Power Plants. Sol. Energy Mater. Sol. Cells 2023, 251, 112141. [Google Scholar] [CrossRef]
- Brown-Shaklee, H.J.; Carty, W.; Edwards, D.D. Spectral Selectivity of Composite Enamel Coatings on 321 Stainless Steel. Sol. Energy Mater. Sol. Cells 2009, 93, 1404–1410. [Google Scholar] [CrossRef]
- Sierra, C.; Vázquez, A.J. High Solar Energy Concentration with a Fresnel Lens. J. Mater. Sci. 2005, 40, 1339–1343. [Google Scholar] [CrossRef]
- Mallco, A.; Pineda, F.; Mendoza, M.; Henriquez, M.; Carrasco, C.; Vergara, V.; Fuentealba, E.; Fernandez, A.G. Evaluation of Flow Accelerated Corrosion and Mechanical Performance of Martensitic Steel T91 for a Ternary Mixture of Molten Salts for CSP Plants. Sol. Energy Mater. Sol. Cells 2022, 238, 111623. [Google Scholar] [CrossRef]
- Pineda, F.; Mallco, A.; De Barbieri, F.; Carrasco, C.; Henriquez, M.; Fuentealba, E.; Fernández, Á.G. Corrosion Evaluation by Electrochemical Real-Time Tracking of VM12 Martensitic Steel in a Ternary Molten Salt Mixture with Lithium Nitrates for CSP Plants. Sol. Energy Mater. Sol. Cells 2021, 231, 111302. [Google Scholar] [CrossRef]
- The Amazing Role of High-Temperature Nickel Alloys and Stainless Steels for Concentrated Solar Power. Available online: https://nickelinstitute.org/en/blog/2021/september/the-amazing-role-of-high-temperature-nickel-alloys-and-stainless-steels-for-concentrated-solar-power/ (accessed on 18 July 2023).
- Grégoire, B.; Oskay, C.; Meißner, T.M.; Galetz, M.C. Corrosion Mechanisms of Ferritic-Martensitic P91 Steel and Inconel 600 Nickel-Based Alloy in Molten Chlorides. Part II: NaCl-KCl-MgCl2 Ternary System. Sol. Energy Mater. Sol. Cells 2020, 216, 110675. [Google Scholar] [CrossRef]
- Balat-Pichelin, M.; Sans, J.L.; Bêche, E.; Charpentier, L.; Ferrière, A.; Chomette, S. Emissivity at High Temperature of Ni-Based Superalloys for the Design of Solar Receivers for Future Tower Power Plants. Sol. Energy Mater. Sol. Cells 2021, 227, 111066. [Google Scholar] [CrossRef]
- Zhu, M.; Yi, H.; Lu, J.; Huang, C.; Zhang, H.; Bo, P.; Huang, J. Corrosion of Ni–Fe Based Alloy in Chloride Molten Salts for Concentrating Solar Power Containing Aluminum as Corrosion Inhibitor. Sol. Energy Mater. Sol. Cells 2022, 241, 111737. [Google Scholar] [CrossRef]
- Peng, Y.; Shinde, P.S.; Reddy, R.G. High-Temperature Corrosion Rate and Diffusion Modelling of Ni-Coated Incoloy 800H Alloy in MgCl2–KCl Heat Transfer Fluid. Sol. Energy Mater. Sol. Cells 2022, 243, 111767. [Google Scholar] [CrossRef]
- Bell, S.; de Bruyn, M.; Steinberg, T.; Will, G. C-276 Nickel Alloy Corrosion in Eutectic Na2CO3/NaCl Molten Salt under Isothermal and Thermal Cycling Conditions. Sol. Energy Mater. Sol. Cells 2022, 240, 111695. [Google Scholar] [CrossRef]
- García-Martín, G.; Lasanta, M.I.; Encinas-Sánchez, V.; de Miguel, M.T.; Pérez, F.J. Evaluation of Corrosion Resistance of A516 Steel in a Molten Nitrate Salt Mixture Using a Pilot Plant Facility for Application in CSP Plants. Sol. Energy Mater. Sol. Cells 2017, 161, 226–231. [Google Scholar] [CrossRef]
- Cheng, W.J.; Chen, D.J.; Wang, C.J. High-Temperature Corrosion of Cr–Mo Steel in Molten LiNO3–NaNO3–KNO3 Eutectic Salt for Thermal Energy Storage. Sol. Energy Mater. Sol. Cells 2015, 132, 563–569. [Google Scholar] [CrossRef]
- Sarvghad, M.; Will, G.; Steinberg, T.A. Corrosion of Steel Alloys in Molten NaCl + Na2SO4 at 700 °C for Thermal Energy Storage. Sol. Energy Mater. Sol. Cells 2018, 179, 207–216. [Google Scholar] [CrossRef]
- Karalis, D.G.; Pantelis, D.I.; Papazoglou, V.J. On the Investigation of 7075 Aluminum Alloy Welding Using Concentrated Solar Energy. Sol. Energy Mater. Sol. Cells 2005, 86, 145–163. [Google Scholar] [CrossRef]
- Shimizu, Y.; Kawaguchi, T.; Sakai, H.; Dong, K.; Kurniawan, A.; Nomura, T. Al–Ni Alloy-Based Core-Shell Type Microencapsulated Phase Change Material for High Temperature Thermal Energy Utilization. Sol. Energy Mater. Sol. Cells 2022, 246, 111874. [Google Scholar] [CrossRef]
- Sugianto, A.; Tjahjono, B.S.; Mai, L.; Wenham, S.R. Investigation of Unusual Shunting Behavior Due to Phototransistor Effect in N-Type Aluminum-Alloyed Rear Junction Solar Cells. Sol. Energy Mater. Sol. Cells 2009, 93, 1986–1993. [Google Scholar] [CrossRef]
- Krause, J.; Woehl, R.; Rauer, M.; Schmiga, C.; Wilde, J.; Biro, D. Microstructural and Electrical Properties of Different-Sized Aluminum-Alloyed Contacts and Their Layer System on Silicon Surfaces. Sol. Energy Mater. Sol. Cells 2011, 95, 2151–2160. [Google Scholar] [CrossRef]
- Patel, K.; Sadeghilaridjani, M.; Pole, M.; Mukherjee, S. Hot Corrosion Behavior of Refractory High Entropy Alloys in Molten Chloride Salt for Concentrating Solar Power Systems. Sol. Energy Mater. Sol. Cells 2021, 230, 111222. [Google Scholar] [CrossRef]
- He, C.Y.; Gao, X.H.; Dong, M.; Qiu, X.L.; An, J.H.; Guo, H.X.; Liu, G. Further Investigation of a Novel High Entropy Alloy MoNbHfZrTi Based Solar Absorber Coating with Double Antireflective Layers. Sol. Energy Mater. Sol. Cells 2020, 217, 110709. [Google Scholar] [CrossRef]
- Yamada, Y.; Miura, M.; Tajima, K.; Okada, M.; Yoshimura, K. Optical Switching Durability of Switchable Mirrors Based on Magnesium–Yttrium Alloy Thin Films. Sol. Energy Mater. Sol. Cells 2013, 117, 396–399. [Google Scholar] [CrossRef]
- Bao, S.; Tajima, K.; Yamada, Y.; Okada, M.; Yoshimura, K. Magnesium–Titanium Alloy Thin-Film Switchable Mirrors. Sol. Energy Mater. Sol. Cells 2008, 92, 224–227. [Google Scholar] [CrossRef]
- Hot Rocks—Geothermal and the Role of Nickel. Available online: https://nickelinstitute.org/en/blog/2021/august/hot-rocks-geothermal-and-the-role-of-nickel/ (accessed on 18 July 2023).
- Wang, G.G.; Zhu, L.Q.; Liu, H.C.; Li, W.P. Galvanic Corrosion of Ni–Cu–Al Composite Coating and Its Anti-Fouling Property for Metal Pipeline in Simulated Geothermal Water. Surf. Coat. Technol. 2012, 206, 3728–3732. [Google Scholar] [CrossRef]
- Keserović, A.; Bäßler, R.; Kamah, Y. Suitability of Alloyed Steels in Highly Acidic Geothermal Environments; NACE: San Antonio, TX, USA, 2014. [Google Scholar]
- Nogara, J.; Zarrouk, S.J. Corrosion in Geothermal Environment Part 2: Metals and Alloys. Renew. Sustain. Energy Rev. 2018, 82, 1347–1363. [Google Scholar] [CrossRef]
- Jalaluddin; Miyara, A.; Tsubaki, K.; Inoue, S.; Yoshida, K. Experimental Study of Several Types of Ground Heat Exchanger Using a Steel Pile Foundation. Renew. Energy 2011, 36, 764–771. [Google Scholar] [CrossRef]
- Faizal, M.; Bouazza, A.; Singh, R.M. Heat Transfer Enhancement of Geothermal Energy Piles. Renew. Sustain. Energy Rev. 2016, 57, 16–33. [Google Scholar] [CrossRef]
- Vitaller, A.V.; Angst, U.M.; Elsener, B. Corrosion Behaviour of L80 Steel Grade in Geothermal Power Plants in Switzerland. Metals 2019, 9, 331. [Google Scholar] [CrossRef]
- AI Technology Inc. Solar Energy Enhancement Protection Coating, Sealant and Adhesive. Available online: https://www.aitechnology.com/products/solar/solar-energy-coating/ (accessed on 23 July 2023).
- Strom-Forschung De. Protecting Wind Turbines from Corrosion. Available online: https://www.strom-forschung.de/projects/wind-energy/protecting-wind-turbines-from-corrosion/ (accessed on 23 July 2023).
- Wang, C.; Gao, W.; Liu, N.; Xin, Y.; Liu, X.; Wang, X.; Tian, Y.; Chen, X.; Hou, B. Covalent Organic Framework Decorated TiO2 Nanotube Arrays for Photoelectrochemical Cathodic Protection of Steel. Corros. Sci. 2020, 176, 108920. [Google Scholar] [CrossRef]
- Angst, U.M. A Critical Review of the Science and Engineering of Cathodic Protection of Steel in Soil and Concrete. Corrosion 2019, 75, 1420–1433. [Google Scholar] [CrossRef] [PubMed]
- Brenna, A.; Beretta, S.; Ormellese, M. AC Corrosion of Carbon Steel under Cathodic Protection Condition: Assessment, Criteria and Mechanism. A Review. Materials 2020, 13, 2158. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Yu, X.; Yang, Q.; Cui, G.; Li, Z. The Role of Graphene in Anti-Corrosion Coatings: A Review. Constr. Build. Mater. 2021, 294, 123613. [Google Scholar] [CrossRef]
- Hussain, A.K.; Seetharamaiah, N.; Pichumani, M.; Chakra, C.S. Research Progress in Organic Zinc Rich Primer Coatings for Cathodic Protection of Metals—A Comprehensive Review. Prog. Org. Coat. 2021, 153, 106040. [Google Scholar] [CrossRef]
- Krieg, R.; Vimalanandan, A.; Rohwerder, M. Corrosion of Zinc and Zn-Mg Alloys with Varying Microstructures and Magnesium Contents. J. Electrochem. Soc. 2014, 161, C156–C161. [Google Scholar] [CrossRef]
- Hausbrand, R.; Stratmann, M.; Rohwerder, M. Corrosion of Zinc–Magnesium Coatings: Mechanism of Paint Delamination. Corros. Sci. 2009, 51, 2107–2114. [Google Scholar] [CrossRef]
- Sun, W.; Wang, N.; Li, J.; Xu, S.; Song, L.; Liu, Y.; Wang, D. Humidity-Resistant Triboelectric Nanogenerator and Its Applications in Wind Energy Harvesting and Self-Powered Cathodic Protection. Electrochim. Acta 2021, 391, 138994. [Google Scholar] [CrossRef]
- Hautfenne, C.; Nardone, S.; De Bruycker, E.; Hautfenne, C. Influence of Heat Treatments and Build Orientation on the Creep Strength of Additive Manufactured IN718 Contact Data. In Proceedings of the 4th International ECCC Conference, Düsseldorf, Germany, 10–14 September 2017. [Google Scholar]
- Reisgen, U.; Olschok, S.; Jakobs, S. Laser Beam Welding in Vacuum of Thick Plate Structural Steel. In Proceedings of the ICALEO 2013—32nd International Congress on Applications of Lasers and Electro-Optics, Orlando, FL, USA, 23–27 October 2013; pp. 341–350. [Google Scholar]
- Vázquez, A.J.; Rodriguez, G.P.; de Damborenea, J. Surface Treatment of Steels by Solar Energy. Sol. Energy Mater. 1991, 24, 751–759. [Google Scholar] [CrossRef]
- Pisarek, J.; Frączek, T.; Popławski, T.; Szota, M. Practical and Economical Effects of the Use of Screen Meshes for Steel Nitriding Processes with Glow Plasma. Energies 2021, 14, 3808. [Google Scholar] [CrossRef]
- Micallef, C.; Zhuk, Y.; Aria, A.I. Recent Progress in Precision Machining and Surface Finishing of Tungsten Carbide Hard Composite Coatings. Coatings 2020, 10, 731. [Google Scholar] [CrossRef]
- Pan, X.; Shi, Z.; Shi, C.; Ling, T.C.; Li, N. A Review on Concrete Surface Treatment Part I: Types and Mechanisms. Constr. Build. Mater. 2017, 132, 578–590. [Google Scholar] [CrossRef]
- Poulain, R.; Amann, F.; Deya, J.; Bourgon, J.; Delannoy, S.; Prima, F. Short-Time Heat Treatments in Oxygen Strengthened Ti-Zr α Titanium Alloys: A Simple Approach for Optimized Strength-Ductility Trade-Off. Mater. Lett. 2022, 317, 132114. [Google Scholar] [CrossRef]
- Osunbunmi, I.S.; Ajide, O.O.; Oluwole, O.O. Effect of Heat Treatment on the Mechanical and Microstructural Properties of a Low Carbon Steel. In Proceedings of the International Conference of Mechanical Engineering, Energy Technology and Management, IMEETMCON 2018, Ibadan, Nigeria, 4–7 September 2018. [Google Scholar]
- Jovičević-Klug, P.; Podgornik, B. Review on the Effect of Deep Cryogenic Treatment of Metallic Materials in Automotive Applications. Metals 2020, 10, 434. [Google Scholar] [CrossRef]
- Baldissera, P.; Delprete, C. Deep Cryogenic Treatment: A Bibliographic Review. Open Mech. Eng. J. 2008, 2, 32–39. [Google Scholar] [CrossRef]
- Vengatesh, M.; Srivignesh, R.; Pradeep, T.; Karthik, N.R. Review on Cryogenic Trearment of Steels. Int. Res. J. Eng. Technol. 2016, 3, 417–422. [Google Scholar]
- Sonar, T.; Lomte, S.; Gogte, C. Cryogenic Treatment of Metal—A Review. Mater. Today Proc. 2018, 5, 25219–25228. [Google Scholar] [CrossRef]
- Jovičević-Klug, P. Mechanisms and Effect of Deep Cryogenic Treatment on Steel Properties; Institute of Metals and Technology: Ljubljana, Slovenia, 2022. [Google Scholar]
- Workman, K.J.; Pitts, D.W. Method of Treating Brake Pads. U.S. Patent US5447035A, 29 September 1994. [Google Scholar]
- Leach, J.M.; Harvey, W.L. Method of Cryogenically Hardening an Insert in an Article. U.S. Patent No. 4,336,077, 3 March 1980. [Google Scholar]
- Voorhees, J.E. Process for Treating Materials to Improve Their Structural Characteristics. U.S. Patent No. 4,482,005, 13 November 1984. [Google Scholar]
- Yildiz, Y.; Nalbant, M. A Review of Cryogenic Cooling in Machining Processes. Int. J. Mach. Tools Manuf. 2008, 48, 947–964. [Google Scholar] [CrossRef]
- Akincioğlu, S.; Gökkaya, H.; Uygur, İ. A Review of Cryogenic Treatment on Cutting Tools. Int. J. Adv. Manuf. Technol. 2015, 78, 1609–1627. [Google Scholar] [CrossRef]
- Barron, R.F. Cryogenic Treatment of Metals to Improve Wear Resistance. Cryogenics 1982, 22, 409–413. [Google Scholar] [CrossRef]
- Senthilkumar, D.; Rajendran, I. Influence of Shallow and Deep Cryogenic Treatment on Tribological Behavior of En 19 Steel. J. Iron Steel Res. Int. 2011, 18, 53–59. [Google Scholar] [CrossRef]
- Senthilkumar, D.; Rajendran, I.; Pellizzari, M.; Siiriainen, J. Influence of Shallow and Deep Cryogenic Treatment on the Residual State of Stress of 4140 Steel. J. Mater. Process. Technol. 2011, 211, 396–401. [Google Scholar] [CrossRef]
- Senthilkumar, D. Cryogenic Treatment: Shallow and Deep. In Encyclopedia of Iron, Steel, and Their Alloys; Totten, G.E., Colas, R., Eds.; Taylor and Francis: New York, NY, USA, 2016; pp. 995–1007. ISBN 9781351254496. [Google Scholar]
- Ciski, A.; Nawrocki, P.; Babul, T.; Hradil, D. Multistage Cryogenic Treatment of X153CrMoV12 Cold Work Steel. In Proceedings of the 5th International Conference Recent Trends in Structural Materials, Pilsen, Czech Republic, 14–16 November 2018; Volume 461, pp. 0120121–0120126. [Google Scholar]
- Jovičević-Klug, P.; Jovičević-Klug, M.; Thormählen, L.; McCord, J.; Rohwerder, M.; Godec, M.; Podgornik, B. Austenite Reversion Suppression with Deep Cryogenic Treatment: A Novel Pathway towards 3rd Generation Advanced High-Strength Steels. Mater. Sci. Eng. A 2023, 873, 145033. [Google Scholar] [CrossRef]
- Jovičević-Klug, P.; Tegg, L.; Jovičević-Klug, M.; Parmar, R.; Amati, M.; Gregoratti, L.; Almasy, L.; Cairney, J.M.; Podgornik, B. Understanding Carbide Evolution and Surface Chemistry during Deep Cryogenic Treatment in High-Alloyed Ferrous Alloy. Appl. Surf. Sci. 2023, 610, 155497. [Google Scholar] [CrossRef]
- Jovičević-Klug, P.; Puš, G.; Jovičević-Klug, M.; Žužek, B.; Podgornik, B. Influence of Heat Treatment Parameters on Effectiveness of Deep Cryogenic Treatment on Properties of High-Speed Steels. Mater. Sci. Eng. A 2022, 829, 142157. [Google Scholar] [CrossRef]
- Jovičević-Klug, P.; Guštin, A.Z.; Jovičević-Klug, M.; Šetina Batič, B.; Lebar, A.; Podgornik, B. Coupled Role of Alloying and Manufacturing on Deep Cryogenic Treatment Performance on High-Alloyed Ferrous Alloys. J. Mater. Res. Technol. 2022, 18, 3184–3197. [Google Scholar] [CrossRef]
- Jovičević-Klug, P.; Lipovšek, N.; Jovičević-Klug, M.; Mrak, M.; Ekar, J.; Ambrožič, B.; Dražić, G.; Kovač, J.; Podgornik, B. Assessment of Deep Cryogenic Heat-Treatment Impact on the Microstructure and Surface Chemistry of Austenitic Stainless Steel. Surf. Interfaces 2022, 35, 102456. [Google Scholar] [CrossRef]
- Jovičević-Klug, P.; Jovičević-Klug, M.; Sever, T.; Feizpour, D.; Podgornik, B. Impact of Steel Type, Composition and Heat Treatment Parameters on Effectiveness of Deep Cryogenic Treatment. J. Mater. Res. Technol. 2021, 14, 1007–1020. [Google Scholar] [CrossRef]
- Pellizzari, M. Influence of Deep Cryogenic Treatment on the Properties of Conventional and PM High Speed Steels. Metall. Ital. 2008, 100, 17–22. [Google Scholar]
- Senthilkumar, D. Influence of Deep Cryogenic Treatment on Hardness and Toughness of En31 Steel. Adv. Mater. Process. Technol. 2019, 5, 114–122. [Google Scholar] [CrossRef]
- Baldissera, P. Deep Cryogenic Treatment of AISI 302 Stainless Steel: Part I—Hardness and Tensile Properties. Mater. Des. 2010, 31, 4725–4730. [Google Scholar] [CrossRef]
- Amini, K.; Negahbani, M.; Ghayour, H. The Effect of Deep Cryogenic Treatment on Hardness and Wear Behavior of the H13 Tool Steel. Metall. Ital. 2015, 107, 53–58. [Google Scholar]
- Elango, G.; Raghunath, B.K.; Thamizhmaran, K. Effect of Cryogenic Treatment on Microstructure and Micro Hardness of Aluminium (LM25)—SiC Metal Matrix Composite. J. Eng. Res. 2014, 10, 64–68. [Google Scholar] [CrossRef]
- Peng, J.; Zhou, B.; Li, Z.; Huo, D.; Xiong, J.; Zhang, S. Effect of Tempering Process on the Cryogenic Impact Toughness of 13Cr4NiMo Martensitic Stainless Steel. J. Mater. Res. Technol. 2023, 23, 5618–5630. [Google Scholar] [CrossRef]
- Çakir, F.H.; Çelik, O.N. The Effects of Cryogenic Treatment on the Toughness and Tribological Behaviors of Eutectoid Steel. J. Mech. Sci. Technol. 2017, 31, 3233–3239. [Google Scholar] [CrossRef]
- Sola, R.; Giovanardi, R.; Parigi, G.; Veronesi, P. A Novel Method for Fracture Toughness Evaluation of Tool Steels with Post-Tempering Cryogenic Treatment. Metals 2017, 7, 75. [Google Scholar] [CrossRef]
- Nanesa, C.H.; Jahazi, M. Simultaneous Enhancement of Strength and Ductility in Cryogenically Treated AISI D2 Tool Steel. Mater. Sci. Eng. A 2014, 598, 413–419. [Google Scholar] [CrossRef]
- Jovičević-Klug, P.; Jovičević-Klug, M.; Rohwerder, M.; Godec, M.; Podgornik, B. Complex Interdependency of Microstructure, Mechanical Properties, Fatigue Resistance and Residual Stress of Austenitic Stainless Steels AISI 304L. Materials 2023, 16, 2638. [Google Scholar] [CrossRef]
- Weng, Z.; Gu, K.; Wang, K.; Liu, X.; Wang, J. The Reinforcement Role of Deep Cryogenic Treatment on the Strength and Toughness of Alloy Structural Steel. Mater. Sci. Eng. A 2020, 772, 138698. [Google Scholar] [CrossRef]
- Korade, D.; Ramana, K.V.; Jagtap, K. Wear and Fatigue Behaviour of Deep Cryogenically Treated H21 Tool Steel. Trans. Indian Inst. Met. 2020, 73, 843–851. [Google Scholar] [CrossRef]
- Bensely, A.; Shyamala, L.; Harish, S.; Mohan Lal, D.; Nagarajan, G.; Junik, K.; Rajadurai, A. Fatigue Behaviour and Fracture Mechanism of Cryogenically Treated En 353 Steel. Mater. Des. 2009, 30, 2955–2962. [Google Scholar] [CrossRef]
- Jovicevic-Klug, M.; Jovicevic-Klug, P.; McCord, J.; Podgornik, B. Investigation of Microstructural Attributes of Steel Surfaces through Magneto-Optical Kerr Effect. J. Mater. Res. Technol. 2021, 11, 1245–1259. [Google Scholar] [CrossRef]
- Jovičević-Klug, P.; Jovičević-Klug, M.; Podgornik, B. Unravelling the Role of Nitrogen in Surface Chemistry and Oxidation Evolution of Deep Cryogenic Treated High-Alloyed Ferrous Alloy. Coatings 2022, 12, 213. [Google Scholar] [CrossRef]
- Jovičević-Klug, M.; Jovičević-Klug, P.; Kranjec, T.; Podgornik, B. Cross-Effect of Surface Finishing and Deep Cryogenic Treatment on Corrosion Resistance of AISI M35 Steel. J. Mater. Res. Technol. 2021, 14, 2365–2381. [Google Scholar] [CrossRef]
- Jovičević-Klug, P.; Kranjec, T.; Jovičević-Klug, M.; Kosec, T.; Podgornik, B. Influence of the Deep Cryogenic Treatment on AISI 52100 and AISI D3 Steel’s Corrosion Resistance. Materials 2021, 14, 6357. [Google Scholar] [CrossRef]
- Senthilkumar, D.; Bracke, J.; Slootsman, N. Corrosion and Elastic Behaviour of Cryogenically Treated En 19 Steel. Corros. Manag. 2014, 117, 16–21. [Google Scholar]
- Wang, W.; Srinivasan, V.; Siva, S.; Albert, B.; Lal, M.; Alfantazi, A. Corrosion Behavior of Deep Cryogenically Treated AISI 420 and AISI 52100 Steel. Corrosion 2014, 70, 708–720. [Google Scholar] [CrossRef]
- Ramesh, S.; Bhuvaneswari, B.; Palani, G.S.; Lal, D.M.; Iyer, N.R. Effects on Corrosion Resistance of Rebar Subjected to Deep Cryogenic Treatment. J. Mech. Sci. Technol. 2017, 31, 123–132. [Google Scholar] [CrossRef]
- Ma, S.; Su, R.; Li, G.; Qu, Y.; Li, R. Effect of Deep Cryogenic Treatment on Corrosion Resistance of AA7075-RRA. J. Phys. Chem. Solids 2022, 167, 110747. [Google Scholar] [CrossRef]
- Su, R.; Ma, S.; Wang, K.; Li, G.; Qu, Y.; Li, R. Effect of Cyclic Deep Cryogenic Treatment on Corrosion Resistance of 7075 Alloy. Met. Mater. Int. 2022, 28, 862–870. [Google Scholar] [CrossRef]
- Garrison, T.C. Process for Improving the Corrosion Resistance of Metals. CN1795278A, 24 May 2004. [Google Scholar]
- Gunes, I.; Uzun, M.; Cetin, A.; Aslantas, K.; Cicek, A. Evaluation of Wear Performance of Cryogenically Treated Vanadis 4 Extra Tool Steel. Kov. Mater. 2016, 54, 195–204. [Google Scholar] [CrossRef]
- Koneshlou, M.; Meshinchi, A.K.; Khomamizadeh, F. Effect of Cryogenic Tratment on Microstucture, Mechanical and Wear Behaviors of AISI H13 Hot Work Tool Steel. Cryogenics 2011, 51, 55–61. [Google Scholar] [CrossRef]
- Senthilkumar, D.; Rajendran, I. Optimization of Deep Cryogenic Treatment to Reduce Wear Loss of 4140 Steel. Mater. Manuf. Process. 2011, 27, 567–572. [Google Scholar] [CrossRef]
- Jovičević-Klug, P.; Jenko, M.; Jovičević-Klug, M.; Šetina Batič, B.; Kovač, J.; Podgornik, B. Effect of Deep Cryogenic Treatment on Surface Chemistry and Microstructure of Selected High-Speed Steels. Appl. Surf. Sci. 2021, 548, 149257. [Google Scholar] [CrossRef]
- Cryogenic Treatment Applications Find Potential in the Energy Sector. Available online: https://www.cryogenicsociety.org/index.php?option=com_dailyplanetblog&view=entry&year=2023&month=05&day=02&id=188:cryogenic-treatment-applications-find-potential-in-the-energy-sector (accessed on 20 July 2023).
- Industrial Heating. Deep Cryogenic Treatment for Marine and Oil-and-Gas Applications. 3 December 2018. Available online: https://www.industrialheating.com/articles/94598-deep-cryogenic-treatment-for-marine-and-oil-and-gas-applications (accessed on 20 July 2023).
- Darwin, J.D.; Mohan Lal, D.; Nagarajan, G. Optimization of Cryogenic Treatment to Maximize the Wear Resistance of 18% Cr Martensitic Stainless Steel by Taguchi Method. J. Mater. Process Technol. 2008, 195, 241–247. [Google Scholar] [CrossRef]
- Kumar, M.C.; Vijayakumar, P.; Narayan, B. Optimization of Cryogenic Treatment Parameters to Maximise the Tool Wear of HSS Tools by Taguchi Method. Int. J. Mod. Eng. Res. 2012, 2, 3051–3055. [Google Scholar]
- Baloji, D.; Anil, K.; Satyanarayana, K.; Ul Haq, A.; Singh, S.K.; Naik, M.T. Evaluation and Optimization of Material Properties of ASS316L at Sub-Zero Temperature Using Taguchi Robust Design. Mater. Today Proc. 2019, 18, 4475–4481. [Google Scholar] [CrossRef]
- Lance, J.W.; Jones, H.M. Material Treatment by Cryogenic Cooling. U.S. Patent No. 3,891,477, 9 September 1971. [Google Scholar]
- Jin, F.; Wu, L.; Xiong, C.; Wei, J.; Wen, X. A Kind of Cryogenic Treating Process of Cast Aluminium Alloy Piston Piece. CN103498117B, 29 September 2013. [Google Scholar]
- De Carvalho Eduardo, A.; Atem De Carvalho, R. Special Steels; Cryogenic Process for the Production Thereof; Use of Special Steels in a Saline and/or High-Pressure Environment. WO2014008564A1, 9 July 2013. [Google Scholar]
- Jin, F.; Zhou, Z.; Wei, J.; Xiong, C.; Wu, L. High-Speed Steel Cryogenic Treatment Process. CN103525997A, 29 September 2013. [Google Scholar]
- Pang, B.; Wang, B.; Zhao, X. High-Efficiency Energy-Saving Apparatus Used for Cryogenic Treatment. CN103589840A, 26 November 2013. [Google Scholar]
- Kamody, D.J. Process for the Cryogenic Treatment of Metal Containing Materials. US5875636A, 1 October 1997. [Google Scholar]
- Li, Z.; Wang, Y.; Wang, J.; Zhang, Y. Effect of Cryogenic Heat Treatment and Heat Treatment on the Influence of Mechanical, Energy, and Wear Properties of 316L Stainless Steel by Selective Laser Melting. JOM 2022, 74, 3855–3868. [Google Scholar] [CrossRef]
- Prieto, G.; Ipiña, J.E.P.; Tuckart, W.R. Cryogenic Treatments on AISI 420 Stainless Steel: Microstructure and Mechanical Properties. Mater. Sci. Eng. A 2014, 605, 236–243. [Google Scholar] [CrossRef]
- Zhirafar, S.; Rezaeian, A.; Pugh, M. Effect of Cryogenic Treatment on the Mechanical Properties of 4340 Steel. J. Mater. Process. Technol. 2007, 186, 298–303. [Google Scholar] [CrossRef]
- Baldissera, P.; Delprete, C. Effects of Deep Cryogenic Treatment on Static Mechanical Properties of 18NiCrMo5 Carburized Steel. Mater. Des. 2009, 30, 1435–1440. [Google Scholar] [CrossRef]
- Jovičević-Klug, M.; Rezar, R.; Jovičević-Klug, P.; Podgornik, B. Influence of Deep Cryogenic Treatment on Natural and Artificial Aging of Al-Mg-Si Alloy EN AW 6026. J. Alloys Compd. 2022, 899, 163323. [Google Scholar] [CrossRef]
- Nageswara Rao, P.; Jayaganthan, R. Effects of Warm Rolling and Ageing after Cryogenic Rolling on Mechanical Properties and Microstructure of Al 6061 Alloy. Mater. Des. 2012, 39, 226–233. [Google Scholar] [CrossRef]
- Shahsavari, A.; Karimzadeh, F.; Rezaeian, A.; Heydari, H. Significant Increase in Tensile Strength and Hardness in 2024 Aluminum Alloy by Cryogenic Rolling. Procedia Mater. Sci. 2015, 11, 84–88. [Google Scholar] [CrossRef]
- Aamir, A.; Lei, P.; Lixiang, D.; Zengmin, Z. Effects of Deep Cryogenic Treatment, Cryogenic and Annealing Temperatures on Mechanical Properties and Corrosion Resistance of AA5083 Aluminium Alloy. Int. J. Microstruct. Mater. Prop. 2016, 11, 339–358. [Google Scholar] [CrossRef]
- Gu, K.; Zhang, H.; Zhao, B.; Wang, J.; Zhou, Y.; Li, Z. Effect of Cryogenic Treatment and Aging Treatment on the Tensile Properties and Microstructure of Ti-6Al-4V Alloy. Mater. Sci. Eng. A 2013, 584, 170–176. [Google Scholar] [CrossRef]
- Vinothkumar, T.S.; Kandaswamy, D.; Prabhakaran, G.; Rajadurai, A. Effect of Dry Cryogenic Treatment on Vickers Hardness and Wear Resistance of New Martensitic Shape Memory Nickel-Titanium Alloy. Eur. J. Dent. 2015, 9, 513–517. [Google Scholar] [CrossRef]
- Anil Kumar, B.K.; Ananthaprasad, M.G.; Gopalakrishna, K. Action of Cryogenic Chill on Mechanical Properties of Nickel Alloy Metal Matrix Composites. In Proceedings of the International Conference on Advances in Materials and Manufacturing Applications, Bangalore, India, 14–16 July 2016; pp. 1–11. [Google Scholar]
- Khedekar, D.; Gogte, C.L. Development of the Cryogenic Processing Cycle for Age Hardenable AA7075 Aluminium Alloy and Optimization of the Process for Surface Quality Using Gray Relational Analysis. Mater. Today Proc. 2018, 5, 4995–5003. [Google Scholar] [CrossRef]
- Yuanchun, H.; Li, Y.; Ren, X.; Xiao, Z. Effect of Deep Cryogenic Treatment on Aging Processes of Al–Mg–Si Alloy. Phys. Met. Metallogr. 2019, 120, 914–918. [Google Scholar] [CrossRef]
- Adin, M.Ş. Performances of Cryo-Treated and Untreated Cutting Tools in Machining of AA7075 Aerospace Aluminium Alloy. Eur. Mech. Sci. 2023, 7, 70–81. [Google Scholar] [CrossRef]
- Vendra, S.S.L.; Goel, S.; Kumar, N.; Jayaganthan, R. A Study on Fracture Toughness and Strain Rate Sensitivity of Severely Deformed Al 6063 Alloys Processed by Multiaxial Forging and Rolling at Cryogenic Temperature. Mater. Sci. Eng. A 2017, 686, 82–92. [Google Scholar] [CrossRef]
- Sonia, P.; Verma, V.; Saxena, K.K.; Kishore, N.; Rana, R.S. Effect of Cryogenic Treatment on Mechanical Properties and Microstructure of Aluminium 6082 Alloy. Mater. Today Proc. 2020, 26, 2248–2253. [Google Scholar] [CrossRef]
- Özbek, N.A.; Çİçek, A.; Gülesİn, M.; Özbek, O. Application of Deep Cryogenic Treatment to Uncoated Tungsten Carbide Inserts in the Turning of AISI 304 Stainless Steel. Met. Mater. Trans. A Phys. Met. Mater. Sci. 2016, 47, 6270–6280. [Google Scholar] [CrossRef]
- Çiçek, A.; Kıvak, T.; Ekici, E. Optimization of Drilling Parameters Using Taguchi Technique and Response Surface Methodology (RSM) in Drilling of AISI 304 Steel with Cryogenically Treated HSS Drills. J. Intell. Manuf. 2015, 26, 295–305. [Google Scholar] [CrossRef]
- Ramos, L.B.; Simoni, L.; Mielczarski, R.G.; Vega, M.R.O.; Schroeder, R.M.; De Fraga Malfatti, C. Tribocorrosion and Electrochemical Behavior of DIN 1.4110 Martensitic Stainless Steels After Cryogenic Heat Treatment. Mater. Res. 2017, 20, 460–468. [Google Scholar] [CrossRef]
- Ben Fredj, N.; Sidhom, H. Effects of the Cryogenic Cooling on the Fatigue Strength of the AISI 304 Stainless Steel Ground Components. Cryogenics 2006, 46, 439–448. [Google Scholar] [CrossRef]
- Nalbant, M.; Yildiz, Y. Effect of Cryogenic Cooling in Milling Process of AISI 304 Stainless Steel. Trans. Nonferrous Met. Soc. China 2011, 21, 72–79. [Google Scholar] [CrossRef]
- Hong, S.Y.; Broomer, M.; Hong, S.Y.; Broomer, M. Economical and Ecological Cryogenic Machining of AISI 304 Austenitic Stainless Steel. Clean Technol. Environ. Policy 2000, 2, 157–166. [Google Scholar] [CrossRef]
- Dhananchezian, M.; Pradeep Kumar, M.; Sornakumar, T. Cryogenic Turning of AISI 304 Stainless Steel with Modified Tungsten Carbide Tool Inserts. Mater. Manuf. Process. 2011, 26, 781–785. [Google Scholar] [CrossRef]
- Johan Singh, P.; Guha, B.; Achar, D.R.G. Fatigue Life Improvement of AISI 304L Cruciform Welded Joints by Cryogenic Treatment. Eng. Fail. Anal. 2003, 10, 1–12. [Google Scholar] [CrossRef]
- Singh, P.J.; Mannan, S.L.; Jayakumar, T.; Achar, D.R.G. Fatigue Life Extension of Notches in AISI 304L Weldments Using Deep Cryogenic Treatment. Eng. Fail. Anal. 2005, 12, 263–271. [Google Scholar] [CrossRef]
- Oh, D.; Song, S.; Kim, N.; Kim, M. Effect of Cryogenic Temperature on Low-Cycle Fatigue Behavior of AISI 304L Welded Joint. Metals 2018, 8, 657. [Google Scholar] [CrossRef]
- Read, D.T.; Reed, R.P. Fracture and Strength Properties of Selected Austenitic Stainless Steels at Cryogenic Temperatures. Cryogenics 1981, 21, 415–417. [Google Scholar] [CrossRef]
- Manimaran, G.; Pradeep Kumar, M.; Venkatasamy, R. Influence of Cryogenic Cooling on Surface Grinding of Stainless Steel 316. Cryogenics 2014, 59, 76–83. [Google Scholar] [CrossRef]
- Kennedy, F.E.; Ye, Y.; Baker, I.; White, R.R.; Barry, R.L.; Tang, A.Y.; Song, M. Development of a New Cryogenic Tribotester and Its Application to the Study of Cryogenic Wear of AISI 316 Stainless Steel. Wear 2022, 496–497, 204309. [Google Scholar] [CrossRef]
- Bhaskar, L.; Raj, D.S. Evaluation of the Effect of Cryogenic Treatment of HSS Drills at Different Holding Time in Drilling AISI 316-SS. Eng. Res. Express 2020, 2, 025005. [Google Scholar] [CrossRef]
- Norberto López de Lacalle, L.; Gandarias, A.; López de Lacalle, L.N.; Aizpitarte, X.; Lamikiz, A. High Performance Drilling of Austenitic Stainless Steels. Int. J. Mach. Mach. Mater. 2008, 3, 1–17. [Google Scholar] [CrossRef]
- Uhlář, R.; Hlaváč, L.; Gembalová, L.; Jonšta, P.; Zuchnický, O. Abrasive Water Jet Cutting of the Steels Samples Cooled by Liquid Nitrogen. Appl. Mech. Mater. 2013, 308, 7–12. [Google Scholar] [CrossRef]
- Çiçek, A.; Uygur, I.; Kvak, T.; Altan Zbek, N. Machinability of AISI 316 Austenitic Stainless Steel with Cryogenically Treated M35 High-Speed Steel Twist Drills. J. Manuf. Sci. Eng. 2012, 134, 061003. [Google Scholar] [CrossRef]
- Gao, Q.; Jiang, X.; Sun, H.; Zhang, Y.; Fang, Y.; Mo, D.; Li, X. Performance and Microstructure of TC4/Nb/Cu/316L Welded Joints Subjected to Cryogenic Treatment. Mater. Lett. 2022, 321, 132453. [Google Scholar] [CrossRef]
- Sugavaneswaran, M.; Kulkarni, A. Effect of Cryogenic Treatment on the Wear Behavior of Additive Manufactured 316L Stainless Steel. Tribol. Ind. 2019, 41, 33–42. [Google Scholar] [CrossRef]
- Wang, C.; Lin, X.; Wang, L.; Zhang, S.; Huang, W. Cryogenic Mechanical Properties of 316L Stainless Steel Fabricated by Selective Laser Melting. Mater. Sci. Eng. A 2021, 815, 141317. [Google Scholar] [CrossRef]
- Kosaraju, S.; Singh, S.K.; Buddi, T.; Kalluri, A.; Ul Haq, A. Evaluation and Characterisation of ASS316L at Sub-Zero Temperature. Adv. Mater. Process. Technol. 2020, 6, 445–455. [Google Scholar] [CrossRef]
- Kvackaj, T.; Rozsypalova, A.; Kocisko, R.; Bidulska, J.; Petrousek, P.; Vlado, M.; Pokorny, I.; Sas, J.; Weiss, K.P.; Duchek, M.; et al. Influence of Processing Conditions on Properties of AISI 316LN Steel Grade. J. Mater. Eng. Perform. 2020, 29, 1509–1514. [Google Scholar] [CrossRef]
- Salehi, M.; Eskandari, M.; Yeganeh, M. Characterizations of the Microstructure and Texture of 321 Austenitic Stainless Steel After Cryo-Rolling and Annealing Treatments. J. Mater. Eng. Perform. 2023, 32, 816–834. [Google Scholar] [CrossRef]
- Aletdinov, A.; Mironov, S.; Korznikova, G.; Konkova, T.; Zaripova, R.; Myshlyaev, M.; Semiatin, S.L. EBSD Investigation of Microstructure Evolution during Cryogenic Rolling of Type 321 Metastable Austenitic Steel. Mater. Sci. Eng. A 2019, 745, 460–473. [Google Scholar] [CrossRef]
- Aurich, J.C.; Mayer, P.; Kirsch, B.; Eifler, D.; Smaga, M.; Skorupski, R. Characterization of Deformation Induced Surface Hardening during Cryogenic Turning of AISI 347. CIRP Ann. 2014, 63, 65–68. [Google Scholar] [CrossRef]
- Mayer, P.; Skorupski, R.; Smaga, M.; Eifler, D.; Aurich, J.C. Deformation Induced Surface Hardening When Turning Metastable Austenitic Steel AISI 347 with Different Cryogenic Cooling Strategies. Procedia CIRP 2014, 14, 101–106. [Google Scholar] [CrossRef]
- Laksanasittiphan, S.; Tuchinda, K.; Manonukul, A.; Suranuntchai, S. Use of Deep Cryogenic Treatment to Reduce Particle Contamination Induced Problem in Hard Disk Drive. Key Eng. Mater. 2017, 730, 265–271. [Google Scholar] [CrossRef]
- Prieto, G.; Tuckart, W.R. Influence of Cryogenic Treatments on the Wear Behavior of AISI 420 Martensitic Stainless Steel. J. Mater. Eng. Perform. 2017, 26, 5262–5271. [Google Scholar] [CrossRef]
- Ramesh, S.; Bhuvaneshwari, B.; Palani, G.S.; Mohan Lal, D.; Mondal, K.; Gupta, R.K. Enhancing the Corrosion Resistance Performance of Structural Steel via a Novel Deep Cryogenic Treatment Process. Vacuum 2019, 159, 468–475. [Google Scholar] [CrossRef]
- Makalesi, A.; Şenel, S.; Koçar, O.; Kocaman, E.; Özdamar, O.; Bülent, Z.; Üniversitesi, E.; Fakültesi, M.; Bölümü, M.M. AISI 430 Çeliklerin Derin Kroyonejik İşlem Sonrası Mekanik ve Mikroyapısal Özelliklerinin İncelenmesi. Eur. J. Sci. Technol. 2021, 32, 1000–1005. [Google Scholar] [CrossRef]
- ŞİRİN, Ş.; AKINCIOĞLU, S. Investigation of Friction Performance and Surface Integrity of Cryogenically Treated AISI 430 Ferritic Stainless Steel. Int. Adv. Res. Eng. J. 2021, 5, 194–201. [Google Scholar] [CrossRef]
- Yıldız, E.; Altan Özbek, N.; Ankara Hidrolik Mak San Tic Ltd.; Şti, H. Effect of cryogenic treatment and tempering temperature on mechanical and microstructural properties of aisi 431 steel. Int. J. 3D Print. Technol. Digit. Ind. 2022, 6, 74–82. [Google Scholar] [CrossRef]
- Tembwa, E.N. Softening Response of As-Normalized and Cryogenic-Soaked P91 Martensitic Steels p y g P91 Martensitic Steels. Master’s Thesis, University of Johannesburg, Johannesburg, South Africa, 2018. [Google Scholar]
- Zhao, Z.; Yu, M.; Han, C.; Yang, Z.; Teng, P.; Zhong, J.; Li, S.; Liu, J. Effects of Carbide Evolution on SCC Behaviors of 10Cr13Co13Mo5NiW1VE Martensitic Stainless Steel. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4400821 (accessed on 2 October 2023).
- Zhang, H.; Ji, X.; Ma, D.; Tong, M.; Wang, T.; Xu, B.; Sun, M.; Li, D. Effect of Aging Temperature on the Austenite Reversion and Mechanical Properties of a Fe–10Cr–10Ni Cryogenic Maraging Steel. J. Mater. Res. Technol. 2021, 11, 98–111. [Google Scholar] [CrossRef]
- Dhananchezian, M.; Priyan, M.R.; Rajashekar, G.; Narayanan, S.S. Study the Effect of Cryogenic Cooling On Machinability Characteristics During Turning Duplex Stainless Steel 2205. Mater. Today Proc. 2018, 5, 12062–12070. [Google Scholar] [CrossRef]
- Koppula, S.; Rajkumar, A.; Krishna, S.H.; Prudhvi, R.S.; Aparna, S.; Subbiah, R. Improving the Mechanical Properties of AISI 2205 Duplex Stainless Steel by Cryogenic Treatment Process. E3S Web Conf. 2020, 184, 01019. [Google Scholar] [CrossRef]
- Narayanan, D.; Jagadeesha, T. Process Capability Improvement Using Internally Cooled Cutting Tool Insert in Cryogenic Machining of Super Duplex Stainless Steel 2507. In Innovative Product Design and Intelligent Manufacturing Systems; Lecture Notes in Mechanical Engineering; Springer: Singapore, 2020; pp. 323–330. [Google Scholar] [CrossRef]
- Narayanan, D.; Salunkhe, V.G.; Dhinakaran, V.; Jagadeesha, T. Experimental Evaluation of Cutting Process Parameters in Cryogenic Machining of Duplex Stainless Steel. In Advances in Industrial Automation and Smart Manufacturing; Lecture Notes in Mechanical Engineering; Springer: Singapore, 2021; Volume 23, pp. 505–516. [Google Scholar] [CrossRef]
- Kanagaraju, T.; Boopathy, S.R.; Gowthaman, B. Effect of Cryogenic and Wet Coolant Performance on Drilling of Super Duplex Stainless Steel (2507). Mater. Express 2020, 10, 81–93. [Google Scholar] [CrossRef]
- Sastry, C.C.; Abeens, M.; Pradeep, N.; Manickam, M.A.M. Microstructural Analysis, Radiography, Tool Wear Characterization, Induced Residual Stress and Corrosion Behavior of Conventional and Cryogenic Trepanning of DSS 2507. J. Mech. Sci. Technol. 2020, 34, 2535–2547. [Google Scholar] [CrossRef]
- Pradeep Samuel, A.; Arul, S. Effect of Cryogenic Treatment on the Mechanical Properties of Low Carbon Steel IS 2062. Mater. Today Proc. 2018, 5, 25065–25074. [Google Scholar] [CrossRef]
- Thornton, R.; Slatter, T.; Lewis, R. Effects of Deep Cryogenic Treatment on the Wear Development of H13A Tungsten Carbide Inserts When Machining AISI 1045 Steel. Prod. Eng. 2014, 8, 355–364. [Google Scholar] [CrossRef]
- Govindaraju, N.; Shakeel Ahmed, L.; Pradeep Kumar, M. Experimental Investigations on Cryogenic Cooling in the Drilling of AISI 1045 Steel. Mater. Manuf. Process. 2014, 29, 1417–1421. [Google Scholar] [CrossRef]
- Dilip Jerold, B.; Pradeep Kumar, M. Experimental Investigation of Turning AISI 1045 Steel Using Cryogenic Carbon Dioxide as the Cutting Fluid. J. Manuf. Process. 2011, 13, 113–119. [Google Scholar] [CrossRef]
- Mahendran, R.; Rajkumar, P.; Nirmal Raj, L.; Karthikeyan, S.; Rajeshkumar, L. Effect of Deep Cryogenic Treatment on Tool Life of Multilayer Coated Carbide Inserts by Shoulder Milling of EN8 Steel. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 378. [Google Scholar] [CrossRef]
- Karnan, B.; Kuppusamy, A.; Latchoumi, T.P.; Banerjee, A.; Sinha, A.; Biswas, A.; Subramanian, A.K. Multi-Response Optimization of Turning Parameters for Cryogenically Treated and Tempered WC–Co Inserts. J. Inst. Eng. India Ser. D 2022, 103, 263–274. [Google Scholar] [CrossRef]
- Senthilkumar, D. Deep Cryogenic Treatment of En 31 and En 8 Steel for the Development of Wear Resistance. Adv. Mater. Process. Technol. 2021, 8, 1769–1776. [Google Scholar] [CrossRef]
- Senthilkumar, D. Effect of Deep Cryogenic Treatment on Residual Stress and Mechanical Behaviour of Induction Hardened En 8 Steel. Adv. Mater. Process. Technol. 2016, 2, 427–436. [Google Scholar] [CrossRef]
- Arunkarthikeyan, K.; Balamurugan, K. Performance Improvement of Cryo Treated Insert on Turning Studies of AISI 1018 Steel Using Multi Objective Optimization. In Proceedings of the International Conference on Computational Intelligence for Smart Power System and Sustainable Energy, CISPSSE 2020, Keonjhar, India, 29–31 July 2020. [Google Scholar] [CrossRef]
- Wigley, D.A. The Metallurgical Structure and Mechanical Properties at Low Temperature of Nitronic 40 with Particular Reference to Its Use in the Construction of Models for Cryogenic Wind Tunnels; National Aeronautics and Space Administration: Hampton, VA, USA, 1982.
- Gaddam, S.; Haridas, R.S.; Sanabria, C.; Tammana, D.; Berman, D.; Mishra, R.S. Friction Stir Welding of SS 316 LN and Nitronic 50 Jacket Sections for Application in Superconducting Fusion Magnet Systems. Mater. Des. 2022, 221, 110949. [Google Scholar] [CrossRef]
- Sastry, C.C.; Hariharan, P.; Pradeep Kumar, M.; Muthu Manickam, M.A. Experimental Investigation on Boring of HSLA ASTM A36 Steel under Dry, Wet, and Cryogenic Environments. Mater. Manuf. Process. 2019, 34, 1352–1379. [Google Scholar] [CrossRef]
- Y Chow, J.G.; Klamut, C.J. Properties of Cast C£-8 Stainless-Steel Weldments at Cryogenic Temperatures; Brookhaven National Lab.: Upton, NY, USA, 1981. [Google Scholar]
- Thornton, R.; Slatter, T.; Jones, A.H.; Lewis, R. The Effects of Cryogenic Processing on the Wear Resistance of Grey Cast Iron Brake Discs. Wear 2011, 271, 2386–2395. [Google Scholar] [CrossRef]
- Franco Steier, V.; Kalombo Badibanga, R.; Roberto Moreira Da Silva, C.; Magalhães Nogueira, M.; Araújo, J.A. Effect of Chromium Nitride Coatings and Cryogenic Treatments on Wear and Fretting Fatigue Resistance of Aluminum. Electr. Power Syst. Res. 2014, 116, 322–329. [Google Scholar] [CrossRef]
- Kara, F.; Çiçek, A. Multiple Regression and ANN Models for Surface Quality of Cryogenically-Treated AISI 52100 Bearing Steel Micro Machining of Ti6Al4V and Inconel 718 View Project Improvement of Machining Precesses View Project. Artic. J. Balk. Tribol. Assoc. 2013, 19, 570–584. [Google Scholar]
- Gunes, I.; Cicek, A.; Aslantas, K.; Kara, F. Effect of Deep Cryogenic Treatment on Wear Resistance of AISI 52100 Bearing Steel. Trans. Indian Inst. Met. 2014, 67, 909–917. [Google Scholar] [CrossRef]
- Villa, M.; Pantleon, K.; Somers, M.A.J. Enhanced Carbide Precipitation during Tempering of Sub-Zero Celsius Treated AISI 52100 Bearing Steel. In Proceedings of the Heat Treat & Surface Engineering Conference & Expo, Chennai, India, May 16–18 2013; pp. 1–7. [Google Scholar]
- Hong, S.Y.; Ding, Y. Micro-Temperature Manipulation in Cryogenic Machining of Low Carbon Steel. J. Mater. Process Technol. 2001, 116, 22–30. [Google Scholar] [CrossRef]
- Jamali, A.R.; Khan, W.; Chandio, A.D.; Anwer, Z.; Jokhio, M.H.; Karachi, P. Effect of Cryogenic Treatment on Mechanical Properties of AISI 4340 and AISI 4140 Steel. J. Eng. Technol. 2019, 38, 2413–7219. [Google Scholar] [CrossRef]
- Lisiecki, A.; Ślizak, D.; Kukofka, A. Laser Cladding of Co-Based Metallic at Cryogenic Conditions. J. Achiev. Mater. Manuf. Eng. 2019, 95, 20–31. [Google Scholar] [CrossRef]
- Keseler, H.; Westermann, I.; Kandukuri, S.Y.; Nøkleby, J.O.; Holmedal, B. Permanent Effect of a Cryogenic Spill on Fracture Properties of Structural Steels. IOP Conf. Ser. Mater. Sci. Eng. 2015, 102, 012004. [Google Scholar] [CrossRef]
- Abdin, A.; Feyzabi, K.; Hellman, O.; Nordström, H.; Rasa, D.; Thaung Tolförs, G.; Öqvist, P.-O. Methods to Create Compressive Stress in High Strength Steel Components; Ångströmlaboratoriet: Uppsala, Sweden, 2018. [Google Scholar]
- Walters, C.L.; Alvaro, A.; Maljaars, J. The Effect of Low Temperatures on the Fatigue Crack Growth of S460 Structural Steel. Int. J. Fatigue 2016, 82, 110–118. [Google Scholar] [CrossRef]
- Wang, C.; Yi, Y.; Huang, S.; Dong, F.; He, H.; Huang, K.; Jia, Y. Experimental and Theoretical Investigation on the Forming Limit of 2024-O Aluminum Alloy Sheet at Cryogenic Temperatures. Met. Mater. Int. 2021, 27, 5199–5211. [Google Scholar] [CrossRef]
- Fiedler, T.; Al-Sahlani, K.; Linul, P.A.; Linul, E. Mechanical Properties of A356 and ZA27 Metallic Syntactic Foams at Cryogenic Temperature. J. Alloys Compd. 2020, 813, 152181. [Google Scholar] [CrossRef]
- Sagar, S.R.; Srikanth, K.M.; Jayasimha, R. Effect of Cryogenic Treatment and Heat Treatment on Mechanical and Tribological Properties of A356 Reinforced with SiC. Mater. Today Proc. 2021, 45, 184–190. [Google Scholar] [CrossRef]
- Zhao, Z.; Hong, S.Y. Cooling Strategies for Cryogenic Machining from a Materials Viewpoint. J. Mater. Eng. Perform. 1992, 1, 669–678. [Google Scholar] [CrossRef]
- Jovičević-Klug, M.; Jovičević-Klug, P.; Sever, T.; Feizpour, D.; Podgornik, B. Extraordinary Nanocrystalline Pb Whisker Growth from Bi-Mg-Pb Pools in Aluminum Alloy 6026 Moderated through Oriented Attachment. Nanomaterials 2021, 11, 1842. [Google Scholar] [CrossRef] [PubMed]
- Jovičević-Klug, M.; Tegg, L.; Jovičević-Klug, P.; Dražić, G.; Almásy, L.; Lim, B.; Cairney, J.M.; Podgornik, B. Multiscale Modification of Aluminum Alloys with Deep Cryogenic Treatment for Advanced Properties. J. Mater. Res. Technol. 2022, 21, 3062–3073. [Google Scholar] [CrossRef]
- Jovičević-Klug, M.; Verbovšek, T.; Jovičević-Klug, P.; Batič, B.Š.; Ambrožič, B.; Dražić, G.; Podgornik, B. Revealing the Pb Whisker Growth Mechanism from Al-Alloy Surface and Morphological Dependency on Material Stress and Growth Environment. Materials 2022, 15, 2574. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fan, X.; Chen, X.; Yuan, S. Forming Limit of 6061 Aluminum Alloy Tube at Cryogenic Temperatures. J. Mater. Process. Technol. 2022, 306, 117649. [Google Scholar] [CrossRef]
- Wang, X.; Fan, X.; Chen, X.; Yuan, S. Cryogenic Deformation Behavior of 6061 Aluminum Alloy Tube under Biaxial Tension Condition. J. Mater. Process. Technol. 2022, 303, 117532. [Google Scholar] [CrossRef]
- Bouzada, F.; Cabeza, M.; Merino, P.; Trillo, S. Effect of Deep Cryogenic Treatment on the Microstructure of an Aerospace Aluminum Alloy. Adv. Mat. Res. 2012, 445, 965–970. [Google Scholar] [CrossRef]
- Mohan, K.; Suresh, J.A.; Ramu, P.; Jayaganthan, R. Microstructure and Mechanical Behavior of Al 7075-T6 Subjected to Shallow Cryogenic Treatment. J. Mater. Eng. Perform. 2016, 25, 2185–2194. [Google Scholar] [CrossRef]
- Siyi, M.; Su, R.; Wang, K.; Yang, Y.; Qu, Y.; Li, R. Effect of Deep Cryogenic Treatment on Wear and Corrosion Resistance of an Al–Zn–Mg–Cu Alloy. Russ. J. Non-Ferr. Met. 2021, 62, 89–96. [Google Scholar] [CrossRef]
- Wei, L.; Wang, D.; Li, H.; Xie, D.; Ye, F.; Song, R.; Zheng, G.; Wu, S. Effects of Cryogenic Treatment on the Microstructure and Residual Stress of 7075 Aluminum Alloy. Metals 2018, 8, 273. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, Z.; Liu, J.; Yu, J.; Mai, Q.; Yue, X. Effect of Aging plus Cryogenic Treatment on the Machinability of 7075 Aluminum Alloy. Vacuum 2023, 208, 111692. [Google Scholar] [CrossRef]
- Deshpande, Y.V.; Andhare, A.B.; Padole, P.M. How Cryogenic Techniques Help in Machining of Nickel Alloys? A Review. Mach. Sci. Technol. 2018, 22, 543–584. [Google Scholar] [CrossRef]
- Baig, A.; Jaffery, S.H.I.; Khan, M.A.; Alruqi, M. Statistical Analysis of Surface Roughness, Burr Formation and Tool Wear in High Speed Micro Milling of Inconel 600 Alloy under Cryogenic, Wet and Dry Conditions. Micromachines 2022, 14, 13. [Google Scholar] [CrossRef] [PubMed]
- Satyanarayana, K.; Krishna, B.R.; Bhargavi, M.; Vasuki, R.E.; Kiran, K.R. Taguchi Optimization in Machining Inconel 600 with WEDM Process Using Cryogenically Treated Brass Wire. E3S Web Conf. 2021, 309, 01110. [Google Scholar] [CrossRef]
- Mandal, P.K.; Michael Saji, A.; Kurian Lalu, A.; Krishnan, A.; Nair, A.S.; Jacob, M.M. Microstructural Study and Mechanical Properties of TIG Welded Inconel 617 Superalloy. Mater. Today Proc. 2022, 62, 3561–3568. [Google Scholar] [CrossRef]
- Akgün, M.; Demir, H. Optimization of Cutting Parameters Affecting Surface Roughness in Turning of Inconel 625 Superalloy by Cryogenically Treated Tungsten Carbide Inserts. SN Appl. Sci. 2021, 3, 277. [Google Scholar] [CrossRef]
- Yıldırım, Ç.V. Experimental Comparison of the Performance of Nanofluids, Cryogenic and Hybrid Cooling in Turning of Inconel 625. Tribol. Int. 2019, 137, 366–378. [Google Scholar] [CrossRef]
- Anburaj, R.; Pradeep Kumar, M. Experimental Studies on Cryogenic CO2 Face Milling of Inconel 625 Superalloy. Mater. Manuf. Process. 2020, 36, 814–826. [Google Scholar] [CrossRef]
- Makhesana, M.A.; Patel, K.M.; Khanna, N. Analysis of Vegetable Oil-Based Nano-Lubricant Technique for Improving Machinability of Inconel 690. J. Manuf. Process. 2022, 77, 708–721. [Google Scholar] [CrossRef]
- Jovičevič Klug, P.; Jovičević Klug, M.; Podgornik, B. Potential in Deep Cryogenic Treatment of Non-Ferrous Alloys. In Proceedings of the European Cryogenics Days 2021, Virtual Conference, 4 November 2021; Cryogenics Society of Europe: Darmstadt, Germany, 2021. [Google Scholar]
- Palanisamy, A.; Jeyaprakash, N.; Sivabharathi, V.; Sivasankaran, S. Effects of Dry Turning Parameters of Incoloy 800H Superalloy Using Taguchi-Based Grey Relational Analysis and Modeling by Response Surface Methodology. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 607–623. [Google Scholar] [CrossRef]
- Palanisamy, A.; Selvaraj, T.; Sivasankaran, S. Optimization of Turning Parameters of Machining Incoloy 800H Superalloy Using Cryogenically Treated Multilayer CVD-Coated Tool. Arab. J. Sci. Eng. 2018, 43, 4977–4990. [Google Scholar] [CrossRef]
- Palanisamy, A.; Selvaraj, T. Optimization of Turning Parameters for Surface Integrity Properties on Incoloy 800 h Superalloy Using Cryogenically Treated Multi-Layer Cvd Coated Tool. Surf. Rev. Lett. 2019, 26, 1850139. [Google Scholar] [CrossRef]
- Dhananchezian, M. Study the Machinability Characteristics of Nicked Based Hastelloy C-276 under Cryogenic Cooling. Measurement 2019, 136, 694–702. [Google Scholar] [CrossRef]
- Nas, E.; Kara, F. Optimization of EDM Machinability of Hastelloy C22 Super Alloys. Machines 2022, 10, 1131. [Google Scholar] [CrossRef]
- Akincioğlu, S.; Gökkaya, H.; Akincioğlu, G.; Karataş, M.A. Taguchi Optimization of Surface Roughness in the Turning of Hastelloy C22 Super Alloy Using Cryogenically Treated Ceramic Inserts. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, 234, 3826–3836. [Google Scholar] [CrossRef]
- Ekambaram, P. Study of Mechanical and Metallurgical Properties of Hastelloy X at Cryogenic Condition. J. Mater. Res. Technol. 2019, 8, 6413–6419. [Google Scholar] [CrossRef]
- Wu, Y.; Yuan, X.; Wen, X.; Jiao, M. Body-Centered Cubic High-Entropy Alloys. In Materials Horizons: From Nature to Nanomaterials; Springer: Singapore, 2022; pp. 3–34. [Google Scholar] [CrossRef]
- Hu, W.; Dong, Z.; Wang, H.; Ahamad, T.; Ma, Z. Microstructure Refinement and Mechanical Properties Improvement in the W-Y2O3 Alloys via Optimized Freeze-Drying. Int. J. Refract. Met. Hard Mater. 2021, 95, 105453. [Google Scholar] [CrossRef]
- Yildiz, Y.; Sundaram, M.M.; Rajurkar, K.P.; Nalbant, M. The Effects of Cold and Cryogenic Treatments on the Machinability of Beryllium-Copper Alloy in Electro Discharge Machinability. In Proceedings of the 44th CIRP Conference on Manufacturing Systems, Madison, WI, USA, 1–3 June 2011. [Google Scholar]
- Bagherzadeh, A.; Kuram, E.; Budak, E. Experimental Evaluation of Eco-Friendly Hybrid Cooling Methods in Slot Milling of Titanium Alloy. J. Clean. Prod. 2021, 289, 125817. [Google Scholar] [CrossRef]
- Uygur, I.; Gerengi, H.; Arslan, Y.; Kurtay, M. The Effects of Cryogenic Treatment on the Corrosion of AISI D3 Steel. Mater. Res. 2015, 18, 569–574. [Google Scholar] [CrossRef]
- Shinde, T.; Pruncu, C.; Dhokey, N.B.; Parau, A.C.; Vladescu, A. Effect of Deep Cryogenic Treatment on Corrosion Behavior of AISI H13 Die Steel. Materials 2021, 14, 7863. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.M.; Liang, Y.; Zhai, Y.D.; Zhang, Y.S.; Sun, H.; Liu, Z.G.; Su, G.Q. Study on the Role of Cryogenic Treatment on Corrosion and Wear Behaviors of High Manganese Austenitic Steel. J. Mater. Res. Technol. 2023, 24, 5271–5285. [Google Scholar] [CrossRef]
- Akhbarizadeh, A.; Amini, K.; Javadpour, S. Effects of Applying an External Magnetic Field during the Deep Cryogenic Heat Treatment on the Corrosion Resistance and Wear Behavior of 1.2080 Tool Steel. Mater. Des. 2012, 41, 114–123. [Google Scholar] [CrossRef]
- Wang, L.; Dong, C.; Cao, Y.; Liang, J.; Xiao, K.; Li, X. Co-Enhancing the Mechanical Property and Corrosion Resistance of Selective Laser Melted High-Strength Stainless Steel via Cryogenic Treatment. J. Mater. Eng. Perform. 2020, 29, 7052–7062. [Google Scholar] [CrossRef]
- Baldissera, P.; Delprete, C. Deep Cryogenic Treatment of AISI 302 Stainless Steel: Part II—Fatigue and Corrosion. Mater. Des. 2010, 31, 4731–4737. [Google Scholar] [CrossRef]
- Cai, Y.; Luo, Z.; Zeng, Y. Influence of Deep Cryogenic Treatment on the Microstructure and Properties of AISI304 Austenitic Stainless Steel A-TIG Weld. Sci. Technol. Weld. Join. 2016, 22, 236–243. [Google Scholar] [CrossRef]
- He, X.; Lü, X.-Y.; Wu, Z.-W.; Li, S.-H.; Yong, Q.-L.; Liang, J.-X.; Su, J.; Zhou, L.-X.; Li, J. M23C6 Precipitation and Si Segregation Promoted by Deep Cryogenic Treatment Aggravating Pitting Corrosion of Supermartensitic Stainless Steel. J. Iron Steel Res. Int. 2021, 28, 629–640. [Google Scholar] [CrossRef]
- Cabeza, M.; Feijoo, I.; Merino, P.; Trillo, S. Effect of the Deep Cryogenic Treatment on the Stress Corrosion Cracking Behaviour of AA 2017-T4 Aluminium Alloy. Mater. Corros. 2016, 67, 504–512. [Google Scholar] [CrossRef]
- Diekman, F. Cold and Cryogenic Treatment of Steel. In Steel Heat Treating Fundamentals and Processes; ASM International: Almere, The Netherlands, 2013. [Google Scholar]
Current State 2020 | 2030 | 2040 | |
---|---|---|---|
Hydroelectric energy
| 13% | 10% | 9% |
Geothermal energy | 7% | 8% | 8% |
Biomass | 67% | 58% | 51% |
Solar energy
| 3% | 11% | 21% |
Wind energy | 10% | 13% | 11% |
Combined contribution of the renewable energy and the total energy production | ~25% | ~35% | ~48% |
Ferrous Alloys | Grades of Steel | Tested Properties | Possibilities of Application in Selected Energy Sector |
---|---|---|---|
Austenitic stainless steel | AISI 304 [364,365,366,367,368,369,370], AISI 304L [308,319,371,372,373,374], AISI 304LN [374], AISI 316 [374,375,376,377,378,379,380], AISI 316L [192,341,348,381,382,383,384], AISI 316LN [374,385], AISI 321 [386,387], AISI 347 [388,389] | Hardness, microhardness, wear (abrasive wear), fracture toughness, impact toughness, compressive strength, tensile strength, yield strength, elongation, friction, erosion, strain-hardening exponent, surface roughness, machining of steel, fatigue, residual stress, surface chemistry, and oxidation | In all energy sectors |
Martensitic stainless steel | AISI 410 [390], AISI 420 [349,390,391,392], AISI 420 MOD [392], AISI 430 [393,394], AISI 431 [304,309,395], AISI 440C [366], AISI P91 [396], 10Cr13Co13Mo5NiW1VE [397], 13Cr4NiMo [315], 10Cr [398]. | Yield strength, elongation, tensile strength, wear, hardness, impact toughness, fracture toughness, magnetism tribocorrosion, electrochemistry, and corrosion resistance (also stress corrosion cracking) | In all energy sectors. |
Duplex steels | AISI 2205 [399,400], AISI 2507 [401,402,403,404] | Hardness, wear, machinability, residual stress, and corrosion resistance | Mostly in wind and solar energy |
Carbon steels | IS 2062 [405], AISI 1045 [406,407,408,409,410,411,412], AISI 1018 [413] | Hardness, wear, surface roughness, tensile strength, yield strength, ultimate tensile strength, elongation, and residual stress | Steels can be used in hydroelectrical, biomass, solar, and geothermal energy |
Other steels | Nitronic steels 40 [414], 50 [415] High-strength steels ASTM A36 [416] Cast steels ASTM A743 [417], SAE J431 G10 [418] ACSR [419] Bearing steel AISI 52100 [326,328,420,421,422] Low-alloyed steels SAE 1008 [423], AISI 4340 [424], AISI 4140 [424] Structural steel S235 [425], S355 [426,427], S460 [428] | Residual tress, hardness, friction, wear, fatigue, impact toughness, corrosion resistance, and machinability | In all energy sectors |
Non-Ferrous Alloys | Grades of Alloys | Tested Properties | Possibilities of Application in Selected Energy Sector |
---|---|---|---|
Al-based alloy | 2xxx series: 2024 [354,429] 3xxx series: A356 [430,431], A390 [432] 6xxx series: 6026 [352,433,434,435], 6061 [353,436,437], 6063 [362] 7xxx series: 7075 [330,331,361,438,439,440,441,442] | Hardness, wear (abrasion), corrosion resistance, tensile strength, machinability, fatigue, strain-hardening coefficient, residual stress, fracture toughness, and corrosion resistance | Mostly in hydroelectrical, biomass, wind, and solar energy |
Ni-based alloy | Inconel: 200 [443], 600 [444,445], 617 [446], 625 [447,448,449], 690 [450], 800 [451], 800H [452,453,454] Hastelloy C276 [455], C22 [456,457], X [458] | Fatigue, surface roughness, machinability, durability, impact toughness, microhardness, and tensile strength | In all energy sectors |
Other alloys | HEA [459] W-based alloys [460] Cu-based alloys [461] Ti-based alloys Ti6Al4V [451,462] | Microhardness, compressive strength, and plasticity | Mostly in advanced nuclear power (fusion), geothermal, and solar energy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jovičević-Klug, P.; Rohwerder, M. Sustainable New Technology for the Improvement of Metallic Materials for Future Energy Applications. Coatings 2023, 13, 1822. https://doi.org/10.3390/coatings13111822
Jovičević-Klug P, Rohwerder M. Sustainable New Technology for the Improvement of Metallic Materials for Future Energy Applications. Coatings. 2023; 13(11):1822. https://doi.org/10.3390/coatings13111822
Chicago/Turabian StyleJovičević-Klug, Patricia, and Michael Rohwerder. 2023. "Sustainable New Technology for the Improvement of Metallic Materials for Future Energy Applications" Coatings 13, no. 11: 1822. https://doi.org/10.3390/coatings13111822
APA StyleJovičević-Klug, P., & Rohwerder, M. (2023). Sustainable New Technology for the Improvement of Metallic Materials for Future Energy Applications. Coatings, 13(11), 1822. https://doi.org/10.3390/coatings13111822