Zwitterionic Functionalization of Persistent Luminescence Nanoparticles: Physicochemical Characterizations and In Vivo Biodistribution in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Chromium-Doped Zinc Gallate Nanoparticles
2.2. Nanoparticle Characterizations
2.3. Synthesis of SBS and Coating of ZGO NPs
2.4. Preparation of PEG-Coated Nanoparticles
2.5. Stability of the Nanoparticles in Different Media
2.6. Quantification of Adsorbed Proteins through Bradford Assay
2.7. In Vivo Biodistribution Studies
3. Results and Discussion
3.1. Preparation of Zwitterionic and PEGylated Zinc Gallate Nanoparticles
3.2. In Vitro Protein Corona Studies and In Vivo Behavior
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alivisatos, P. The Use of Nanocrystals in Biological Detection. Nat. Biotechnol. 2004, 22, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Kievit, F.M.; Zhang, M. Cancer Nanotheranostics: Improving Imaging and Therapy by Targeted Delivery Across Biological Barriers. Adv. Mater. 2011, 23, H217–H247. [Google Scholar] [CrossRef] [PubMed]
- Frangioni, J.V. In Vivo Near-Infrared Fluorescence Imaging. Curr. Opin. Chem. Biol. 2003, 7, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Weissleder, R. A Clearer Vision for in vivo Imaging. Nat. Biotechnol. 2001, 19, 316–317. [Google Scholar] [CrossRef]
- Maldiney, T.; Bessière, A.; Seguin, J.; Teston, E.; Sharma, S.K.; Viana, B.; Bos, A.J.J.; Dorenbos, P.; Bessodes, M.; Gourier, D.; et al. The in Vivo Activation of Persistent Nanophosphors for Optical Imaging of Vascularization, Tumours and Grafted Cells. Nat. Mater. 2014, 13, 418–426. [Google Scholar] [CrossRef]
- Hölsä, J. Persistent Luminescence Beats the Afterglow: 400 Years of Persistent Luminescence. Electrochem. Soc. Interface 2009, 18, 42–45. [Google Scholar] [CrossRef]
- Lastusaari, M.; Laamanen, T.; Malkamäki, M.; Eskola, K.O.; Kotlov, A.; Carlson, S.; Welter, E.; Brito, H.F.; Bettinelli, M.; Jungner, H.; et al. The Bologna Stone: History’s First Persistent Luminescent Material. Eur. J. Mineral. 2012, 24, 885–890. [Google Scholar] [CrossRef]
- Liang, L.; Chen, J.; Shao, K.; Qin, X.; Pan, Z.; Liu, X. Controlling Persistent Luminescence in Nanocrystalline Phosphors. Nat. Mater. 2023, 22, 289–304. [Google Scholar] [CrossRef]
- Tan, H.; Wang, T.; Shao, Y.; Yu, C.; Hu, L. Crucial Breakthrough of Functional Persistent Luminescence Materials for Biomedical and Information Technological Applications. Front. Chem. 2019, 7, 387. [Google Scholar] [CrossRef]
- Hu, L.; Wang, P.; Zhao, M.; Liu, L.; Zhou, L.; Li, B.; Albaqami, F.H.; El-Toni, A.M.; Li, X.; Xie, Y.; et al. Near-Infrared Rechargeable “Optical Battery” Implant for Irradiation-Free Photodynamic Therapy. Biomaterials 2018, 163, 154–162. [Google Scholar] [CrossRef]
- Chiatti, C.; Fabiani, C.; Pisello, A.L. Long Persistent Luminescence: A Road Map Toward Promising Future Developments in Energy and Environmental Science. Annu. Rev. Mater. Res. 2021, 51, 409–433. [Google Scholar] [CrossRef]
- Wu, S.; Li, Y.; Ding, W.; Xu, L.; Ma, Y.; Zhang, L. Recent Advances of Persistent Luminescence Nanoparticles in Bioapplications. Nano-Micro Lett. 2020, 12, 70. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lécuyer, T.; Seguin, J.; Mignet, N.; Scherman, D.; Viana, B.; Richard, C. Imaging and Therapeutic Applications of Persistent Luminescence Nanomaterials. Adv. Drug Deliv. Rev. 2019, 138, 193–210. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-García, G.; Martínez-Alfaro, M.; d’Orlyé, F.; Bedioui, F.; Mignet, N.; Varenne, A.; Gutiérrez-Granados, S.; Richard, C. Photo-Stimulation of Persistent Luminescence Nanoparticles Enhances Cancer Cells Death. Int. J. Pharm. 2017, 532, 696–703. [Google Scholar] [CrossRef]
- Lécuyer, T.; Durand, M.-A.; Volatron, J.; Desmau, M.; Lai-Kuen, R.; Corvis, Y.; Seguin, J.; Wang, G.; Alloyeau, D.; Scherman, D.; et al. Degradation of ZnGa2O4:Cr3+ Luminescent Nanoparticles in Lysosomal-like Medium. Nanoscale 2020, 12, 1967–1974. [Google Scholar] [CrossRef]
- Lécuyer, T.; Seguin, J.; Balfourier, A.; Delagrange, M.; Burckel, P.; Lai-Kuen, R.; Mignon, V.; Ducos, B.; Tharaud, M.; Saubaméa, B.; et al. Fate and Biological Impact of Persistent Luminescence Nanoparticles after Injection in Mice: A One-Year Follow-Up. Nanoscale 2022, 14, 15760–15771. [Google Scholar] [CrossRef]
- Sun, X.; Shi, J.; Fu, X.; Yang, Y.; Zhang, H. Long-Term in Vivo Biodistribution and Toxicity Study of Functionalized near-Infrared Persistent Luminescence Nanoparticles. Sci. Rep. 2018, 8, 10595. [Google Scholar] [CrossRef]
- Maldiney, T.; Rémond, M.; Bessodes, M.; Scherman, D.; Richard, C. Controlling Aminosilane Layer Thickness to Extend the Plasma Half-Life of Stealth Persistent Luminescence Nanoparticles in Vivo. J. Mater. Chem. B 2015, 3, 4009–4016. [Google Scholar] [CrossRef]
- García, K.P.; Zarschler, K.; Barbaro, L.; Barreto, J.A.; O’Malley, W.; Spiccia, L.; Stephan, H.; Graham, B. Zwitterionic-Coated “Stealth” Nanoparticles for Biomedical Applications: Recent Advances in Countering Biomolecular Corona Formation and Uptake by the Mononuclear Phagocyte System. Small 2014, 10, 2516–2529. [Google Scholar] [CrossRef]
- Owens, D.E.; Peppas, N.A. Opsonization, Biodistribution, and Pharmacokinetics of Polymeric Nanoparticles. Int. J. Pharm. 2006, 307, 93–102. [Google Scholar] [CrossRef]
- Yu, S.S.; Lau, C.M.; Thomas, S.N.; Jerome, W.G.; Maron, D.J.; Dickerson, J.H.; Hubbell, J.A.; Giorgio, T.D. Size- and Charge-Dependent Non-Specific Uptake of PEGylated Nanoparticles by Macrophages. Int. J. Nanomed. 2012, 7, 799–813. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; De Rose, R.; Alt, K.; Alcantara, S.; Paterson, B.M.; Liang, K.; Hu, M.; Richardson, J.J.; Yan, Y.; Jeffery, C.M.; et al. Engineering Poly(Ethylene Glycol) Particles for Improved Biodistribution. ACS Nano 2015, 9, 1571–1580. [Google Scholar] [CrossRef] [PubMed]
- Gref, R.; Lück, M.; Quellec, P.; Marchand, M.; Dellacherie, E.; Harnisch, S.; Blunk, T.; Müller, R.H. ‘Stealth’ Corona-Core Nanoparticles Surface Modified by Polyethylene Glycol (PEG): Influences of the Corona (PEG Chain Length and Surface Density) and of the Core Composition on Phagocytic Uptake and Plasma Protein Adsorption. Colloids Surf. B Biointerfaces 2000, 18, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Leal, M.P.; Muñoz-Hernández, C.; Berry, C.C.; García-Martín, M.L. In Vivo Pharmacokinetics of T 2 Contrast Agents Based on Iron Oxide Nanoparticles: Optimization of Blood Circulation Times. RSC Adv. 2015, 5, 76883–76891. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, S.; Wu, M.; Lei, W.; Yi, S.; Li, F. LiGa5O8:Cr3+@PEG Nanomaterials with near-Infrared-Persistent Luminescence for Bioimaging Applications. Opt. Mater. 2022, 134, 113157. [Google Scholar] [CrossRef]
- Wu, S.; Li, Y.; Zhang, R.; Fan, K.; Ding, W.; Xu, L.; Zhang, L. Persistent Luminescence-Polypyrrole Nanocomposite for Dual-Modal Imaging and Photothermal Therapy of Mammary Cancer. Talanta 2021, 221, 121435. [Google Scholar] [CrossRef]
- Fritzen, D.L.; Giordano, L.; Rodrigues, L.C.V.; Monteiro, J.H.S.K. Opportunities for Persistent Luminescent Nanoparticles in Luminescence Imaging of Biological Systems and Photodynamic Therapy. Nanomaterials 2020, 10, 2015. [Google Scholar] [CrossRef]
- Li, A.; Luehmann, H.P.; Sun, G.; Samarajeewa, S.; Zou, J.; Zhang, S.; Zhang, F.; Welch, M.J.; Liu, Y.; Wooley, K.L. Synthesis and In Vivo Pharmacokinetic Evaluation of Degradable Shell Cross-Linked Polymer Nanoparticles with Poly(Carboxybetaine) versus Poly(Ethylene Glycol) Surface-Grafted Coatings. ACS Nano 2012, 6, 8970–8982. [Google Scholar] [CrossRef]
- Yang, W.; Liu, S.; Bai, T.; Keefe, A.J.; Zhang, L.; Ella-Menye, J.-R.; Li, Y.; Jiang, S. Poly(Carboxybetaine) Nanomaterials Enable Long Circulation and Prevent Polymer-Specific Antibody Production. Nano Today 2014, 9, 10–16. [Google Scholar] [CrossRef]
- Theodorou, I.; Anilkumar, P.; Lelandais, B.; Clarisse, D.; Doerflinger, A.; Gravel, E.; Ducongé, F.; Doris, E. Stable and Compact Zwitterionic Polydiacetylene Micelles with Tumor-Targeting Properties. Chem. Commun. 2015, 51, 14937–14940. [Google Scholar] [CrossRef]
- Aikawa, T.; Okura, H.; Kondo, T.; Yuasa, M. Comparison of Carboxybetaine with Sulfobetaine as Lipid Headgroup Involved in Intermolecular Interaction between Lipids in the Membrane. ACS Omega 2017, 2, 5803–5812. [Google Scholar] [CrossRef] [PubMed]
- Estephan, Z.G.; Jaber, J.A.; Schlenoff, J.B. Zwitterion-Stabilized Silica Nanoparticles: Toward Nonstick Nano. Langmuir 2010, 26, 16884–16889. [Google Scholar] [CrossRef] [PubMed]
- Knowles, B.R.; Wagner, P.; Maclaughlin, S.; Higgins, M.J.; Molino, P.J. Silica Nanoparticles Functionalized with Zwitterionic Sulfobetaine Siloxane for Application as a Versatile Antifouling Coating System. ACS Appl. Mater. Interfaces 2017, 9, 18584–18594. [Google Scholar] [CrossRef] [PubMed]
- Knowles, B.R.; Yang, D.; Wagner, P.; Maclaughlin, S.; Higgins, M.J.; Molino, P.J. Zwitterion Functionalized Silica Nanoparticle Coatings: The Effect of Particle Size on Protein, Bacteria, and Fungal Spore Adhesion. Langmuir 2019, 35, 1335–1345. [Google Scholar] [CrossRef] [PubMed]
- Schneid, A.C.; Ribeiro, I.R.; Galdino, F.E.; Bettini, J.; Cardoso, M.B. Degradable and Colloidally Stable Zwitterionic-Functionalized Silica Nanoparticles. Nanomedicine 2021, 16, 85–96. [Google Scholar] [CrossRef]
- Shen, D.; Henry, M.; Trouillet, V.; Comby-Zerbino, C.; Bertorelle, F.; Sancey, L.; Antoine, R.; Coll, J.-L.; Josserand, V.; Le Guével, X. Zwitterion Functionalized Gold Nanoclusters for Multimodal near Infrared Fluorescence and Photoacoustic Imaging. APL Mater. 2017, 5, 053404. [Google Scholar] [CrossRef]
- Aldeek, F.; Muhammed, M.A.H.; Palui, G.; Zhan, N.; Mattoussi, H. Growth of Highly Fluorescent Polyethylene Glycol- and Zwitterion-Functionalized Gold Nanoclusters. ACS Nano 2013, 7, 2509–2521. [Google Scholar] [CrossRef]
- van Andel, E.; Lange, S.C.; Pujari, S.P.; Tijhaar, E.J.; Smulders, M.M.J.; Savelkoul, H.F.J.; Zuilhof, H. Systematic Comparison of Zwitterionic and Non-Zwitterionic Antifouling Polymer Brushes on a Bead-Based Platform. Langmuir 2019, 35, 1181–1191. [Google Scholar] [CrossRef]
- Delille, F.; Balloul, E.; Hajj, B.; Hanafi, M.; Morand, C.; Xu, X.Z.; Dumas, S.; Coulon, A.; Lequeux, N.; Pons, T. Sulfobetaine-Phosphonate Block Copolymer Coated Iron Oxide Nanoparticles for Genomic Locus Targeting and Magnetic Micromanipulation in the Nucleus of Living Cells. Nano Lett. 2023, 23, 5919–5926. [Google Scholar] [CrossRef]
- Du, L.; Nosratabad, N.A.; Jin, Z.; Zhang, C.; Wang, S.; Chen, B.; Mattoussi, H. Luminescent Quantum Dots Stabilized by N-Heterocyclic Carbene Polymer Ligands. J. Am. Chem. Soc. 2021, 143, 1873–1884. [Google Scholar] [CrossRef]
- Schlenoff, J.B. Zwitteration: Coating Surfaces with Zwitterionic Functionality to Reduce Nonspecific Adsorption. Langmuir 2014, 30, 9625–9636. [Google Scholar] [CrossRef] [PubMed]
- Lécuyer, T.; Bia, N.; Burckel, P.; Loubat, C.; Graillot, A.; Seguin, J.; Corvis, Y.; Liu, J.; Valéro, L.; Scherman, D.; et al. Persistent Luminescence Nanoparticles Functionalized by Polymers Bearing Phosphonic Acid Anchors: Synthesis, Characterization, and in Vivo Behaviour. Nanoscale 2022, 14, 1386–1394. [Google Scholar] [CrossRef] [PubMed]
- Sin, M.-C.; Chen, S.-H.; Chang, Y. Hemocompatibility of Zwitterionic Interfaces and Membranes. Polym. J. 2014, 46, 436–443. [Google Scholar] [CrossRef]
- Zaccarian, F.; Baker, M.; Webber, M.J. Biomedical Uses of Sulfobetaine-Based Zwitterionic Materials. Org. Mater. 2020, 2, 342–357. [Google Scholar] [CrossRef]
- Chen, X.; Yang, D. Functional Zwitterionic Biomaterials for Administration of Insulin. Biomater. Sci. 2020, 8, 4906–4919. [Google Scholar] [CrossRef]
- Tamura, A.; Nishida, K.; Zhang, S.; Kang, T.W.; Tonegawa, A.; Yui, N. Cografting of Zwitterionic Sulfobetaines and Cationic Amines on β-Cyclodextrin-Threaded Polyrotaxanes Facilitates Cellular Association and Tissue Accumulation with High Biocompatibility. ACS Biomater. Sci. Eng. 2022, 8, 2463–2476. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, F.; Tsao, C.; Liu, S.; Jain, P.; Sinclair, A.; Hung, H.-C.; Bai, T.; Wu, K.; Jiang, S. Zwitterionic Gel Encapsulation Promotes Protein Stability, Enhances Pharmacokinetics, and Reduces Immunogenicity. Proc. Natl. Acad. Sci. USA 2015, 112, 12046–12051. [Google Scholar] [CrossRef]
- Liu, Q.; Chiu, A.; Wang, L.-H.; An, D.; Zhong, M.; Smink, A.M.; de Haan, B.J.; de Vos, P.; Keane, K.; Vegge, A.; et al. Zwitterionically Modified Alginates Mitigate Cellular Overgrowth for Cell Encapsulation. Nat. Commun. 2019, 10, 5262. [Google Scholar] [CrossRef]
- Jiang, S.; Cao, Z. Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications. Adv. Mater. 2010, 22, 920–932. [Google Scholar] [CrossRef]
- Brik, M.G. First-Principles Calculations of Electronic, Optical and Elastic Properties of ZnAl2S4 and ZnGa2O4. J. Phys. Chem. Solids 2010, 71, 1435–1442. [Google Scholar] [CrossRef]
- Bessière, A.; Jacquart, S.; Priolkar, K.; Lecointre, A.; Viana, B.; Gourier, D. ZnGa2O4:Cr3+: A New Red Long-Lasting Phosphor with High Brightness. Opt. Express 2011, 19, 10131–10137. [Google Scholar] [CrossRef] [PubMed]
- Lehman, S.E.; Mudunkotuwa, I.A.; Grassian, V.H.; Larsen, S.C. Nano–Bio Interactions of Porous and Nonporous Silica Nanoparticles of Varied Surface Chemistry: A Structural, Kinetic, and Thermodynamic Study of Protein Adsorption from RPMI Culture Medium. Langmuir 2016, 32, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Leal, M.P.; Caro, C.; García-Martín, M.L. Shedding Light on Zwitterionic Magnetic Nanoparticles: Limitations for in Vivo Applications. Nanoscale 2017, 9, 8176–8184. [Google Scholar] [CrossRef] [PubMed]
Type | Solvent’s Reaction | HD (nm) (PDI) | ZP (mv) |
---|---|---|---|
ZGO-OH | Water | 87 ± 2 [0.12] | +11 |
ZGO-PEG | DMF | 178 ± 4 [0.08] | −4 |
ZGO-SBS | Water | 92 ± 2 [0.14] | −1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dassonville, D.; Lécuyer, T.; Seguin, J.; Corvis, Y.; Liu, J.; Cai, G.; Mouton, J.; Scherman, D.; Mignet, N.; Richard, C. Zwitterionic Functionalization of Persistent Luminescence Nanoparticles: Physicochemical Characterizations and In Vivo Biodistribution in Mice. Coatings 2023, 13, 1913. https://doi.org/10.3390/coatings13111913
Dassonville D, Lécuyer T, Seguin J, Corvis Y, Liu J, Cai G, Mouton J, Scherman D, Mignet N, Richard C. Zwitterionic Functionalization of Persistent Luminescence Nanoparticles: Physicochemical Characterizations and In Vivo Biodistribution in Mice. Coatings. 2023; 13(11):1913. https://doi.org/10.3390/coatings13111913
Chicago/Turabian StyleDassonville, Delphine, Thomas Lécuyer, Johanne Seguin, Yohann Corvis, Jianhua Liu, Guanyu Cai, Julia Mouton, Daniel Scherman, Nathalie Mignet, and Cyrille Richard. 2023. "Zwitterionic Functionalization of Persistent Luminescence Nanoparticles: Physicochemical Characterizations and In Vivo Biodistribution in Mice" Coatings 13, no. 11: 1913. https://doi.org/10.3390/coatings13111913
APA StyleDassonville, D., Lécuyer, T., Seguin, J., Corvis, Y., Liu, J., Cai, G., Mouton, J., Scherman, D., Mignet, N., & Richard, C. (2023). Zwitterionic Functionalization of Persistent Luminescence Nanoparticles: Physicochemical Characterizations and In Vivo Biodistribution in Mice. Coatings, 13(11), 1913. https://doi.org/10.3390/coatings13111913