Innovative Methodologies for the Conservation of Cultural Heritage against Biodeterioration: A Review
Abstract
:1. Introduction
2. Cellulosic Materials: Paper
2.1. Paper Biodeterioration
2.1.1. Factors Leading to the Biodeterioration of Paper
2.1.2. Consequences of Paper Biodeterioration
- -
- Chromatic modifications resulting from pigments and exudates, associated with cellular structures such as fungal mycelium and spores, giving rise to the appearance of stains with a wide range of chromatic characteristics, shapes, and sizes.
- -
- Structural modifications of the fundamental components of the materials, induced by specific enzymes such as cellulases, proteases, lipases, etc., are evident through the intrinsic fragility of the materials themselves, which can lead to their complete disintegration. This type of damage tends to occur in advanced stages of infection and is widely recognized as the most devastating.
- -
- Additionally, modifications occur in the crucial additive components of the materials, as in certain cases, microorganisms proliferate by utilizing specific substances that, although present in the material, do not constitute its main element (such as adhesives, plasticizers, antioxidants, etc.). This phenomenon leads to the loss of the substrate’s unique characteristics, sometimes rendering it unusable [25,29].
2.2. Innovative Methods for Paper Preservation
2.2.1. Technologies against Fungal and Bacterial Attacks
2.2.2. Strategies against Insect Infestation
2.2.3. DES (Deep Eutectic Solvent)
3. Stone Materials
3.1. Degradation of Stone Material
3.1.1. Stone Material Biodeterioration
3.1.2. Consequences of Stone Biodeterioration
3.2. New Technologies for Stone Restoration
4. Conclusions and New Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farooq, M.; Hassan, M.; Gull, F. Mycobial deterioration of stone monuments of Dharmarajika Taxila. JMAN 2015, 2, 29–33. [Google Scholar] [CrossRef]
- Fidanza, M.; Caneva, G. Natural biocides for the conservation of stone cultural heritage: A review. J. Cult. Herit. 2019, 38, 271–286. [Google Scholar] [CrossRef]
- Di Martino, P. What about biofilms on the surface of stone monuments? Open Conf. Proc. J. 2016, 7, 14–28. [Google Scholar] [CrossRef]
- Gaylarde, C.; Morton, L. Deteriogenic biofilms on buildings and their control: A review. Biofouling J. Bioadhesion Biofilm Res. 1999, 14, 59–74. [Google Scholar] [CrossRef]
- Pinzari, F.; Pasquariello, G.; de Mico, A. Biodeterioration of Paper: A SEM Study of Fungal Spoilage Reproduced Under Controlled Conditions. Macromol. Symp. 2006, 238, 57–66. [Google Scholar] [CrossRef]
- Ranaldi, R.; Rugnini, R.; Gabriele, F.; Spreti, N.; Casieri, C.; di Marco, G.; Gismondi, A.; Bruno, L. Plant essential oils suspended into hydrogel: Development of an easy-to-use protocol for the restoration of stone cultural heritage. Int. Biodeter. Biodegr. 2022, 172, 105436. [Google Scholar] [CrossRef]
- Ashraf, M.; Mohamed, K.K. Biological nanosilver particles for the protection of archaeological stones against microbial colonization. Int. Biodeter. Biodegr. 2014, 94, 31–37. [Google Scholar]
- Can Egil, A.; Ozdemir, B.; Gunduz, S.K.; Altikatoglu-Yapaoz, M.; Budama-Kilinc, Y.; Mostafavi, E. Chitosan/calcium nanoparticles as advanced antimicrobial coating for paper documents. Int. J. Biol. Macromol. 2022, 215, 521–530. [Google Scholar] [CrossRef]
- Sasso, S.; Miller, S.; Rogerio-Cadelera, M.; Cubero, B.; Coutinho, M.; Scrano, L. Potential of natural biocides for biocontrolling phototrophic colonization on limestone. Int. Biodeter. Biodegr. 2016, 107, 102–110. [Google Scholar] [CrossRef]
- Carillo-Gonzàlez, R.; Martìnez-Gòmes, M.A.; Gonzàlez-Chavèz, M.D.C.A.; Hernàndez, J.C.M. Inhibition of microorganisms involved in deterioration of an archaeological site by silver nanoparticles produced by a green synthesis method. Sci. Total Environ. 2016, 565, 872–881. [Google Scholar] [CrossRef]
- Gabriele, F.; Tortora, M.; Bruno, L.; Casieri, C.; Chiarini, M.; Germani, R.; Spreti, N. Alginate-biocide hydrogel for the removal of biofilms from calcareous stone artworks. J. Cult. Herit. 2021, 49, 106–114. [Google Scholar] [CrossRef]
- Urzì, C.; de Leo, F.; Krakova, L.; Pangallo, D.; Bruno, L. Effects of biocide treatments on the biofilm community in Domitilla’s catacombs in Rome. Sci. Total Environ. 2016, 572, 252–262. [Google Scholar] [CrossRef]
- Palla, F.; Bruno, M.; Mercurio, F.; Tantillo, A.; Rotolo, V. Essential Oils as Natural Biocides in Conservation of Cultural Heritage. Molecules 2020, 25, 730. [Google Scholar] [CrossRef]
- Pinna, D.; Salvadori, B.; Galeotti, M. Monitoring the performance of innovative and traditional biocides mixed with consolidants and water-repellents for the prevention of biological growth on stone. Sci. Total Environ. 2012, 423, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, A.; Pina, F.; Macedo, M.; Leal, N. Anatase as an alternative application for preventing biodeterioration of mortars: Evaluation and comparison with other biocides. Int. Biodeter. Biodegr. 2010, 64, 388–396. [Google Scholar] [CrossRef]
- Gomez-Villaba, L.; Lòpez-Arce, P.; Fort, R.; Alvarez De Buergo, M. Structural stability of a colloidal solution of Ca(OH)2 nanocrystals exposed to high relative humidity conditions. Appl. Phys. A 2011, 104, 1249–1254. [Google Scholar] [CrossRef]
- Ceragioli, G. Caratteristiche delle fibre e proprietà della carta. In Proceedings of the Ciclo di Conferenze Agli Studenti dell’Istituto Tecnico di Fabriano, Ente Nazionale per la Cellulosa e la Carta, Rome, Italy, 1970–1971; Ente Nazionale per la Cellulosa e la Carta: Rome, Italy, 1975; pp. 161–172. [Google Scholar]
- Culicchi, P. Generalità sulle cellulose. In Ciclo di conferenze agli studenti dell’Istituto Tecnico di Fabriano, Ente nazionale per la Cellulosa e la Carta, Rome, Italy, 1974–1975; Ente Nazionale per la Cellulosa e la Carta: Rome, Italy, 1978; pp. 137–146. [Google Scholar]
- Carta Unitex, Norma UNI 8282; AA. VV. Cellulosa in Soluzioni Diluite-Determinazione Dell’indice Della Viscosità Limite-Metodo Che Usa Una Soluzione di Cupriletilendiammina (CED). UNI—Ente Italiano di Normazione: Milan, Italy, 1982.
- Giorgi, R.; Chelazzi, D.; Baglioni, P. Il ruolo degli inchiostri metallo-gallici nei processi degradativi di manoscritti cartacei. In Proceedings of the V Congresso Nazionale IGIIC—Lo Stato dell’Arte 5, Palazzo Cittanova-Palazzo Trecchi, Cremona, Italy, 4–6 October 2007; Nardini Editore: Firenze, Italy, 2003; pp. 273–280. [Google Scholar]
- Aulascienze.scuola.zanichelli.it. Available online: https://aulascienze.scuola.zanichelli.it/blog-scienze/come-te-lo-spiego-scienze/la-chimica-della-carta#leggi (accessed on 27 June 2023).
- Pagano, D. Restauro e Conservazione Delle Opere su Carta. Master’s Thesis, Politecnico di Torino, Torino, Italy, 2019. [Google Scholar]
- Banik, G.; Cremonesi, P.; de la Chapelle, A.; Montalbano, L. Nuove Metodologie Nel Restauro Del Materiale Cartaceo; Il Prato, Collana i Talenti: Padova, Italy, 2003; pp. 5–32. [Google Scholar]
- Cialei, V. Restauro di Superfici Cartacee Biodeteriorate: Batteri Pulitori e Nuovi Metodi Enzimatici Integrati. Doctoral Thesis, Sapienza Università di Roma, Rome, Italy, 2008. [Google Scholar]
- Caneva, G.; Nugari, M.; Salvadori, O. La Biologia Vegetale per i Beni Culturali; Nardini Editore: Firenze, Italy, 2005; pp. 65–70. [Google Scholar]
- Sequiera, S.; Cabrita, E.J.; Macedo, M.F. Antifungals on paper conservation: An overview. Int. Biodeter. Biodegr. 2012, 74, 67–86. [Google Scholar] [CrossRef]
- Eckhardt, F. Mechanisms of microbial degradations of minerals in sandstone monuments, mediaeval frescoes and plasters. In Proceedings of the Vth International Congress on Biodeterioration and Conservation of Stone, Lausanne, Switzerland, 25–27 September 1985; Volume 5, pp. 643–652. [Google Scholar]
- Campanella, L.; Angeloni, R.; Cibin, F.; Dell’Aglio, E.; Grimaldi, F.; Reale, R.; Vitali, M. Olio essenziale capsulato in sfere di gel per la tutela del patrimonio culturale cellulosico. Naz. Prod. Ris. 2021, 35, 116–123. [Google Scholar] [CrossRef]
- Gallo, F. Il Biodeterioramento di Libri e Documenti; Centro di Studi per la Conservazione Della Carta ICCROM: Rome, Italy, 1992. [Google Scholar]
- Bennett, J.W.; Klich, M.; Moselio, S. Encyclopedia of Microbiology. In Mycotoxins; Academic Press: Oxford, UK, 2009; pp. 559–565. [Google Scholar]
- Sterflinger, K. Fungi: Their role in deterioration of cultural heritage. Fungal Biol. Rev. 2010, 24, 47–55. [Google Scholar] [CrossRef]
- Zyska, B. Fungi isolated from library materials: A review of the literature. Int. Biodeter. Biodegr. 1997, 40, 43–51. [Google Scholar] [CrossRef]
- Kraková, L.; Šoltys, K.; Otlewska, A.; Pietrzak, K.; Purkrtová, S.; Savická, D.; Pangallo, D. Comparison of methods for identification of microbial communities in book collections: Culture-dependent (sequencing and MALDI-TOF MS) and culture-independent (Illumina MiSeq). Int. Biodeter. Biodegr. 2018, 131, 51–59. [Google Scholar] [CrossRef]
- Michaelsen, A.; Pinar, G.; Pinzari, F. Molecular and Microscopical Investigation of the Microflora Inhabiting a Deteriorated Italian Manuscript Dated from the Thirteenth Century. Microb. Ecol. 2010, 60, 69–80. [Google Scholar] [CrossRef]
- Olubanke, M.A. review of biological deterioration of library materials and possible control strategies in the tropics. Libr. Rev. 2010, 24, 47–55. [Google Scholar]
- Jacob, S.M.; Bhagwat, A.M.; Kelkar-Mane, V. Bacillus species as an intrinsic controller of fungal deterioration of archival documents. Int. Biodeter. Biodegr. 2015, 104, 46–52. [Google Scholar] [CrossRef]
- Baty, J.; Maitland, C.; Minter, W.; Hubbe, M.; Jordan-Mowery, S. Deacidification for the conservation and preservation of paper-based works: A review. BioResources 2010, 5, 1955–2023. [Google Scholar] [CrossRef]
- Espejo, T.; Duran, A.; Lopez-Montes, A.; Blanc, R. Microscopic and spectroscopic techniques for the study of paper supports and textile used in the binding of hispano-arabic manuscripts from Al-Andalus: A transition model in the 15th century. J. Cult. Herit. 2010, 11, 50–58. [Google Scholar] [CrossRef]
- Karbowska-Berent, J.; Gorniak, B.; Czajkowska-Wagner, L.; Rafalska, K.; Jarmiłko, J.; Koziekec, T. The initial disinfection of paper-based historic items—Observations on some simple suggested methods. Int. Biodeter. Biodegr. 2018, 131, 60–66. [Google Scholar] [CrossRef]
- Sterflinger, S.; Pinzari, F. The revenge of time: Fungal deterioration of cultural heritage with particular reference to books, paper and parchment. Environ. Microbiol. 2012, 14, 559–566. [Google Scholar] [CrossRef]
- Fouda, A.; Abdel-Maksoud, G.; Abdel-Rahman, M.A.; Salem, S.S.; Hassan, S.E.; El-Sadany, M.A. Eco-friendly approach utilizing green synthesized nanoparticles for paper conservation against microbes involved in biodeterioration of archaeological manuscript. Int. Biodeter. Biodegr. 2019, 142, 160–169. [Google Scholar] [CrossRef]
- Bergamonti, L.; Graiff, C.; Isca, C.; Predieri, G.; Lottici, P.; di Maggio, R.; Palanti, S.; Maistrello, L.; Montanari, M. Trattamenti sostenibili per la protezione e il consolidamento di legno e carta. Chem. Green Chem. 2017, 5, 9–17. [Google Scholar]
- Teixeira, F.S.; dos Reis, T.A.; Sgubin, L.; Thomè, L.E.; Bei, I.W.; Clemencio, R.E.; Correa, B.; Salvadori, M.C. Disinfection of ancient paper contaminated with fungi using supercritical carbon dioxide. J. Cult. Herit. 2018, 30, 110–116. [Google Scholar] [CrossRef]
- Mansour, M.M.A.; Salem, M.Z.M.; Hassam, R.R.A.; Ali, H.M. Antifungal potential of three natural oils and their effects o the thermogravimetric and chromatic behaviors when applied to historical paper and various commercial paper sheets. Nat. Oils TGA 2021, 16, 492–514. [Google Scholar] [CrossRef]
- El-Hassan, G.M.M.A.; Alfarraj, S.; Alharbi, S.A.; Atiya, N.H. Survey of insect pests in the manuscripts library of Coptic museum in Egypt. Saudi J. Biol. Sci. 2021, 28, 5061–5064. [Google Scholar] [CrossRef] [PubMed]
- Rukke, B.A.; Querner, P.; Hage, M.; Steinert, M.; Kaldager, M.; Somhovd, A.; Dominiak, P.; Garrido, M.; Hansson, T.; Aak, A. Insecticidal gel bait for the decimation of Ctenolepisma longicaudatum (Zygentoma: Lepismatidae) populations in libraries, museums, and archives. J. Cult. Herit. 2023, 59, 255–263. [Google Scholar] [CrossRef]
- Mnasri, A.; Dhaouadi, H.; Khiari, R.; Halila, S.; Mauret, E. Effect of Deep Eutectic Solvents on cellulosic fibres and paper properties Green «chemical» refining. Carbohydr. Polym. 2022, 292, 119606. [Google Scholar] [CrossRef]
- Liu, C.; Li, M.; Chen, W.; Huang, R.; Hong, S.; Wu, Q.; Mei, C. Production of lignin-containing cellulose nanofibers using deep eutectic solvents for UV-absorbing polymer reinforcement. Carbohydr. Polym. 2020, 246, 116548. [Google Scholar] [CrossRef]
- Cao, X.; Liu, M.; Bi, W.; Lin, J.; Chen, D.; Da, Y. Direct carboxylation of cellulose in deep eutectic solvent and its adsorption behavior of methylene blue. Carbohydr. Polym. Technol. Appl. 2022, 4, 100222. [Google Scholar] [CrossRef]
- Zhou, E.; Liu, H. A Novel Deep Eutectic Solvents Synthesized by Solid Organic Compounds and Its Application on Dissolution for Cellulose. Asian J. Chem. 2014, 26, 3626–3630. [Google Scholar] [CrossRef]
- Macchia, A.; Strangis, R.; de Angelis, S.; Cersosimo, M.; Docci, A.; Ricca, M.; Gabirele, B.; Mancuso, R.; La Russa, M.F. Deep Eutectic Solvents (DESs): Preliminary Results for Their Use Such as Biocides in the Building Cultural Heritage. Materials 2022, 15, 4005. [Google Scholar] [CrossRef] [PubMed]
- Zervos, S.; Alexopoulou, I. Paper conservation methods: A literature review. Cellulose 2015, 22, 2859–2897. [Google Scholar] [CrossRef]
- Wang, Y.J.; Tan, W.; Liu, C.Y.; Fang, Y.X. Deacidification of Paper in Supercritical Carbon Dioxide (CO2SCF) Solvent System with Magnesium Acetate and Calcium Hydroxide. Adv. Mater. Res. 2011, 347–353, 504–507. [Google Scholar]
- Querner, P. Insect Pests and Integrated Pest Management in Museums, Libraries and Historic Buildings. Insects 2015, 6, 595–607. [Google Scholar] [CrossRef] [PubMed]
- Florian, M. Freezing for museum pest eradication. Collect. Forum 1990, 6, 1–7. [Google Scholar]
- Berzolla, A.; Reguzzi, M.C.; Chiappini, E. Preliminary observations on the use of low temperatures in the cultural. JEAR 2011, 43, 191–196. [Google Scholar]
- TStrang, T.J.K. A review of published temperatures for the control of pest insects in museums. Collect. Forum 1992, 8, 41–67. [Google Scholar]
- Pinniger, D.B. Saving our treasures—Controlling Museum pests with temperature extremes. Pestic. Outlook 2003, 14, 10–11. [Google Scholar] [CrossRef]
- Gilberg, M. Inert atmosphere fumigation of museum objects. Stud Conserv 1989, 34, 80–84. [Google Scholar]
- Berzolla, A.; Reguzzi, M.; Chiappini, E. Controlled atmospheres against insect pests in museums: A review and some considerations. JEAR 2011, 43, 197–204. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Comm. 2003, 1, 70–71. [Google Scholar] [CrossRef]
- NorMal UNI 10924; Beni Culturali—Malte per Elementi Costruttivi e Decorativi—Classificazione e Terminologia. UNI—Ente Italiano di Normazione: Milan, Italy, 2001.
- Siegesmund, S.; Weiss, T.; Vollbrecht, A. Natural Stone, Weatcering Pcenomena, Conservation Strategies and Case Studies. Geol. Soc. 2002, 205, 1–7. [Google Scholar]
- NorMal UNI 11182; Beni Culturali—Materiali Lapidei Naturali ed Artificiali—Descrizione Della Forma di Alterazione—Termini e Definizioni. UNI—Ente Italiano di Normazione: Milan, Italy, 2006.
- Sage, J.D. Thermal microfracturing of marble. In Engineering Geology of Ancient Works, Monuments and Historical Sites; Marinos, P.G., Koukis, G.C., Eds.; Balkema: Rotterdam, The Netherlands, 1988; Volume 2, pp. 1013–1018. [Google Scholar]
- Anania, L.; Badalà, A.; Barone, G.; Belfiore, C.M.; Calabrò, C.; La Russa, M.F.; Mazzoleni, P.; Pezzino, A. The stones in monumental masonry buildings of the “Val di Noto” area: New data on the relationships between petrographic characters and physical–mechanical properties. Constr. Build Mater. 2012, 33, 122–132. [Google Scholar] [CrossRef]
- Punturo, R.; Russo, L.G.; Lo Giudice, A.; Mazzoleni, P.; Pezzino, A. Building stone employed in the historical monuments of Eastern Sicily (Italy). An example: The ancient city centre of Catania. Environ. Geol. 2006, 50, 156–169. [Google Scholar] [CrossRef]
- Malaga-Starzec, K.; Panas, I.; Lindqvist, J.E.; Lindqvist, O. Efflorescence on thin sections of calcareous stones. J. Cult. Herit. 2003, 4, 313–318. [Google Scholar] [CrossRef]
- Comite, V.; Miani, A.; Ricca, M.; La Russa, M.F.; Pulimeno, M.; Fermo, P. The impact of atmospheric pollution on outdoor cultural heritage: An analytic methodology for the characterization of the carbonaceous fraction in black crusts present on stone surfaces. Environ. Res. 2021, 201, 111565. [Google Scholar] [CrossRef]
- La Russa, M.F.; Belfiore, C.M.; Comite, V.; Barca, D.; Bonazza, A.; Ruffolo, S.; Crisci, G.; Pezzino, A. Geochemical study of black crusts as a diagnostic tool in cultural heritage. Appl. Phys. A 2013, 113, 1151–1162. [Google Scholar] [CrossRef]
- Cons, E.; Appolonia, L.; Galinetto, P.; Riccardi, M.; Tarantino, S.; Zema, M. Chromatic Alteration of Roman Heritage in Aosta (Italy). Procedia Chem. 2013, 8, 78–82. [Google Scholar] [CrossRef]
- La Russa, M.F.; Ruffolo, S.; Malagodi, M.; Barca, D.; Cirrincione, R.; Pezzino, A.; Crisci, G.; Miriello, D. Petrographic, biological, and chemical techniques used to characterize two tombs in the Protestant Cemetery of Rome (Italy). Appl. Phys. A 2010, 100, 865–872. [Google Scholar] [CrossRef]
- Urzì, C.; Realini, C. Colour changes of Noto‘s calcareous sandstone as related. Int. Biodeter. Biodegr. 1998, 42, 45–54. [Google Scholar] [CrossRef]
- Dornieden, T.; Gorbushina, A.; Krumbein, W. Biodecay of cultural heritage as a space/time-related ecological situation—An evaluation of a series of studies. Int. Biodeter. Biodegr. 2000, 46, 261–270. [Google Scholar] [CrossRef]
- Miller, A.Z.; Rogerio-Candelera, M.A.; Laiz, L.; Wierzchos, J.; Ascaso, C.; Sequeira Braga, M.A.; Hernandez-Marinè, M.; Maurício, A.A.; Dionísio, A.A.; Macedo, A.; et al. Laboratory-induced endolithic growth in calcarenites: Biodeteriorating potential assessment. Microb. Ecol. 2010, 60, 55–68. [Google Scholar] [CrossRef]
- Sterflinger, K.; Pinar, G. Microbial deterioration of cultural heritage and works of art—Tilting at windmills? Appl. Microbiol. Biotechnol. 2013, 97, 9637–9646. [Google Scholar] [CrossRef]
- Flemming, H.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol 2016, 14, 563–575. [Google Scholar] [CrossRef]
- Rossi, F.; Micheletti, E.; Bruno, L.; Adhikary, S.; Albertano, P.; de Philippis, R. Characteristics and role of the exocellular polysaccharides produced by five cyanobacteria isolated from phototrophic biofilms growing on stone monuments. J. Bioadhesion Biofilm Res. 2012, 28, 215–224. [Google Scholar] [CrossRef]
- Pastore, T. Utilizzo di Malte Biologiche in ambito Cultural Heritage. Master’s Thesis, Università Cà Foscari, Venezia, Italy, 2020. [Google Scholar]
- Bruno, L.; Valle, V. Effect of white and monochromatic lights on cyanobacteria and biofilms from Roman Catacombs. Int. Biodeter. Biodegr. 2017, 123, 286–295. [Google Scholar] [CrossRef]
- Toreno, G.; Isola, D.; Meloni, P.; Carcangiu, G.; Selbmann, L.; Onofri, S.; Caneva, G.; Zucconi, L. Biological colonization on stone monuments: A new low impact cleaning method. J. Cult. Herit. 2018, 30, 100–109. [Google Scholar] [CrossRef]
- Romano, I.; Granata, G.; Poli, A.; Finore, I.; Napoli, E.; Geraci, C. Inhibition of bacterial growth on marble stone of 18th century by treatment of nanoencapsulated essential oils. Int. Biodeter. Biodegr. 2020, 148, 104909. [Google Scholar] [CrossRef]
Origin of the Paper | Degree of Polymerization (DP) |
---|---|
Fir | 600 |
Pine | 650 |
Straw | 1600 |
Raw Cotton | 2100 |
Jute | 2200 |
Hemp | 2250 |
Linen | 2400 |
Fungal Species | Temperature | Minimum Relative Humidity for Microorganism Development |
---|---|---|
Penicillium Chrysogenum | 10 °C 15 °C 25 °C | 83.5% 77% 72.5% |
Aspergillus Flavus | 12 °C 16 °C 30 °C | 95% 90% 81% |
Aspergillus Tamarii | 15 °C 20 °C 30 °C | 90% 85% 79% |
Innovative Method/Activity | Reference Work |
---|---|
Innovative deacidification material/procedure | [8] [42] |
Supercritical carbon dioxide (SCCO2) | [43] |
Microbial inhibition | [41] [44] |
Bait for insects/parasites | [45,46] |
Use of DES | [47,48,49,50,51] |
Biodeteriogenic Agent | Description |
---|---|
Bacteria | Black crusts, black patinas, exfoliation, pulverization, colour change, stains |
Fungi | Staining, exfoliation, pitting |
Algae | Patinas and films of various colors and consistency |
Lichens | Scaling, mottling, pitting |
Superior plants | Grass, shrubs, and woody species induce fractures, collapses, detachment of material |
Innovative Method | Activity | Reference Work |
---|---|---|
Sodium alginate hydrogel and hypochlorite ions | Biofilm removal | [11] Gabriele et al., 2021 |
Solvent gel of dimethyl sulfoxide | [81] Toreno et al., 2018 | |
Lavandula angustifolia and Thymus vulgaris essential oil encapsulated in alginate hydrogel | Bacterial inhibition | [6] Ranaldi et al., 2022 |
Nanocapsules with essential oil of Origanum vulgare and Thymus capitatus | [82] Romano et al., 2020 | |
Glyco-alkaloids extracted from Solanum nigrum, filtered without cells of the fungus Trichoderma harzianum and the bacterium Burkholderia gladioli | [9] Sasso et al., 2016 | |
Silver nanoparticles | [10] Carillo-Gonzàlez et al., 2016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cirone, M.; Figoli, A.; Galiano, F.; La Russa, M.F.; Macchia, A.; Mancuso, R.; Ricca, M.; Rovella, N.; Taverniti, M.; Ruffolo, S.A. Innovative Methodologies for the Conservation of Cultural Heritage against Biodeterioration: A Review. Coatings 2023, 13, 1986. https://doi.org/10.3390/coatings13121986
Cirone M, Figoli A, Galiano F, La Russa MF, Macchia A, Mancuso R, Ricca M, Rovella N, Taverniti M, Ruffolo SA. Innovative Methodologies for the Conservation of Cultural Heritage against Biodeterioration: A Review. Coatings. 2023; 13(12):1986. https://doi.org/10.3390/coatings13121986
Chicago/Turabian StyleCirone, Martina, Alberto Figoli, Francesco Galiano, Mauro Francesco La Russa, Andrea Macchia, Raffaella Mancuso, Michela Ricca, Natalia Rovella, Maria Taverniti, and Silvestro Antonio Ruffolo. 2023. "Innovative Methodologies for the Conservation of Cultural Heritage against Biodeterioration: A Review" Coatings 13, no. 12: 1986. https://doi.org/10.3390/coatings13121986
APA StyleCirone, M., Figoli, A., Galiano, F., La Russa, M. F., Macchia, A., Mancuso, R., Ricca, M., Rovella, N., Taverniti, M., & Ruffolo, S. A. (2023). Innovative Methodologies for the Conservation of Cultural Heritage against Biodeterioration: A Review. Coatings, 13(12), 1986. https://doi.org/10.3390/coatings13121986