Enhanced Wear Behavior of a Stainless Steel Coating Deposited on a Medium-Carbon Low-Alloy Steel Using Ultrasonic Impact Treatment
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Materials
2.2. Surfacing and UIT Experiments
2.3. Surface Morphological and Structural Characterization
2.4. Characterization of Tribological Properties
2.5. Characterization of Micro-Mechanical Properties
3. Results and Discussion
3.1. Evolution of Surface Microstructure and Morphology
3.2. Analysis of XRD Measurement Results
3.3. Variation in Surface Roughness
3.4. Modification of Micro-Mechanical Properties
3.5. Evolution of Wear Performances and Characteristics
4. Conclusions
- (1)
- The plastic deformation layer associated with an evident refined fine crystalline structure was formed on the UIT-treated coating surface. Increasing the vibration strike number, the depth of the two showed a tendency to increase and gradually reached stability.
- (2)
- Grain refinement accompanied by the formation of a small amount of the deformation-induced α′–martensite occurred on the treated coating surface. A larger vibration strike number contributes to a higher refining effect and α′–martensite amount. After being treated at the vibration strike number of 40,000 times/mm2 (UIT–1), 57,600 times/mm2 (UIT–2), and 75,000 times/mm2 (UIT–3), the average grain size decreased to 120 nm, 80 nm, and 60 nm, and the α′–martensite content reached 0.087%, 0.136%, and 0.172%, respectively.
- (3)
- UIT can significantly improve the surface smoothness and performance of the coating. The surface roughness Ra after UIT with three vibration strike numbers decreased by 36%~74%, and the elastic modulus (Er) and micro-hardness (Hr) increased by 15.6%~33% and 19.8%~56.9%.
- (4)
- Increasing the vibration strike number can effectively reduce the average friction coefficient and wear rate, which indicates that the wear resistance has been improved. With the increase in the vibration strike number, the wear rates are 0.896 × 10−2 g/h (UIT–1), 0.413 × 10−2 g/h (UIT–2), and 0.218 × 10−2 g/h (UIT–3), respectively. Taking the lowest wear rate as the optimization target, the vibration strike number of 75,000 times/mm2 (UIT–3) is selected as the optimal parameter.
- (5)
- Grain refinement strengthening and α′–martensite transformation strengthening induced with UIT contribute to the improvements in the hardness and wear resistance of the coating. The failure form changed from strong adhesive wear before UIT to adhesive wear combined with some abrasive wear after UIT-1, abrasive wear accompanied by a small amount of adhesive wear after UIT–2, and abrasive wear after UIT–3.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolobov, V.I.; Chupin, S.A.; Akhmerov, E.V.; Plaschinskiy, V.A. Comparative Wear Resistance of Existing and Prospective Materials of Fast-Wearing Elements of Mining Equipment. Mater. Sci. Forum 2021, 1040, 117–123. [Google Scholar] [CrossRef]
- Maher, M.; Iraola-Arregui, I.; Youcef, H.B.; Rhouta, B.; Trabadelo, V. The synergistic effect of wear-corrosion in stainless steels: A review. Mater. Today Proc. 2022, 51, 1975–1990. [Google Scholar] [CrossRef]
- Cetin, M.; Günen, A.; Kalkandelen, M.; Karakaş, M.S. Microstructural, wear and corrosion characteristics of boronized AISI 904L superaustenitic stainless steel. Vacuum 2021, 187, 110145. [Google Scholar] [CrossRef]
- Bildik, O.; Yaar, M. Manufacturing of Wear Resistant Iron-Steel: A Theoretical and Experimental Research on Wear Behavior. Eng. Technol. Appl. Sci. Res. 2021, 11, 7251–7256. [Google Scholar] [CrossRef]
- Dalmau, A.; Richard, C.; Igual-Muñoz, A. Degradation mechanisms in martensitic stainless steels: Wear, corrosion and tribocorrosion appraisal. Tribol. Int. 2018, 121, 167–179. [Google Scholar] [CrossRef]
- Gu, Y.; Xia, K.; Wu, D.; Mou, J.; Zheng, S. Technical Characteristics and Wear-Resistant Mechanism of Nano Coatings: A Review. Coatings 2020, 10, 233. [Google Scholar] [CrossRef]
- Raghavendra, C.R.; Basavarajappa, S.; Sogalad, I.; Kumbar, V.S.; Salunkhe, P.S. Wear behavior and pin temperature of Ni-Al2O3 nano composite coating by electro co-deposition process. Mater. Today Proc. 2021, 38, 2162–2166. [Google Scholar] [CrossRef]
- Lu, K.; Zhu, J.; Guo, D.; Yang, M.; Sun, H.; Wang, Z.; Hui, X.; Wu, Y. Microstructures, Corrosion Resistance and Wear Resistance of High-Entropy Alloys Coatings with Various Compositions Prepared by Laser Cladding: A Review. Coatings 2022, 12, 1023. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, C.; Zhang, G.; Liao, H. Wear and corrosion resistant performance of thermal-sprayed Fe-based amorphous coatings: A review. Surf. Coat. Technol. 2019, 377, 124896. [Google Scholar] [CrossRef]
- Luchtenberg, P.; de Campos, P.T.; Soares, P.; Laurindo, C.A.H.; Maranho, O.; Torres, R.D. Effect of welding energy on the corrosion and tribological properties of duplex stainless steel weld overlay deposited by GMAW/CMT process. Surf. Coat. Technol. 2019, 375, 688–693. [Google Scholar] [CrossRef]
- Zhai, W.; Bai, L.; Zhou, R.; Fan, X.; Kang, G.; Liu, Y.; Zhou, K. Recent progress on wear-resistant materials: Designs, properties, and applications. Adv. Sci. 2021, 8, 2003739. [Google Scholar] [CrossRef] [PubMed]
- Sarila, V.K.; Koneru, H.P.; Pathapalli, V.R.; Cheepu, M.; Kantumuchu, V.C. Wear and Microstructural Characteristics of Colmonoy-4 and Stellite-6 Additive Layer Deposits on En19 Steel by Laser Cladding. Trans. Indian Inst. Met. 2023, 76, 457–464. [Google Scholar] [CrossRef]
- Li, Z.; Yan, H.; Zhang, P.; Guo, J.; Yu, Z.; Ringsberg, J.W. Improving surface resistance to wear and corrosion of nickel-aluminum bronze by laser-clad TaC/Co-based alloy composite coatings. Surf. Coat. Technol. 2020, 405, 126592. [Google Scholar] [CrossRef]
- Kavitha, C.; Malini, P.G.; Kantumuchu, V.C.; Kumar, N.M.; Verma, A.; Boopathi, S. An experimental study on the hardness and wear rate of carbonitride coated stainless steel. Mater. Today Proc. 2023, 74, 595–601. [Google Scholar] [CrossRef]
- Zhang, C.; Li, S.; Lin, Y.; Ju, J.; Fu, H. Effect of boron on microstructure evolution and properties of wear-resistant cast Fe–Si–Mn–Cr–B alloy. J. Mater. Res. Technol. 2020, 9, 5564–5576. [Google Scholar]
- Zhang, J.; Liu, J.; Liao, H.; Zeng, M.; Ma, S. A review on relationship between morphology of boride of Fe-B alloys and the wear/corrosion resistant properties and mechanisms. J. Mater. Res. Technol. 2019, 8, 6308–6320. [Google Scholar] [CrossRef]
- Li, L.; Guo, S.; Guo, Y.; Ren, J.; Hou, W.; Wang, X.; Jia, L.; Zhang, N.; Gan, H. Effect of laser shock processing on residual stress evolution in martensitic stainless steel multi-pass butt-welded joints. Mater. Res. Express 2023, 10, 03400. [Google Scholar] [CrossRef]
- Priyambodo, B.H.; Margono-Nugroho, K.C. Corrosion Protection on AISI 304 by Shot Peening Treatment with Variation of Particle Size and Shooting Pressure. Mater. Sci. Forum 2022, 1051, 153–159. [Google Scholar] [CrossRef]
- Wirtz, A.; Abdulgader, M.; Milz, M.P.; Tillmann, W.; Walther, F.; Biermann, D. Thermally Assisted Machine Hammer Peening of Arc-Sprayed ZnAl-Based Corrosion Protective Coatings. J. Manuf. Mater. Process. 2021, 5, 109. [Google Scholar] [CrossRef]
- Yıldıran Avcu, Y.; Yetik, O.; Guney, M.; Iakovakis, E.; Sınmazçelik, T.; Avcu, E. Surface, Subsurface and Tribological Properties of Ti6Al4V Alloy Shot Peened under Different Parameters. Materials 2020, 13, 4363. [Google Scholar] [CrossRef]
- Avcu, Y.Y.; Iakovakis, E.; Guney, M.; Çalım, E.; Özkılınç, A.; Abakay, E.; Sönmez, F.; Koç, F.G.; Yamanoğlu, R.; Cengiz, A.; et al. Surface and Tribological Properties of Powder Metallurgical Cp-Ti Titanium Alloy Modified by Shot Peening. Coatings 2023, 13, 89. [Google Scholar] [CrossRef]
- Alhussein, A.; Aouchiche, L.; Hmima, A.; Retraint, D.; Rtimi, S. Distinctive Effects of Surface Roughness and Ions Release on the Bacterial Adhesion and Inactivation of Textured Copper Oxide Surfaces. Coatings 2023, 13, 454. [Google Scholar] [CrossRef]
- Li, L.; Zhao, S.; Zhang, N.; Guo, Y.; Gan, H. Enhanced Wear Resistance of Iron-Based Alloy Coating Induced by Ultrasonic Impact. Coatings 2019, 12, 804. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Z.; Zhang, J.; Ji, H.; Meng, Z.; Zhang, H.; Meng, X. Effect of Ultrasonic Impact Strengthening on Surface Properties of 316L Stainless Steel Prepared by Laser Selective Melting. Coatings 2022, 12, 1243. [Google Scholar] [CrossRef]
- Liu, C.; Lin, C.; Liu, W.; Wang, S.; Chen, Y.; Wang, J.; Wang, J. Effects of local ultrasonic impact treatment on residual stress in an engineering-scale stainless steel pipe girth weld. Int. J. Press. Vessel. Pip. 2021, 192, 104420. [Google Scholar] [CrossRef]
- Gao, H.; Dutta, R.K.; Huizenga, R.M.; Amirthalingam, M.; Hermans, M.J.M.; Buslaps, T.; Richardson, I.M. Stress relaxation due to ultrasonic impact treatment on multi-pass welds. Sci. Technol. Weld. Join. 2014, 19, 505–513. [Google Scholar] [CrossRef]
- Lago, J.; Trško, L.; Jambor, M.; Nový, F.; Bokůvka, O.; Mičian, M.; Pastorek, F. Fatigue Life Improvement of the High Strength Steel Welded Joints by Ultrasonic Impact Peening. Metals 2019, 9, 619. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, D.; Xia, L.; Lei, Z.; Li, Y. Effects of ultrasonic impact treatment on pre-fatigue loaded high-strength steel welded joints. Int. J. Fatigue 2015, 80, 278–287. [Google Scholar] [CrossRef]
- Kudryavtsev, Y. Fatigue improvement of welded elements by ultrasonic impact treatment. Exp. Appl. Mech. 2020, 65, 179–190. [Google Scholar] [CrossRef]
- Yu, Y.; He, B.; Liu, J.; Chen, Z.; Man, H. Surface plastic deformation and nanocrystallization mechanism of welded joint of 16MnR steel treated by ultrasonic impact. Mater. Sci. 2015, 21, 612–615. [Google Scholar] [CrossRef]
- Yekta, R.T.; Ghahremani, K.; Walbridge, S. Effect of quality control parameter variations on the fatigue performance of ultrasonic impact treated welds. Int. J. Fatigue 2013, 55, 245–256. [Google Scholar] [CrossRef]
- Yang, Y.; Jin, X.; Liu, C.; Xiao, M.; Lu, F.; Ma, S. Residual stress, mechanical properties, and grain morphology of Ti-6Al-4V alloy produced by ultrasonic impact treatment assisted wire and arc additive manufacturing. Metals 2018, 8, 934. [Google Scholar] [CrossRef]
- Li, Q.; Wang, H.; Che, C.; Wan, L.; Dong, X.; Wang, S.; Zhang, C. Effect of ultrasonic impact on the organization and friction wear performance of AZ31B magnesium alloy micro-arc oxidation composite coating. Coatings 2023, 13, 1161. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Q.; Han, B.; Song, L.; Li, J.; Zhang, S. Effects of ultrasonic impact treatment on structures and properties of laser cladding Al0.5CoCrFeMnNi high entropy alloy coatings. Mater. Chem. Phys. 2021, 258, 123850. [Google Scholar] [CrossRef]
- GB/T 3077-2015; Alloy Structure Steels. In General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Standards Press of China: Beijing, China, 2015.
- EN ISO 683-1; Heat-Treatable Steels, Alloy Steels and Free-Cutting Steels—Part 1: Non-Alloy Steels for Quenching and Tempering. International Organization for Standardization: Geneva, Switzerland, 2018.
- Yang, X.; Wang, X.; Ling, X.; Wang, D. Enhanced mechanical behaviors of gradient nano-grained austenite stainless steel by means of ultrasonic impact treatment. Results Phys. 2017, 7, 1412–1421. [Google Scholar] [CrossRef]
- Monshi, A.; Foroughi, M.R.; Monshi, M.R. Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 2012, 2, 154–160. [Google Scholar] [CrossRef]
- ISO 4287; Geometrical Product Specifications (GPS), Surface Texture: Profile Method, Terms, Definitions and Surface Texture Parameters. International Organization for Standardization: Geneva, Switzerland, 1997.
- Huang, H.; Li, J.; Li, D.; Liu, R.; Lei, G.; Huang, Q.; Yan, L. TEM, XRD and nanoindentation characterization of Xenon ion irradiation damage in austenitic stainless steels. J. Nucl. Mater. 2014, 454, 168–172. [Google Scholar] [CrossRef]
- Zhou, X.; Li, L.; Wen, D.; Liu, X.; Wu, C. Effect of hybrid ratio on friction and wear behavior of AZ91D matrix nanocomposites under oil lubricated conditions. Trans. Nonferrous Met. Soc. China 2018, 28, 440–450. [Google Scholar] [CrossRef]
- Li, L.; Kim, M.; Lee, S.; Bae, M.; Lee, D. Influence of multiple ultrasonic impact treatments on surface roughness and wear performance of SUS301 steel. Surf. Coat. Technol. 2016, 307, 517–524. [Google Scholar] [CrossRef]
- Vasylyev, M.A.; Mordyuk, B.N.; Sidorenko, S.I.; Voloshko, S.M.; Burmak, A.P. Influence of microstructural features and deformation-induced martensite on hardening of stainless steel by cryogenic ultrasonic impact treatment. Surf. Coat. Technol. 2018, 343, 57–68. [Google Scholar] [CrossRef]
- Mao, X.; Sun, J.; Feng, Y.; Zhou, X.; Zhao, X. High-temperature wear properties of gradient microstructure induced by ultrasonic impact treatment. Mater. Lett. 2019, 246, 178–181. [Google Scholar] [CrossRef]
- Wang, C.; Li, R.; Bi, X.; Yuan, W.; Gu, J.; Chen, J.; Yan, M.; Zhang, Z. Microstructure and wear resistance property of laser cladded CrCoNi coatings assisted by ultrasonic impact treatment. J. Mater. Res. Technol. 2023, 22, 853–864. [Google Scholar] [CrossRef]
- Kahraman, F.; Kahraman, H.; Yolcu, C.; Ayça, D.K. Wear behavior of ultrasonic impact treated S235JR steel. Mater. Test. 2017, 59, 445–449. [Google Scholar] [CrossRef]
- Wang, G.; Lei, M.; Guo, D. Interactions between surface integrity parameters on AISI 304 austenitic stainless steel components by ultrasonic impact treatment. Procedia CIRP 2016, 45, 323–326. [Google Scholar] [CrossRef]
- Yasuoka, M.; Wang, P.; Zhang, K.; Qiu, Z.; Kusaka, K.; Pyoun, Y.S.; Murakami, R. Improvement of the fatigue strength of SUS304 austenite stainless steel using ultrasonic nanocrystal surface modification. Surf. Coat. Technol. 2013, 218, 93–98. [Google Scholar] [CrossRef]
- Wang, H.; Song, G.; Tang, G. Effect of electropulsing on surface mechanical properties and microstructure of AISI 304 stainless steel during ultrasonic surface rolling process. Mater. Sci. Eng. A 2016, 662, 456–467. [Google Scholar] [CrossRef]
- Amanov, A.; Berkebile, S.P. Enhancement of sliding wear and scratch resistance of two thermally sprayed Cr-based coatings by ultrasonic nanocrystal surface modification. Wear 2023, 512, 204555. [Google Scholar] [CrossRef]
- He, B.; Yu, Y.; Xia, S.; Lv, Z.M. Effect of ultrasonic impact treating on wear resistance and microhardness of AZ91D magnesium alloy. Rare Met. Mater. Eng. 2017, 46, 17–22. [Google Scholar]
- Luo, K.; Lu, J.; Zhang, Y.; Zhou, J.; Zhang, L.; Dai, F.; Zhang, L.; Zhong, J.; Cui, C. Effects of laser shock processing on mechanical properties and micro-structure of ANSI 304 austenitic stainless steel. Mater. Sci. Eng. A 2011, 528, 4783–4788. [Google Scholar] [CrossRef]
- Leyland, A.; Matthews, A. On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behaviour. Wear 2000, 246, 1–11. [Google Scholar] [CrossRef]
- Amanov, A.; Penkov, O.V.; Pyun, Y.S.; Kim, D.E. Effects of ultrasonic nanocrystalline surface modifification on the tribological properties of AZ91D magnesium alloy. Tribol. Int. 2012, 54, 106–113. [Google Scholar] [CrossRef]
C | Cr | Ni | Mn | Si | Mo | S | P | Cu | Fe |
---|---|---|---|---|---|---|---|---|---|
0.37–0.44 | 0.8–1.1 | <0.3 | 0.5–0.8 | 0.17–0.37 | <0.1 | <0.035 | 0.035 | ≤0.25 | Bal. |
C | Cr | Ni | Mn | Si | Mo | B | Re | Fe |
---|---|---|---|---|---|---|---|---|
0.03 | <15.5 | <8.0 | 1.0~1.2 | 0.45~0.55 | 1.5~2.0 | <4.5 | <0.05 | Bal. |
Parameters | Conditions |
---|---|
Power polarity | Direct current straight polarity (DCSP) |
Gas flow (L/min) | 12–15 |
Welding current (A) | 150–180 |
Tungsten diameter (mm) | 3.2 |
Inter-pass temperature (°C) | 100–150 |
Preheat temperature (°C) | ~150 |
Welding speed (mm/min) | 80–120 |
No. | Vibration of Strike Number (Times/mm2) | Feed Rate S (mm/rev) | Feed Speed ν (m/min) | Time t (min) | Current I (A) |
---|---|---|---|---|---|
UIT–1 | 40,000 | 0.05 | 36 | 15 | 1.4–1.6 |
UIT–2 | 57,600 | 25 | 25 | ||
UIT–3 | 75,000 | 20 | 45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Guo, S.; Jia, L.; Zhang, L.; Li, J.; Wang, X.; Zhang, N.; Gan, H.; Guo, Y.; Zhao, S. Enhanced Wear Behavior of a Stainless Steel Coating Deposited on a Medium-Carbon Low-Alloy Steel Using Ultrasonic Impact Treatment. Coatings 2023, 13, 2024. https://doi.org/10.3390/coatings13122024
Li L, Guo S, Jia L, Zhang L, Li J, Wang X, Zhang N, Gan H, Guo Y, Zhao S. Enhanced Wear Behavior of a Stainless Steel Coating Deposited on a Medium-Carbon Low-Alloy Steel Using Ultrasonic Impact Treatment. Coatings. 2023; 13(12):2024. https://doi.org/10.3390/coatings13122024
Chicago/Turabian StyleLi, Li, Shudong Guo, Lu Jia, Li Zhang, Jiangang Li, Xigang Wang, Nannan Zhang, Hongyan Gan, Yanhui Guo, and Suyan Zhao. 2023. "Enhanced Wear Behavior of a Stainless Steel Coating Deposited on a Medium-Carbon Low-Alloy Steel Using Ultrasonic Impact Treatment" Coatings 13, no. 12: 2024. https://doi.org/10.3390/coatings13122024
APA StyleLi, L., Guo, S., Jia, L., Zhang, L., Li, J., Wang, X., Zhang, N., Gan, H., Guo, Y., & Zhao, S. (2023). Enhanced Wear Behavior of a Stainless Steel Coating Deposited on a Medium-Carbon Low-Alloy Steel Using Ultrasonic Impact Treatment. Coatings, 13(12), 2024. https://doi.org/10.3390/coatings13122024