Electrochemical Detection of Hormones Using Nanostructured Electrodes
Abstract
:1. Introduction
1.1. Classification of Hormones
1.1.1. Steroid Hormones
1.1.2. Peptide Hormones
1.1.3. Amino Acid-Derived Hormones
Hormones | Structures of Hormones | Purpose/Function |
---|---|---|
Cortisol | The single-bonded keto group becomes oxidized during electrochemical detection [21]. | |
17β-Estradiol | The irreversible oxidation of the hydroxyl group in the aromatic ring of the 17β-estradiol molecule is ascribed to a singular oxidation mechanism, resulting in the formation of its associated ketone derivative. The cause of this irreversible behavior is thought to be an electron transfer control mechanism used by CV and DPV to regulate the 17β-estradiol reaction on the electrode surface [22,23]. | |
Estriol | During the oxidation of estriol, a highly reactive phenoxy radical and a C=O were formed, corresponding to anodic peaks seen at LSV [24]. | |
Testosterone | The C-3 keto group of testosterone is first subjected to one-electron reduction, forming an unprotonated radical; then, those above radicals undergo protonation and then participate in a reaction with another radical, ultimately leading to the creation of a dimeric configuration [25]. | |
Progesterone | The P4 molecule undergoes a single electron reaction that reduces the C-3 keto group and has a larger positive electron density than the C-20 ketone group, making it simpler to acquire electrons for reduction [26]. | |
Melatonin | The process of electrooxidation of MT involves the loss of two electrons and a proton, resulting in the formation of an intermediate compound. This intermediate compound is susceptible to nucleophilic attack, leading to the formation of a derivative known as 4,7-dihydroxy indole. This derivative exhibits a pair of quasi-reversible redox peaks when compared with its quinone counterpart [27]. | |
Thyroxine | The first anodic peak attributed to the oxidation of hydroxyl (OH) groups present on the phenol of T4 and the first cathodic peak attributed to the reduction of iodine atoms, since the iodine atoms present on the phenol group of T4 exhibited significant reactivity. Additionally, the subsequent peaks observed to the oxidation and reduction products resulting from the first step [28]. | |
Oxytocin | The redox reaction attributed to the reaction involving a quinoic structure, which is one of the products resulting from the oxidation of phenolic OH of oxytocin [29]. | |
Insulin | Oxidation of amino acids in insulin [30]. |
2. Electrochemical Methods for the Detection of Hormones
3. Electrodes for Hormone Detection
3.1. Interdigitated Array Electrodes
3.2. Screen-Printed Electrodes
3.3. Gold Electrodes
3.4. Glassy Carbon Electrode
3.5. BDD Electrodes
3.6. Fused Deposition Modeling
4. Nanostructures for the Detection of Hormones
4.1. Two-Dimensional (2D) Nanomaterials
4.1.1. Graphene
4.1.2. Transition Metal Dichalcogenides (TMDs)
4.1.3. Mxenes
4.1.4. Black Phosphorous
4.1.5. Two-Dimensional Metal–Organic Frameworks
4.1.6. Two-Dimensional-Doped Materials
4.2. Carbon-Based Nanostructures
4.2.1. Carbon Nanotubes (CNTs)
4.2.2. Carbon-Based Quantum Dots
4.2.3. Laser-Induced Graphitized Surfaces
4.3. Zeolites
4.4. Metal–Organic Frameworks (MOFs)
4.5. Nanoparticles
4.5.1. Metallic Nanoparticles
4.5.2. Metal Oxide Nanoparticles (MO-NPs)
4.6. Plasmonic Nanostructures
4.7. PEDOT Nanostructures
4.8. Co3O4/g-C3N4 Heterojunctions
5. Applications of Nanostructures for Hormone Detection
5.1. Applications in Cortisol Detection
5.2. Applications in Melatonin Detection
5.3. Applications in Androgens and Testosterone Detection
5.4. Applications in Estrogens and the Detection of Its Related Categories
5.5. Applications in Progesterone Detection
5.6. Applications in Insulin Detection
5.7. Application in Oxytocin Detection
5.8. Applications in Thyroxine Detection
6. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Sarlis, N.; Gourgiotis, L. Hormonal effects on drug metabolism through the CYP system: Perspectives on their potential significance in the era of pharmacogenomics. Curr. Drug Targets-Immune Endocr. Metab. Disord. 2005, 5, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-C.; Zouboulis, C.C. Hormones and the pilosebaceous unit. Derm.-Endocrinol. 2009, 1, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Kelkar, N.; Prabhu, A.; Prabhu, A.; Nandagopal, M.G.; Mani, N.K. Sensing of body fluid hormones using paper-based analytical devices. Microchem. J. 2022, 174, 107069. [Google Scholar] [CrossRef]
- Cifrić, S.; Nuhić, J.; Osmanović, D.; Kišija, E. Review of Electrochemical Biosensors for Hormone Detection. In Cmbebih 2019; IFMBE Proceedings: Banja Luka, Bosnia and Herzegovina, 2020; pp. 173–177. [Google Scholar]
- Chen, W.Y. Exogenous and endogenous hormones and breast cancer. Best Pract. Res. Clin. Endocrinol. Metab. 2008, 22, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Khelifa, L.; Hu, Y.; Jiang, N.; Yetisen, A.K. Lateral flow assays for hormone detection. Lab A Chip 2022, 22, 2451–2475. [Google Scholar] [CrossRef] [PubMed]
- Hamid, A.A.; Issa, M.B.; Nizar, N.N.A. Hormones. In Preparation and Processing of Religious and Cultural Foods; Elsevier: Amsterdam, The Netherlands, 2018; pp. 253–277. [Google Scholar]
- Sanchez-Almirola, J.; Gage, A.; Lopez, R.; Yapell, D.; Mujawar, M.; Kamat, V.; Kaushik, A. Label and bio-active free electrochemical detection of testosterone hormone using MIP-based sensing platform. Mater. Sci. Eng. B 2023, 296, 116670. [Google Scholar] [CrossRef]
- Bahadir, E.B.; Sezginturk, M.K. Electrochemical biosensors for hormone analyses. Biosens. Bioelectron. 2015, 68, 62–71. [Google Scholar] [CrossRef]
- Raval, J.B.; Mehta, V.N.; Jha, S.; Singhal, R.K.; Basu, H.; Kailasa, S.K. Functional nanostructures in analytical chemistry: New insights into the optical and electrochemical sensing of animal hormones in food, environmental and biological samples. Sens. Diagn. 2023, 2, 815–836. [Google Scholar] [CrossRef]
- Høj, P.H.; Møller-Sørensen, J.; Wissing, A.L.; Alatraktchi, F.A.A. Electrochemical biosensors for monitoring of selected pregnancy hormones during the first trimester: A systematic review. Talanta 2023, 258, 124396. [Google Scholar] [CrossRef]
- Naqvi, S.M.Z.A.; Zhang, Y.; Tahir, M.N.; Ullah, Z.; Ahmed, S.; Wu, J.; Raghavan, V.; Abdulraheem, M.I.; Ping, J.; Hu, X. Advanced strategies of the in-vivo plant hormone detection. TrAC Trends Anal. Chem. 2023, 166, 117186. [Google Scholar] [CrossRef]
- Duarte, L.C.; Baldo, T.A.; Silva-Neto, H.A.; Figueredo, F.; Janegitz, B.C.; Coltro, W.K. 3D printing of compact electrochemical cell for sequential analysis of steroid hormones. Sens. Actuators B Chem. 2022, 364, 131850. [Google Scholar] [CrossRef]
- Ghoshal, K. Recent advances in biosensing technologies for detecting hormones. In Advanced Sensor Technology; Elsevier: Amsterdam, The Netherlands, 2023; pp. 261–295. ISBN 9780323902229. [Google Scholar] [CrossRef]
- Qin, Q.; Feng, D.; Hu, C.; Wang, B.; Chang, M.; Liu, X.; Yin, P.; Shi, X.; Xu, G. Parallel derivatization strategy coupled with liquid chromatography-mass spectrometry for broad coverage of steroid hormones. J. Chromatogr. A 2020, 1614, 460709. [Google Scholar] [CrossRef]
- El-Ansary, A.; Faddah, L.M. Nanoparticles as biochemical sensors. Nanotechnol. Sci. Appl. 2010, 3, 65–76. [Google Scholar] [CrossRef]
- Hutchinson, J.; Burholt, S.; Hamley, I. Peptide hormones and lipopeptides: From self-assembly to therapeutic applications. J. Pept. Sci. 2017, 23, 82–94. [Google Scholar] [CrossRef]
- Reiher, W.; Shirras, C.; Kahnt, J.; Baumeister, S.; Isaac, R.E.; Wegener, C. Peptidomics and peptide hormone processing in the Drosophila midgut. J. Proteome Res. 2011, 10, 1881–1892. [Google Scholar] [CrossRef]
- Collins, J.J., III; Hou, X.; Romanova, E.V.; Lambrus, B.G.; Miller, C.M.; Saberi, A.; Sweedler, J.V.; Newmark, P.A. Genome-wide analyses reveal a role for peptide hormones in planarian germline development. PLoS Biol. 2010, 8, e1000509. [Google Scholar] [CrossRef]
- Zavala, E. Misaligned hormonal rhythmicity: Mechanisms of origin and their clinical significance. J. Neuroendocrinol. 2022, 34, e13144. [Google Scholar] [CrossRef]
- Sanghavi, B.J.; Moore, J.A.; Chávez, J.L.; Hagen, J.A.; Kelley-Loughnane, N.; Chou, C.-F.; Swami, N.S. Aptamer-functionalized nanoparticles for surface immobilization-free electrochemical detection of cortisol in a microfluidic device. Biosens. Bioelectron. 2016, 78, 244–252. [Google Scholar] [CrossRef]
- Moraes, F.C.; Rossi, B.; Donatoni, M.C.; de Oliveira, K.T.; Pereira, E.C. Sensitive determination of 17β-estradiol in river water using a graphene based electrochemical sensor. Anal. Chim. Acta 2015, 881, 37–43. [Google Scholar] [CrossRef]
- Vanschoenbeek, K.; Vanbrabant, J.; Hosseinkhani, B.; Vermeeren, V.; Michiels, L. Aptamers targeting different functional groups of 17β-estradiol. J. Steroid Biochem. Mol. Biol. 2015, 147, 10–16. [Google Scholar] [CrossRef]
- Jodar, L.V.; Santos, F.A.; Zucolotto, V.; Janegitz, B.C. Electrochemical sensor for estriol hormone detection in biological and environmental samples. J. Solid State Electrochem. 2018, 22, 1431–1438. [Google Scholar] [CrossRef]
- Bozdoğan, B. Electrochemical testosterone biosensor based on pencil graphite electrode electrodeposited with copper oxide nanoparticles. Meas. Sci. Technol. 2023, 34, 105106. [Google Scholar] [CrossRef]
- Zhao, X.; Zheng, L.; Yan, Y.; Cao, R.; Zhang, J. An electrocatalytic active AuNPs/5-Amino-2-mercaptobenzimidazole/rGO/SPCE composite electrode for ultrasensitive detection of progesterone. J. Electroanal. Chem. 2021, 882, 115023. [Google Scholar] [CrossRef]
- Duan, D.; Ding, Y.; Li, L.; Ma, G. Rapid quantitative detection of melatonin by electrochemical sensor based on carbon nanofibers embedded with FeCo alloy nanoparticles. J. Electroanal. Chem. 2020, 873, 114422. [Google Scholar] [CrossRef]
- Mardani, L.; Vardini, M.T.; Es’haghi, M.; Kalhor, E.G. Design and construction of a carbon paste electrode modified with molecularly imprinted polymer-grafted nanocomposites for the determination of thyroxin in biological samples. Anal. Methods 2020, 12, 333–344. [Google Scholar] [CrossRef]
- Asai, K.; Ivandini, T.A.; Einaga, Y. Continuous and selective measurement of oxytocin and vasopressin using boron-doped diamond electrodes. Sci. Rep. 2016, 6, 32429. [Google Scholar] [CrossRef]
- Jaafariasl, M.; Shams, E.; Amini, M.K. Silica gel modified carbon paste electrode for electrochemical detection of insulin. Electrochim. Acta 2011, 56, 4390–4395. [Google Scholar] [CrossRef]
- Nasri, I.F.M.A.; Johnson, N.; Sharp, G.; Richard, M.; Sorel, M.; Gauchotte-Lindsay, C. Detection of estrogenic hormones using plasmonic nanostructures. ChemRxiv 2020. preprint. [Google Scholar] [CrossRef]
- Cherian, A.R.; Keerthana, P.; Bhat, V.S.; Sirimahachai, U.; Varghese, A.; Hegde, G. Label free electrochemical detection of stress hormone cortisol using sulphur doped graphitic carbon nitride on carbon fiber paper electrode. New J. Chem. 2022, 46, 19975–19983. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, J.; Dong, T.; Xu, Y.; Shang, Y. Application of electrochemical methods for the detection of abiotic stress biomarkers in plants. Biosens. Bioelectron. 2021, 182, 113105. [Google Scholar] [CrossRef]
- Yagati, A.K.; Go, A.; Chavan, S.G.; Baek, C.; Lee, M.-H.; Min, J. Nanostructured Au-Pt hybrid disk electrodes for enhanced parathyroid hormone detection in human serum. Bioelectrochemistry 2019, 128, 165–174. [Google Scholar] [CrossRef]
- Nur Topkaya, S.; Cetin, A.E. Electrochemical aptasensors for biological and chemical analyte detection. Electroanalysis 2021, 33, 277–291. [Google Scholar] [CrossRef]
- Spychalska, K.; Zając, D.; Cabaj, J. Electrochemical biosensor for detection of 17β-estradiol using semi-conducting polymer and horseradish peroxidase. RSC Adv. 2020, 10, 9079–9087. [Google Scholar] [CrossRef] [PubMed]
- Yuksel, M.; Luo, W.; McCloy, B.; Mills, J.; Kayaharman, M.; Yeow, J.T. A precise and rapid early pregnancy test: Development of a novel and fully automated electrochemical point-of-care biosensor for human urine samples. Talanta 2023, 254, 124156. [Google Scholar] [CrossRef] [PubMed]
- Streeter, I.; Compton, R.G. Numerical simulation of potential step chronoamperometry at low concentrations of supporting electrolyte. J. Phys. Chem. C 2008, 112, 13716–13728. [Google Scholar] [CrossRef]
- Chen, G.-C.; Liu, C.-H.; Wu, W.-C. Electrochemical immunosensor for serum parathyroid hormone using voltammetric techniques and a portable simulator. Anal. Chim. Acta 2021, 1143, 84–92. [Google Scholar] [CrossRef]
- Kim, H.-U.; Kim, H.Y.; Seok, H.; Kanade, V.; Yoo, H.; Park, K.-Y.; Lee, J.-H.; Lee, M.-H.; Kim, T. Flexible MoS2–polyimide electrode for electrochemical biosensors and their applications for the highly sensitive quantification of endocrine hormones: PTH, T3, and T4. Anal. Chem. 2020, 92, 6327–6333. [Google Scholar] [CrossRef]
- Cherian, A.R.; Benny, L.; George, A.; Sirimahachai, U.; Varghese, A.; Hegde, G. Electro fabrication of molecularly imprinted sensor based on Pd nanoparticles decorated poly-(3 thiophene acetic acid) for progesterone detection. Electrochim. Acta 2022, 408, 139963. [Google Scholar] [CrossRef]
- Dai, Y.; Liu, C.C. Detection of 17 β-estradiol in environmental samples and for health care using a single-use, cost-effective biosensor based on differential pulse voltammetry (DPV). Biosensors 2017, 7, 15. [Google Scholar] [CrossRef]
- Yang, B.; Liu, D.; Zhu, L.; Liu, Y.; Wang, X.; Qiao, L.; Zhang, W.; Liu, B. Sensitive detection of thyroid stimulating hormone by inkjet printed microchip with a double signal amplification strategy. Chin. Chem. Lett. 2018, 29, 1879–1882. [Google Scholar] [CrossRef]
- Mradula; Raj, R.; Mishra, S. Voltammetric immunosensor for selective thyroxine detection using Cu-MOF@ PANI composite. Electrochem. Sci. Adv. 2022, 2, e2100051. [Google Scholar] [CrossRef]
- Paimard, G.; Shamsipur, M.; Gholivand, M.B.; Shahlaei, M. Simultaneous electrochemical investigation and detection of two glucocorticoids; interactions with human growth hormone, somatropin. Results Chem. 2022, 4, 100324. [Google Scholar] [CrossRef]
- Pali, M.; Garvey, J.E.; Small, B.; Suni, I.I. Detection of fish hormones by electrochemical impedance spectroscopy and quartz crystal microbalance. Sens. Bio-Sens. Res. 2017, 13, 1–8. [Google Scholar] [CrossRef]
- Fan, Y.; Guo, Y.; Shi, S.; Ma, J. An electrochemical immunosensor based on reduced graphene oxide/multiwalled carbon nanotubes/thionine/gold nanoparticle nanocomposites for the sensitive testing of follicle-stimulating hormone. Anal. Methods 2021, 13, 3821–3828. [Google Scholar] [CrossRef]
- Levent, A. Electrochemical determination of melatonin hormone using a boron-doped diamond electrode. Diam. Relat. Mater. 2012, 21, 114–119. [Google Scholar] [CrossRef]
- Malla, P.; Liao, H.-P.; Liu, C.-H.; Wu, W.-C. Electrochemical immunoassay for serum parathyroid hormone using screen-printed carbon electrode and magnetic beads. J. Electroanal. Chem. 2021, 895, 115463. [Google Scholar] [CrossRef]
- da Silveira, J.P.; Piovesan, J.V.; Spinelli, A. Carbon paste electrode modified with ferrimagnetic nanoparticles for voltammetric detection of the hormone estriol. Microchem. J. 2017, 133, 22–30. [Google Scholar] [CrossRef]
- Kim, S.; Yu, G.; Kim, T.; Shin, K.; Yoon, J. Rapid bacterial detection with an interdigitated array electrode by electrochemical impedance spectroscopy. Electrochim. Acta 2012, 82, 126–131. [Google Scholar] [CrossRef]
- Ino, K.; Kitagawa, Y.; Watanabe, T.; Shiku, H.; Koide, M.; Itayama, T.; Yasukawa, T.; Matsue, T. Detection of hormone active chemicals using genetically engineered yeast cells and microfluidic devices with interdigitated array electrodes. Electrophoresis 2009, 30, 3406–3412. [Google Scholar] [CrossRef]
- Ochiai, L.M.; Agustini, D.; Figueiredo-Filho, L.C.; Banks, C.E.; Marcolino-Junior, L.H.; Bergamini, M.F. Electroanalytical thread-device for estriol determination using screen-printed carbon electrodes modified with carbon nanotubes. Sens. Actuators B Chem. 2017, 241, 978–984. [Google Scholar] [CrossRef]
- Adeniji, T.M.; Stine, K.J. Nanostructure Modified Electrodes for Electrochemical Detection of Contaminants of Emerging Concern. Coatings 2023, 13, 381. [Google Scholar] [CrossRef]
- Yi, Y.; Weinberg, G.; Prenzel, M.; Greiner, M.; Heumann, S.; Becker, S.; Schlögl, R. Electrochemical corrosion of a glassy carbon electrode. Catal. Today 2017, 295, 32–40. [Google Scholar] [CrossRef]
- Dushna, O.; Dubenska, L.; Marton, M.; Hatala, M.; Vojs, M. Sensitive and selective voltammetric method for determination of quinoline alkaloid, quinine in soft drinks and urine by applying a boron-doped diamond electrode. Microchem. J. 2023, 191, 108839. [Google Scholar] [CrossRef]
- Macpherson, J.V. A practical guide to using boron doped diamond in electrochemical research. Phys. Chem. Chem. Phys. 2015, 17, 2935–2949. [Google Scholar] [CrossRef]
- Uçar, M.; Levent, A. Novel voltammetric strategy for determination and electrochemical evaluation of progesterone by CPT-BDD electrode. Diam. Relat. Mater. 2021, 117, 108459. [Google Scholar] [CrossRef]
- Yang, Z.; Li, M.; Li, H.; Li, H.; Li, C.; Yang, B. Polycrystalline boron-doped diamond-based electrochemical biosensor for simultaneous detection of dopamine and melatonin. Anal. Chim. Acta 2020, 1135, 73–82. [Google Scholar] [CrossRef]
- Liu, X.; Sakthivel, R.; Chen, Y.-C.; Chang, N.; Dhawan, U.; Li, Y.; Zhao, G.; Lin, C.; Chung, R.-J. Tin disulfide–graphene oxide-β-cyclodextrin mediated electro-oxidation of melatonin hormone: An efficient platform for electrochemical sensing. J. Mater. Chem. B 2020, 8, 7539–7547. [Google Scholar] [CrossRef]
- Mathew, M.; Rout, C.S. Electrochemical biosensors based on Ti3C2Tx MXene: Future perspectives for on-site analysis. Curr. Opin. Electrochem. 2021, 30, 100782. [Google Scholar] [CrossRef]
- Nayak, M.K.; Kumari, P.; Patel, M.K.; Kumar, P. Functional nanomaterials based opto-electrochemical sensors for the detection of gonadal steroid hormones. TrAC Trends Anal. Chem. 2022, 150, 116571. [Google Scholar]
- Su, S.; Sun, Q.; Gu, X.; Xu, Y.; Shen, J.; Zhu, D.; Chao, J.; Fan, C.; Wang, L. Two-dimensional nanomaterials for biosensing applications. TrAC Trends Anal. Chem. 2019, 119, 115610. [Google Scholar] [CrossRef]
- Balasubramaniam, B.; Singh, N.; Kar, P.; Tyagi, A.; Prakash, J.; Gupta, R.K. Engineering of transition metal dichalcogenide-based 2D nanomaterials through doping for environmental applications. Mol. Syst. Des. Eng. 2019, 4, 804–827. [Google Scholar] [CrossRef]
- Sulleiro, M.V.; Dominguez-Alfaro, A.; Alegret, N.; Silvestri, A.; Gómez, I.J. 2D Materials towards sensing technology: From fundamentals to applications. Sens. Bio-Sens. Res. 2022, 38, 100540. [Google Scholar] [CrossRef]
- Cesarino, I.; Cincotto, F.H.; Machado, S.A. A synergistic combination of reduced graphene oxide and antimony nanoparticles for estriol hormone detection. Sens. Actuators B Chem. 2015, 210, 453–459. [Google Scholar] [CrossRef]
- Kim, M.-Y.; Park, H.; Lee, J.-Y.; Lee, J.-Y.; Myung, N.V.; Lee, K.H. Hierarchically palladium nanoparticles embedded polyethyleneimine–reduced graphene oxide aerogel (RGA–PEI–Pd) porous electrodes for electrochemical detection of bisphenol a and H2O2. Chem. Eng. J. 2022, 431, 134250. [Google Scholar] [CrossRef]
- Kumari, P.; Nayak, M.K.; Kumar, P. An electrochemical biosensing platform for progesterone hormone detection using magnetic graphene oxide. J. Mater. Chem. B 2021, 9, 5264–5271. [Google Scholar]
- Mia, A.K.; Meyyappan, M.; Giri, P. Two-dimensional transition metal dichalcogenide based biosensors: From fundamentals to healthcare applications. Biosensors 2023, 13, 169. [Google Scholar] [CrossRef]
- Tajik, S.; Dourandish, Z.; Nejad, F.G.; Beitollahi, H.; Jahani, P.M.; Di Bartolomeo, A. Transition metal dichalcogenides: Synthesis and use in the development of electrochemical sensors and biosensors. Biosens. Bioelectron. 2022, 216, 114674. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Zhao, W.-S.; Zhang, J. Mini-review: Recent progress in the development of MoSe2 based chemical sensors and biosensors. Microelectron. Eng. 2020, 225, 111279. [Google Scholar] [CrossRef]
- Tian, L.; Jiang, M.; Su, M.; Cao, X.; Jiang, Q.; Liu, Q.; Yu, C. Sweat cortisol determination utilizing MXene and multi-walled carbon nanotube nanocomposite functionalized immunosensor. Microchem. J. 2023, 185, 108172. [Google Scholar] [CrossRef]
- Sakthivel, R.; Keerthi, M.; Chung, R.-J.; He, J.-H. Heterostructures of 2D materials and their applications in biosensing. Prog. Mater. Sci. 2023, 132, 101024. [Google Scholar] [CrossRef]
- Lu, D.; Zhao, H.; Zhang, X.; Chen, Y.; Feng, L. New horizons for MXenes in biosensing applications. Biosensors 2022, 12, 820. [Google Scholar] [CrossRef]
- San Nah, J.; Barman, S.C.; Zahed, M.A.; Sharifuzzaman, M.; Yoon, H.; Park, C.; Yoon, S.; Zhang, S.; Park, J.Y. A wearable microfluidics-integrated impedimetric immunosensor based on Ti3C2Tx MXene incorporated laser-burned graphene for noninvasive sweat cortisol detection. Sens. Actuators B Chem. 2021, 329, 129206. [Google Scholar]
- Lu, L.; Wang, M.; Zhang, D.; Zhang, H. Establishment of an immunofiltration strip for the detection of 17β-estradiol based on the photothermal effect of black phosphorescence. Analyst 2019, 144, 6647–6652. [Google Scholar] [CrossRef] [PubMed]
- Muzaffar, N.; Afzal, A.M.; Hegazy, H.; Iqbal, M.W. Recent advances in two-dimensional metal-organic frameworks as an exotic candidate for the evaluation of redox-active sites in energy storage devices. J. Energy Storage 2023, 64, 107142. [Google Scholar] [CrossRef]
- Chia, H.L.; Mayorga-Martinez, C.C.; Pumera, M. Doping and decorating 2D materials for biosensing: Benefits and drawbacks. Adv. Funct. Mater. 2021, 31, 2102555. [Google Scholar] [CrossRef]
- Ren, S.; Li, Y.; Guo, Q.; Peng, Y.; Bai, J.; Ning, B.; Gao, Z. Turn-on fluorometric immunosensor for diethylstilbestrol based on the use of air-stable polydopamine-functionalized black phosphorus and upconversion nanoparticles. Microchim. Acta 2018, 185, 429. [Google Scholar] [CrossRef] [PubMed]
- Vessally, E.; Farajzadeh, P.; Najafi, E. Possible sensing ability of boron nitride nanosheet and its Al–and Si–doped derivatives for methimazole drug by computational study. Iran. J. Chem. Chem. Eng. 2021, 40, 1001–1011. [Google Scholar]
- Xia, Y.; Liu, Y.; Hu, X.; Zhao, F.; Zeng, B. Dual-Mode Electrochemical Competitive Immunosensor Based on Cd2+/Au/Polydopamine/Ti3C2 Composite and Copper-Based Metal–Organic Framework for 17β-Estradiol Detection. ACS Sens. 2022, 7, 3077–3084. [Google Scholar] [CrossRef]
- Raymundo-Pereira, P.A.; Campos, A.M.; Vicentini, F.C.; Janegitz, B.C.; Mendonça, C.D.; Furini, L.N.; Boas, N.V.; Calegaro, M.L.; Constantino, C.J.; Machado, S.A. Sensitive detection of estriol hormone in creek water using a sensor platform based on carbon black and silver nanoparticles. Talanta 2017, 174, 652–659. [Google Scholar] [CrossRef]
- Panahi, Z.; Custer, L.; Halpern, J.M. Recent advances in non-enzymatic electrochemical detection of hydrophobic metabolites in biofluids. Sens. Actuators Rep. 2021, 3, 100051. [Google Scholar] [CrossRef]
- Akshaya, K.; Bhat, V.S.; Varghese, A.; George, L.; Hegde, G. Non-enzymatic electrochemical determination of progesterone using carbon nanospheres from onion peels coated on carbon fiber paper. J. Electrochem. Soc. 2019, 166, B1097. [Google Scholar]
- Hareesha, N.; Manjunatha, J.G. Surfactant and polymer layered carbon composite electrochemical sensor for the analysis of estriol with ciprofloxacin. Mater. Res. Innov. 2020, 24, 349–362. [Google Scholar] [CrossRef]
- Peng, C.; Ji, H.; Wang, Z. An Electrochemical Biosensor Based on Gold Nanoparticles/Carbon Nanotubes Hybrid for Determination of recombinant human erythropoietin in human blood plasma. Int. J. Electrochem. Sci. 2022, 17, 221127. [Google Scholar] [CrossRef]
- Bolat, G.; Yaman, Y.T.; Abaci, S. Highly sensitive electrochemical assay for Bisphenol A detection based on poly (CTAB)/MWCNTs modified pencil graphite electrodes. Sens. Actuators B Chem. 2018, 255, 140–148. [Google Scholar] [CrossRef]
- Erkmen, C.; Demir, Y.; Kurbanoglu, S.; Uslu, B. Multi-Purpose electrochemical tyrosinase nanobiosensor based on poly (3, 4 ethylenedioxythiophene) nanoparticles decorated graphene quantum dots: Applications to hormone drugs analyses and inhibition studies. Sens. Actuators B Chem. 2021, 343, 130164. [Google Scholar] [CrossRef]
- Xu, G.; Lin, G.; Lin, S.; Wu, N.; Deng, Y.; Feng, G.; Chen, Q.; Qu, J.; Chen, D.; Chen, S. The reproductive toxicity of CdSe/ZnS quantum dots on the in vivo ovarian function and in vitro fertilization. Sci. Rep. 2016, 6, 37677. [Google Scholar] [CrossRef]
- Abazar, F.; Sharifi, E.; Noorbakhsh, A. Antifouling properties of carbon quantum dots-based electrochemical sensor as a promising platform for highly sensitive detection of insulin. Microchem. J. 2022, 180, 107560. [Google Scholar] [CrossRef]
- Kumari, P.; Nayak, M.K.; Kumar, P. A bio-sensing platform based on graphene quantum dots for label free electrochemical detection of progesterone. Mater. Today Proc. 2022, 48, 583–586. [Google Scholar]
- Cardoso, R.M.; Pereira, T.S.; dos Santos, D.M.; Migliorini, F.L.; Mattoso, L.H.; Correa, D.S. Laser-induced graphitized electrodes enabled by a 3D printer/diode laser setup for voltammetric detection of hormones. Electrochim. Acta 2023, 442, 141874. [Google Scholar] [CrossRef]
- Velasco, A.; Ryu, Y.K.; Hamada, A.; de Andrés, A.; Calle, F.; Martinez, J. Laser-Induced Graphene Microsupercapacitors: Structure, Quality, and Performance. Nanomaterials 2023, 13, 788. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, H.; Zhang, W.; Zhang, Z.; Lu, J.; Xu, K.; Liu, Y.; Saetang, V. A review of laser-induced graphene: From experimental and theoretical fabrication processes to emerging applications. Carbon 2023, 214, 118356. [Google Scholar] [CrossRef]
- Yoon, H.; Nah, J.; Kim, H.; Ko, S.; Sharifuzzaman, M.; Barman, S.C.; Xuan, X.; Kim, J.; Park, J.Y. A chemically modified laser-induced porous graphene based flexible and ultrasensitive electrochemical biosensor for sweat glucose detection. Sens. Actuators B Chem. 2020, 311, 127866. [Google Scholar] [CrossRef]
- He, P.; Wang, W.; Du, L.; Dong, F.; Deng, Y.; Zhang, T. Zeolite A functionalized with copper nanoparticles and graphene oxide for simultaneous electrochemical determination of dopamine and ascorbic acid. Anal. Chim. Acta 2012, 739, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Anusha, T.; Bhavani, K.S.; Kumar, J.S.; Brahman, P.K. Synthesis and characterization of novel lanthanum nanoparticles-graphene quantum dots coupled with zeolitic imidazolate framework and its electrochemical sensing application towards vitamin D3 deficiency. Colloids Surf. A Physicochem. Eng. Asp. 2021, 611, 125854. [Google Scholar] [CrossRef]
- Oladipo, A.A.; Oskouei, S.D.; Gazi, M. Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review. Beilstein J. Nanotechnol. 2023, 14, 631–673. [Google Scholar] [CrossRef] [PubMed]
- Leite, J.P.; Figueira, F.; Mendes, R.F.; Almeida Paz, F.A.; Gales, L. Metal–Organic Frameworks as Sensors for Human Amyloid Diseases. ACS Sens. 2023, 8, 1033–1053. [Google Scholar] [CrossRef] [PubMed]
- Fathi, F.; Rashidi, M.-R.; Omidi, Y. Ultra-sensitive detection by metal nanoparticles-mediated enhanced SPR biosensors. Talanta 2019, 192, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Donini, C.A.; da Silva, M.K.L.; Simões, R.P.; Cesarino, I. Reduced graphene oxide modified with silver nanoparticles for the electrochemical detection of estriol. J. Electroanal. Chem. 2018, 809, 67–73. [Google Scholar] [CrossRef]
- Zare, I.; Yaraki, M.T.; Speranza, G.; Najafabadi, A.H.; Shourangiz-Haghighi, A.; Nik, A.B.; Manshian, B.B.; Saraiva, C.; Soenen, S.J.; Kogan, M.J. Gold nanostructures: Synthesis, properties, and neurological applications. Chem. Soc. Rev. 2022, 51, 2601–2680. [Google Scholar] [CrossRef]
- Jazayeri, M.H.; Aghaie, T.; Avan, A.; Vatankhah, A.; Ghaffari, M.R.S. Colorimetric detection based on gold nano particles (GNPs): An easy, fast, inexpensive, low-cost and short time method in detection of analytes (protein, DNA, and ion). Sens. Bio-Sens. Res. 2018, 20, 1–8. [Google Scholar] [CrossRef]
- Sharma, N.; Reddy, A.S.; Yun, K. Electrochemical detection of hydrocortisone using green-synthesized cobalt oxide nanoparticles with nafion-modified glassy carbon electrode. Chemosphere 2021, 282, 131029. [Google Scholar] [CrossRef]
- Naqvi, S.M.Z.A.; Zhang, Y.; Ahmed, S.; Abdulraheem, M.I.; Hu, J.; Tahir, M.N.; Raghavan, V. Applied surface enhanced Raman Spectroscopy in plant hormones detection, annexation of advanced technologies: A review. Talanta 2022, 236, 122823. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Qian, W.; Huang, J.; Wu, B.; Yang, J.; Xue, T.; Ge, Y.; Wen, Y. Electrochemical detection combined with machine learning for intelligent sensing of maleic hydrazide by using carboxylated PEDOT modified with copper nanoparticles. Microchim. Acta 2019, 186, 543. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.C.; Thomas, J.L.; Guo, H.Z.; Liao, W.T.; Lee, M.H.; Lin, H.Y. Electrosynthesis of Nanostructured, Imprinted Poly (hydroxymethyl 3, 4-ethylenedioxythiophene) for the Ultrasensitive Electrochemical Detection of Urinary Progesterone. ChemistrySelect 2017, 2, 7935–7939. [Google Scholar] [CrossRef]
- Sun, Y.; Jiang, J.; Liu, Y.; Wu, S.; Zou, J. A facile one-pot preparation of Co3O4/g-C3N4 heterojunctions with excellent electrocatalytic activity for the detection of environmental phenolic hormones. Appl. Surf. Sci. 2018, 430, 362–370. [Google Scholar] [CrossRef]
- Siontorou, C.G.; Nikoleli, G.-P.; Nikolelis, M.-T.; Nikolelis, D.P. Challenges and future prospects of Nanoadvanced sensing technology. In Advanced Biosensors for Health Care Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 375–396. ISBN 9780128157435. [Google Scholar] [CrossRef]
- Shirtcliff, E.A.; Peres, J.C.; Dismukes, A.R.; Lee, Y.; Phan, J.M. Hormones: Commentary: Riding the physiological roller coaster: Adaptive significance of cortisol stress reactivity to social contexts. J. Personal. Disord. 2014, 28, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Karuppaiah, G.; Velayutham, J.; Sethy, N.K.; Manickam, P. DNA aptamer and gold-nanofiller integrated hybrid hydrogel network for electrochemical detection of salivary cortisol. Mater. Lett. 2023, 342, 134310. [Google Scholar] [CrossRef]
- Singh, N.K.; Chung, S.; Sveiven, M.; Hall, D.A. Cortisol Detection in Undiluted Human Serum Using a Sensitive Electrochemical Structure-Switching Aptamer over an Antifouling Nanocomposite Layer. ACS Omega 2021, 6, 27888–27897. [Google Scholar] [CrossRef]
- Whitworth, J.A.; Williamson, P.M.; Mangos, G.; Kelly, J.J. Cardiovascular consequences of cortisol excess. Vasc. Health Risk Manag. 2005, 1, 291–299. [Google Scholar] [CrossRef]
- Sharma, V.; Sharma, T.K.; Kaur, I. Electrochemical detection of cortisol on graphene quantum dots modified electrodes using a rationally truncated high affinity aptamer. Appl. Nanosci. 2021, 11, 2577–2588. [Google Scholar] [CrossRef]
- Singh, A.; Kaushik, A.; Kumar, R.; Nair, M.; Bhansali, S. Electrochemical sensing of cortisol: A recent update. Appl. Biochem. Biotechnol. 2014, 174, 1115–1126. [Google Scholar] [CrossRef]
- Stalder, T.; Kirschbaum, C. Analysis of cortisol in hair–state of the art and future directions. Brain Behav. Immun. 2012, 26, 1019–1029. [Google Scholar] [CrossRef]
- Sharma, V.; Sharma, T.K.; Kaur, I. Electrochemical detection of cortisol using a structure-switching aptamer immobilized on gold nanoparticles-modified screen-printed electrodes. J. Appl. Electrochem. 2023, 53, 1765–1776. [Google Scholar] [CrossRef]
- Karuppaiah, G.; Velayutham, J.; Hansda, S.; Narayana, N.; Bhansali, S.; Manickam, P. Towards the development of reagent-free and reusable electrochemical aptamer-based cortisol sensor. Bioelectrochemistry 2022, 145, 108098. [Google Scholar] [CrossRef] [PubMed]
- Yeasmin, S.; Wu, B.; Liu, Y.; Ullah, A.; Cheng, L.-J. Nano gold-doped molecularly imprinted electrochemical sensor for rapid and ultrasensitive cortisol detection. Biosens. Bioelectron. 2022, 206, 114142. [Google Scholar] [CrossRef] [PubMed]
- Shama, N.A.; Aşır, S.; Göktürk, I.; Yılmaz, F.; Türkmen, D.; Denizli, A. Electrochemical Detection of Cortisol by Silver Nanoparticle-Modified Molecularly Imprinted Polymer-Coated Pencil Graphite Electrodes. ACS Omega 2023, 8, 29202–29212. [Google Scholar] [CrossRef] [PubMed]
- Madhu, S.; Ramasamy, S.; Magudeeswaran, V.; Manickam, P.; Nagamony, P.; Chinnuswamy, V. SnO2 nanoflakes deposited carbon yarn-based electrochemical immunosensor towards cortisol measurement. J. Nanostructure Chem. 2023, 13, 115–127. [Google Scholar] [CrossRef]
- Laochai, T.; Yukird, J.; Promphet, N.; Qin, J.; Chailapakul, O.; Rodthongkum, N. Non-invasive electrochemical immunosensor for sweat cortisol based on L-cys/AuNPs/MXene modified thread electrode. Biosens. Bioelectron. 2022, 203, 114039. [Google Scholar] [CrossRef]
- Zubarev, A.; Cuzminschi, M.; Iordache, A.-M.; Iordache, S.-M.; Rizea, C.; Grigorescu, C.E.; Giuglea, C. Graphene-Based Sensor for the Detection of Cortisol for Stress Level Monitoring and Diagnostics. Diagnostics 2022, 12, 2593. [Google Scholar] [CrossRef]
- Duan, D.; Lu, H.; Li, L.; Ding, Y.; Ma, G. A molecularly imprinted electrochemical sensors based on bamboo-like carbon nanotubes loaded with nickel nanoclusters for highly selective detection of cortisol. Microchem. J. 2022, 175, 107231. [Google Scholar] [CrossRef]
- Castagnola, E.; Woeppel, K.; Golabchi, A.; McGuier, M.; Chodapaneedi, N.; Metro, J.; Taylor, I.M.; Cui, X.T. Electrochemical detection of exogenously administered melatonin in the brain. Analyst 2020, 145, 2612–2620. [Google Scholar] [CrossRef]
- Santhan, A.; Hwa, K.-Y. Rational design of nanostructured copper phosphate nanoflakes supported niobium carbide for the selective electrochemical detection of melatonin. ACS Appl. Nano Mater. 2022, 5, 18256–18269. [Google Scholar] [CrossRef]
- Gomez, F.J.V.; Martín, A.; Silva, M.F.; Escarpa, A. Microchip electrophoresis-single wall carbon nanotube press-transferred electrodes for fast and reliable electrochemical sensing of melatonin and its precursors. Electrophoresis 2015, 36, 1880–1885. [Google Scholar] [CrossRef] [PubMed]
- Thenrajan, T.; Girija, S.; Sangeetha, S.; Alwarappan, S.; Wilson, J. Electrochemical Detection of Melatonin at Tungsten Oxide Nanospheres Decorated Chitosan Electrode. J. Electrochem. Soc. 2023, 170, 077510. [Google Scholar] [CrossRef]
- Lete, C.; López-Iglesias, D.; García-Guzmán, J.J.; Leau, S.-A.; Stanciu, A.E.; Marin, M.; Palacios-Santander, J.M.; Lupu, S.; Cubillana-Aguilera, L. A sensitive electrochemical sensor based on sonogel-carbon material enriched with gold nanoparticles for melatonin determination. Sensors 2021, 22, 120. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Nodehi, M.; Baghayeri, M.; Xu, Y.; Hua, Z.; Lei, Y.; Shao, M.; Makvandi, P. Development of an impedimetric sensor for susceptible detection of melatonin at picomolar concentrations in diverse pharmaceutical and human specimens. Environ. Res. 2023, 238, 117080. [Google Scholar] [CrossRef]
- Amjadi, S.; Akhoundian, M.; Alizadeh, T. A Simple Method for Melatonin Determination in the Presence of High Levels of Tryptophan using an Unmodified Carbon Paste Electrode and Square Wave Anodic Stripping Voltammetry. Electroanalysis 2023, 35, e202200210. [Google Scholar] [CrossRef]
- Sebastian, N.; Yu, W.-C.; Balram, D.; Chen, Q.; Shiue, A.; Noman, M.; Amor, N. Porous hematite embedded C and Fe codoped graphitic carbon nitride for electrochemical detection of pineal gland hormone melatonin. Mater. Today Chem. 2023, 29, 101406. [Google Scholar] [CrossRef]
- Selvam, S.P.; Hansa, M.; Yun, K. Simultaneous differential pulse voltammetric detection of uric acid and melatonin based on a self-assembled Au nanoparticle–MoS2 nanoflake sensing platform. Sens. Actuators B Chem. 2020, 307, 127683. [Google Scholar] [CrossRef]
- Zhou, H.; Ma, X.; Sailjoi, A.; Zou, Y.; Lin, X.; Yan, F.; Su, B.; Liu, J. Vertical silica nanochannels supported by nanocarbon composite for simultaneous detection of serotonin and melatonin in biological fluids. Sens. Actuators B Chem. 2022, 353, 131101. [Google Scholar] [CrossRef]
- Rahmati, R.; Hemmati, A.; Mohammadi, R.; Hatamie, A.; Tamjid, E.; Simchi, A. Sensitive voltammetric detection of melatonin in pharmaceutical products by highly conductive porous graphene-gold composites. ACS Sustain. Chem. Eng. 2020, 8, 18224–18236. [Google Scholar] [CrossRef]
- Deplewski, D.; Rosenfield, R.L. Role of hormones in pilosebaceous unit development. Endocr. Rev. 2000, 21, 363–392. [Google Scholar] [CrossRef] [PubMed]
- Crulhas, B.P.; Basso, C.R.; Parra, J.P.; Castro, G.R.; Pedrosa, V.A. Reduced graphene oxide decorated with AuNPs as a new aptamer-based biosensor for the detection of androgen receptor from prostate cells. J. Sens. 2019, 2019, 5805609. [Google Scholar] [CrossRef]
- Moura, S.L.; De Moraes, R.R.; Dos Santos, M.A.P.; Pividori, M.I.; Lopes, J.A.D.; de Lima Moreira, D.; Zucolotto, V.; dos Santos Júnior, J.R. Electrochemical detection in vitro and electron transfer mechanism of testosterone using a modified electrode with a cobalt oxide film. Sens. Actuators B Chem. 2014, 202, 469–474. [Google Scholar] [CrossRef]
- Mundaca, R.; Moreno-Guzmán, M.; Eguílaz, M.; Yáñez-Sedeño, P.; Pingarrón, J. Enzyme biosensor for androsterone based on 3α-hydroxysteroid dehydrogenase immobilized onto a carbon nanotubes/ionic liquid/NAD+ composite electrode. Talanta 2012, 99, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Yao, B.; Zhu, S.; Xu, X.; Feng, N.; Tian, Y.; Zhou, N. Ultrasensitive detection of the androgen receptor through the recognition of an androgen receptor response element and hybridization chain amplification. Analyst 2019, 144, 2179–2185. [Google Scholar] [CrossRef]
- Knowlton, A.; Lee, A. Estrogen and the cardiovascular system. Pharmacol. Ther. 2012, 135, 54–70. [Google Scholar] [CrossRef]
- Liang, J.; Shang, Y. Estrogen and cancer. Annu. Rev. Physiol. 2013, 75, 225–240. [Google Scholar] [CrossRef]
- Yaşar, P.; Ayaz, G.; User, S.D.; Güpür, G.; Muyan, M. Molecular mechanism of estrogen–estrogen receptor signaling. Reprod. Med. Biol. 2017, 16, 4–20. [Google Scholar] [CrossRef]
- Klikarová, J.; Chromá, M.; Sýs, M. Simultaneous voltammetric determination of female hormones using different carbonaceous electrodes in a non-aqueous environment. Microchem. J. 2023, 193, 109219. [Google Scholar] [CrossRef]
- Han, Q.; Shen, X.; Zhu, W.; Zhu, C.; Zhou, X.; Jiang, H. Magnetic sensing film based on Fe3O4@ Au-GSH molecularly imprinted polymers for the electrochemical detection of estradiol. Biosens. Bioelectron. 2016, 79, 180–186. [Google Scholar] [CrossRef]
- Arvand, M.; Hemmati, S. Analytical methodology for the electro-catalytic determination of estradiol and progesterone based on graphene quantum dots and poly (sulfosalicylic acid) co-modified electrode. Talanta 2017, 174, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jiang, J.; Zhao, D.; Xu, Z.; Liu, M.; Deng, P.; Liu, X.; Yang, C.; Qian, D.; Xie, H. Facile synthesis of Pd/N-doped reduced graphene oxide via a moderate wet-chemical route for non-enzymatic electrochemical detection of estradiol. J. Alloys Compd. 2018, 769, 566–575. [Google Scholar] [CrossRef]
- Tanrıkut, E.; Özcan, İ.; Sel, E.; Köytepe, S.; Savan, E.K. Simultaneous electrochemical detection of estradiol and testosterone using nickel ferrite oxide doped mesoporous carbon nanocomposite modified sensor. J. Electrochem. Soc. 2020, 167, 087509. [Google Scholar] [CrossRef]
- Uliana, C.V.; Peverari, C.R.; Afonso, A.S.; Cominetti, M.R.; Faria, R.C. Fully disposable microfluidic electrochemical device for detection of estrogen receptor alpha breast cancer biomarker. Biosens. Bioelectron. 2018, 99, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Liu, X.; Jia, J. Electrochemical detection of natural estrogens using a graphene/ordered mesoporous carbon modified carbon paste electrode. Anal. Methods 2015, 7, 8626–8631. [Google Scholar] [CrossRef]
- Jesu Amalraj, A.J.; Narasimha Murthy, U.; Wang, S.-F. Pt nanoparticle-decorated se rods for electrochemical detection of 17β-estradiol and methanol oxidation. ACS Appl. Nano Mater. 2022, 5, 1944–1957. [Google Scholar] [CrossRef]
- Contreras Jiménez, G.N.; Eissa, S.; Ng, A.; Alhadrami, H.; Zourob, M.; Siaj, M. Aptamer-based label-free impedimetric biosensor for detection of progesterone. Anal. Chem. 2015, 87, 1075–1082. [Google Scholar] [CrossRef]
- de Lima, C.A.; Spinelli, A. Electrochemical behavior of progesterone at an ex situ bismuth film electrode. Electrochim. Acta 2013, 107, 542–548. [Google Scholar] [CrossRef]
- Laza, A.; Godoy, A.; Pereira, S.; Aranda, P.R.; Messina, G.A.; Garcia, C.D.; Raba, J.; Bertolino, F.A. Electrochemical determination of progesterone in calf serum samples using a molecularly imprinted polymer sensor. Microchem. J. 2022, 183, 108113. [Google Scholar] [CrossRef]
- Taraborrelli, S. Physiology, production and action of progesterone. Acta Obstet. Gynecol. Scand. 2015, 94, 8–16. [Google Scholar] [CrossRef]
- Trabert, B.; Sherman, M.E.; Kannan, N.; Stanczyk, F.Z. Progesterone and breast cancer. Endocr. Rev. 2020, 41, 320–344. [Google Scholar] [CrossRef] [PubMed]
- Velayudham, J.; Magudeeswaran, V.; Paramasivam, S.S.; Karruppaya, G.; Manickam, P. Hydrogel-aptamer nanocomposite based electrochemical sensor for the detection of progesterone. Mater. Lett. 2021, 305, 130801. [Google Scholar] [CrossRef]
- Huang, Y.; Ye, D.; Yang, J.; Zhu, W.; Li, L.; Ding, Y. Dual recognition elements for selective determination of progesterone based on molecularly imprinted electrochemical aptasensor. Anal. Chim. Acta 2023, 1264, 341288. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Sangaranarayanan, M. A sensitive electrochemical detection of progesterone using tin-nanorods modified glassy carbon electrodes: Voltammetric and computational studies. Sens. Actuators B Chem. 2018, 256, 775–789. [Google Scholar] [CrossRef]
- Arvand, M.; Hemmati, S. Magnetic nanoparticles embedded with graphene quantum dots and multiwalled carbon nanotubes as a sensing platform for electrochemical detection of progesterone. Sens. Actuators B Chem. 2017, 238, 346–356. [Google Scholar] [CrossRef]
- Samie, H.A.; Arvand, M. Label-free electrochemical aptasensor for progesterone detection in biological fluids. Bioelectrochemistry 2020, 133, 107489. [Google Scholar] [CrossRef] [PubMed]
- Gevaerd, A.; Blaskievicz, S.F.; Zarbin, A.J.; Orth, E.S.; Bergamini, M.F.; Marcolino-Junior, L.H. Nonenzymatic electrochemical sensor based on imidazole-functionalized graphene oxide for progesterone detection. Biosens. Bioelectron. 2018, 112, 108–113. [Google Scholar] [CrossRef]
- Arvand, M.; Elyan, S.; Ardaki, M.S. Facile one-pot electrochemical synthesis of zirconium oxide decorated poly (3, 4-ethylenedioxythiophene) nanocomposite for the electrocatalytic oxidation and detection of progesterone. Sens. Actuators B Chem. 2019, 281, 157–167. [Google Scholar] [CrossRef]
- Petersen, M.C.; Shulman, G.I. Mechanisms of insulin action and insulin resistance. Physiol. Rev. 2018, 98, 2133–2223. [Google Scholar] [CrossRef]
- Djiogue, S.; Nwabo Kamdje, A.H.; Vecchio, L.; Kipanyula, M.J.; Farahna, M.; Aldebasi, Y.; Seke Etet, P. Insulin resistance and cancer: The role of insulin and IGFs. Endocr. Relat. Cancer 2013, 20, R1–R17. [Google Scholar] [CrossRef]
- Sakthivel, R.; Lin, L.-Y.; Duann, Y.-F.; Chen, H.-H.; Su, C.; Liu, X.; He, J.-H.; Chung, R.-J. MOF-derived Cu-BTC nanowire-embedded 2D leaf-like structured ZIF composite-based aptamer sensors for real-time in vivo insulin monitoring. ACS Appl. Mater. Interfaces 2022, 14, 28639–28650. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Guo, M.; Yuan, M.; Liu, W.; Hu, J. Nickel nanoparticle-modified electrode for ultra-sensitive electrochemical detection of insulin. Biosens. Bioelectron. 2016, 77, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Asadpour, F.; Mazloum-Ardakani, M.; Hoseynidokht, F.; Moshtaghioun, S.M. In situ monitoring of gating approach on mesoporous silica nanoparticles thin-film generated by the EASA method for electrochemical detection of insulin. Biosens. Bioelectron. 2021, 180, 113124. [Google Scholar] [CrossRef] [PubMed]
- Niroula, J.; Premaratne, G.; Krishnan, S. Lab-on-paper aptasensor for label-free picomolar detection of a pancreatic hormone in serum. Biosens. Bioelectron. X 2022, 10, 100114. [Google Scholar] [CrossRef]
- Ebrahimiasl, S.; Fathi, E.; Ahmad, M. Electrochemical detection of insulin in blood serum using Ppy/GF nanocomposite modified pencil graphite electrode. Nanomed. Res. J. 2018, 3, 219–228. [Google Scholar]
- Liu, J.; Zhu, B.; Dong, H.; Zhang, Y.; Xu, M.; Travas-Sejdic, J.; Chang, Z. A novel electrochemical insulin aptasensor: From glassy carbon electrodes to disposable, single-use laser-scribed graphene electrodes. Bioelectrochemistry 2022, 143, 107995. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Wu, S.; Zhou, X.; Zhao, M.; Wu, H.; Luo, R.; Ding, S. Electrochemical sandwich immunoassay for insulin detection based on the use of gold nanoparticle-modified MoS2 nanosheets and the hybridization chain reaction. Microchim. Acta 2019, 186, 6. [Google Scholar] [CrossRef] [PubMed]
- Arvinte, A.; Westermann, A.C.; Sesay, A.M.; Virtanen, V. Electrocatalytic oxidation and determination of insulin at CNT-nickel–cobalt oxide modified electrode. Sens. Actuators B Chem. 2010, 150, 756–763. [Google Scholar] [CrossRef]
- Habibi, E.; Omidinia, E.; Heidari, H.; Fazli, M. Flow injection amperometric detection of insulin at cobalt hydroxide nanoparticles modified carbon ceramic electrode. Anal. Biochem. 2016, 495, 37–41. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, Y.; Zhang, M.; Xiang, J.; Deng, C.; Wu, H. An electrochemical dual-signaling aptasensor for the ultrasensitive detection of insulin. Anal. Biochem. 2019, 573, 30–36. [Google Scholar] [CrossRef]
- Šišoláková, I.; Hovancova, J.; Oriňaková, R.; Oriňak, A.; Trnková, L.; Garcia, D.R.; Radoňak, J. Influence of a polymer membrane on the electrochemical determination of insulin in nanomodified screen printed carbon electrodes. Bioelectrochemistry 2019, 130, 107326. [Google Scholar] [CrossRef] [PubMed]
- Carter, C.S.; Kenkel, W.M.; MacLean, E.L.; Wilson, S.R.; Perkeybile, A.M.; Yee, J.R.; Ferris, C.F.; Nazarloo, H.P.; Porges, S.W.; Davis, J.M. Is oxytocin “nature’s medicine”? Pharmacol. Rev. 2020, 72, 829–861. [Google Scholar] [CrossRef] [PubMed]
- Shamay-Tsoory, S.G.; Abu-Akel, A. The social salience hypothesis of oxytocin. Biol. Psychiatry 2016, 79, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Mehrotra, S.; Rai, P.; Gautam, K.; Saxena, A.; Verma, R.; Lahane, V.; Singh, S.; Yadav, A.K.; Patnaik, S.; Anbumani, S. Chitosan-carbon nanofiber based disposable bioelectrode for electrochemical detection of oxytocin. Food Chem. 2023, 418, 135965. [Google Scholar] [CrossRef] [PubMed]
- Al-Taee, A.T.; Al-Hyali, R.H. Electrochemical Behavior of Oxytocin Hormone Through Its Cysteine Reduction Peak Using Glassy Carbon Electrode Modified with Poly Furfurylamine and Multi-Walled Carbon Nanotubes. Egypt. J. Chem. 2021, 64, 5831–5837. [Google Scholar] [CrossRef]
- Liu, F.A.; Ardabili, N.; Brown, I.; Rafi, H.; Cook, C.; Nikopoulou, R.; Lopez, A.; Zou, S.; Hartings, M.R.; Zestos, A.G. Modified Sawhorse Waveform for the Voltammetric Detection of Oxytocin. J. Electrochem. Soc. 2022, 169, 017512. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; Balachandran, M. Heteroatom engineered graphene-based electrochemical assay for the quantification of high-risk abused drug oxytocin in edibles and biological samples. Food Chem. 2023, 400, 134106. [Google Scholar] [CrossRef]
- David, M.; Şerban, A.; Enache, T.A.; Florescu, M. Electrochemical quantification of levothyroxine at disposable screen-printed electrodes. J. Electroanal. Chem. 2022, 911, 116240. [Google Scholar] [CrossRef]
- Bhatia, A.; Nandhakumar, P.; Kim, G.; Lee, N.-S.; Yoon, Y.H.; Yang, H. Simple and fast Ag deposition method using a redox enzyme label and quinone substrate for the sensitive electrochemical detection of thyroid-stimulating hormone. Biosens. Bioelectron. 2022, 197, 113773. [Google Scholar] [CrossRef]
- Karami, P.; Gholamin, D.; Johari-Ahar, M. Electrochemical immunoassay for one-pot detection of thyroxin (T4) and thyroid-stimulating hormone (TSH) using magnetic and Janus nanoparticles. Anal. Bioanal. Chem. 2023, 415, 4741–4751. [Google Scholar] [CrossRef]
- Kashefi-Kheyrabadi, L.; Koyappayil, A.; Kim, T.; Cheon, Y.-P.; Lee, M.-H. A MoS2@ Ti3C2Tx MXene hybrid-based electrochemical aptasensor (MEA) for sensitive and rapid detection of Thyroxine. Bioelectrochemistry 2021, 137, 107674. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Kim, J.; Yim, G.; Jang, H.; Lee, Y.; Kim, S.M.; Park, C.; Lee, M.-H.; Lee, T. Fabrication of electrochemical biosensor composed of multi-functional DNA/rhodium nanoplate heterolayer for thyroxine detection in clinical sample. Colloids Surf. B Biointerfaces 2020, 195, 111240. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Zhuo, Y.; Chai, Y.; Yu, Y.; Liao, N.; Yuan, R. Electrochemical immunoassay for thyroxine detection using cascade catalysis as signal amplified enhancer and multi-functionalized magnetic graphene sphere as signal tag. Anal. Chim. Acta 2013, 790, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Roy, S.; Mahindroo, N.; Mathur, A. Design and development of an electroanalytical sensor based on molecularly imprinted polyaniline for the detection of thyroxine. J. Appl. Electrochem. 2023. [Google Scholar] [CrossRef]
- Muñoz, J.; Riba-Moliner, M.; Brennan, L.J.; Gun’ko, Y.K.; Céspedes, F.; González-Campo, A.; Baeza, M. Amperometric thyroxine sensor using a nanocomposite based on graphene modified with gold nanoparticles carrying a thiolated β-cyclodextrin. Microchim. Acta 2016, 183, 1579–1589. [Google Scholar] [CrossRef]
- Zhang, T.; Du, X.; Zhang, Z. Advances in electrochemical sensors based on nanomaterials for the detection of lipid hormone. Front. Bioeng. Biotechnol. 2022, 10, 993015. [Google Scholar] [CrossRef] [PubMed]
- Suhito, I.R.; Koo, K.-M.; Kim, T.-H. Recent advances in electrochemical sensors for the detection of biomolecules and whole cells. Biomedicines 2020, 9, 15. [Google Scholar] [CrossRef]
- Campuzano, S.; Yánez-Sedeño, P.; Pingarrón, J.M. Electrochemical bioaffinity sensors for salivary biomarkers detection. TrAC Trends Anal. Chem. 2017, 86, 14–24. [Google Scholar] [CrossRef]
- Joshi, A.; Kim, K.-H. Recent advances in nanomaterial-based electrochemical detection of antibiotics: Challenges and future perspectives. Biosens. Bioelectron. 2020, 153, 112046. [Google Scholar] [CrossRef]
- Rivas, G.A.; Rodriguez, M.C.; Rubianes, M.D.; Gutierrez, F.A.; Eguílaz, M.; Dalmasso, P.R.; Primo, E.N.; Tettamanti, C.; Ramírez, M.L.; Montemerlo, A. Carbon nanotubes-based electrochemical (bio) sensors for biomarkers. Appl. Mater. Today 2017, 9, 566–588. [Google Scholar] [CrossRef]
- Li, T.; Shang, D.; Gao, S.; Wang, B.; Kong, H.; Yang, G.; Shu, W.; Xu, P.; Wei, G. Two-dimensional material-based electrochemical sensors/biosensors for food safety and biomolecular detection. Biosensors 2022, 12, 314. [Google Scholar] [CrossRef] [PubMed]
- Farka, Z.; Jurik, T.; Kovar, D.; Trnkova, L.; Skládal, P. Nanoparticle-based immunochemical biosensors and assays: Recent advances and challenges. Chem. Rev. 2017, 117, 9973–10042. [Google Scholar] [CrossRef] [PubMed]
Hormone | Electrochemical Method | Type of Nanostructures | Linear Range | LOD | Reference |
---|---|---|---|---|---|
Cortisol | CV | L-cys/AuNPs/MXene modified thread electrode | 5–180 ng/mL | 0.54 ng/mL | [122] |
Cortisol | DPV | Apt/AuNP/SPE | 0.1 pg/mL–100 ng/mL | 0.25 pg/mL | [117] |
Cortisol | CA, DPV | BSA/AuNW/GA/Au | 1–1000 nM | 0.51–0.68 nM | [112] |
Cortisol | CV, DPV | SGCN/CFP | - | 15.8 × 10−8 M | [32] |
Cortisol | CV | GQDs/SPE | 0.1 pg/mL–100 ng/mL | 0.1 pg/mL | [114] |
Cortisol | CV | Graphene–pyrrole composite | 0.5–5 ng/mL | 0.5 ng/mL | [123] |
Cortisol | EIS, CV | NiNCs-N-CNTs/GCE | 10−14–10−9 M | 2.37 × 10−15 M | [124] |
Cortisol | CV, SWV, CA | AuNC-integrated MB-aptamer with hybrid hydrogel | 0.1–50 ng/mL | 0.1 ng/mL | [111] |
Hormone | Electrochemical Method | Type of Nanostructures | Linear Range | LOD | Reference |
---|---|---|---|---|---|
Melatonin | CV, DPV | Cu3P2O8/NbC/GCE | 0.014–1517.68 μM | 0.0083 μM | [126] |
Melatonin | CV, DPV | α-Fe2O3/C–Fe-gC3N4/SPCE | 0.1–233.1 μM | 4 nM | [132] |
Melatonin | Hydrodynamic voltammetry, electrophorometry | ME–SW-PTEs | 50–500 μM | 4 μM | [127] |
Melatonin | DPV | AuNPs/MoS2/GCE | 0.033–10.0 μM | 15.7 nM | [133] |
Melatonin | CV, DPV | VMSF/HErGO-CNT/ITO electrode | 1–100 μM | 14.4 nM | [134] |
Melatonin | EIS, CV, DPV, CA | FeCo@CNFs/GCE | 0.05–250 μM | 2.7 nM | [27] |
Melatonin | EIS, DPV, SWV, CV | BDD electrode | 0.4–600 μM | 0.003 μM | [59] |
Melatonin | SWV | BDD electrode | 5.0 × 107 M to 4.0 × 106 M | 1.1 × 10−7 M (0.025 μg/mL) | [48] |
Melatonin | DPV, CV, EIS | Porous graphene–gold composites | 0.05–50 μM | 0.0082 μM | [135] |
Melatonin | CV, EIS | SNGCE/AuNPs | 0.02 to 0.3 µM, 0.5 to 20 µM | 8.4 nM | [129] |
Hormone | Electrochemical Method | Type of Nanostructures | Linear Range | LOD | Reference |
---|---|---|---|---|---|
Androgens | CV, EIS | GC-rGO-AuNPs electrode | 0–110 ng/mL | 0.5 ng/mL | [137] |
Androgens | DPV, CV | ARBP/Au | 200 fM to 500 pM | 7.64 fM | [140] |
Testosterone | CV | GCE/CoOx electrode | 0.33 to 2.00 μM | 0.16 μM | [138] |
Androsterone | CV | 3a-HSD/MWCNTs/ OPPF6/NAD+ | 0.5–10 μM | 0.15 μM | [139] |
Testosterone | CV | PoPD-MIPs/SPE | 1–25 ng/dL | 1 ng/dL | [8] |
Hormone | Electrochemical Method | Type of Nanostructures | Linear Range | LOD | Reference |
---|---|---|---|---|---|
Estradiol | CV, DPV | Fe3O4@Au-GSH/MGCE | 0.025 to 10.0 μM | 2.76 nM | [145] |
Estradiol | DPV, CV | Pd/N-rGO/GCE | 0.1–2 and 2–400 μM | 1.8 nM | [147] |
Estradiol | CV, SWV, DPV | NiFe2O4-MC/GCE | 20.0–566 nM | 6.88 nM | [148] |
Estradiol | LSV, CV, CA | Pt/Se/GCE | 0.05 to 85.5 M | 11.12 nM | [151] |
Estrogen | CV | PDDA/GSH-AuNPs | 16.6–513.3 fg mL−1 | 10.0 fg mL−1 | [149] |
Estrogen | SWV, CV | GR/OMC/CPE | 5.0 × 10−9 to 2.0 × 10−6 M | 2.0 nM | [150] |
Estradiol | CV, DPV | GQDs/PSSA/GCE | 0.001–6.0 μmol L−1 | 0.23 nM | [146] |
Hormone | Electrochemical Method | Type of Nanostructures | Linear Range | LOD | Reference |
---|---|---|---|---|---|
Progesterone | EIS, CV, CA, DPV | Sn nanoparticles on GC electrodes | 5–80 μM, 40–600 μM | 0.12 μM | [159] |
Progesterone | CV, LSV, DPV | Fe3O4@GQD/f–MWCNTs/GCE | 0.01–0.5 μM and 0.5–3.0 μM | 2.18 nM | [160] |
Progesterone | SWV, CV | CS-gHEC/AuNCs | - | 1 ng/mL | [157] |
Progesterone | CV, EIS, DPV | GQDs–NiO-AuNFs/ f-MWCNTs/SPCE nanocomposite | 0.01 to 1000 nM | 1.86 pM | [161] |
Progesterone | CV, SWV | GO-IMZ/GCE | 0.22 and 14.0 μM | 68 nM | [162] |
Progesterone | CV | PEDOT/EDOTOH | 1 fg/mL–0.1 ng/mL | 0.1 fg/mL | [107] |
Progesterone | EIS, CV | ssDNA | 10 and 60 ng/mL | 0.90 ng/mL | [152] |
Progesterone | CV, SWV, SW adsorptive stripping voltammetry | BiFE | 0.40–7.90 μM | 0.18 μM | [153] |
Progesterone | CV, DPV, EIS | Magnetic GO | 0.01 pM–1000 nM | 0.15 and 0.17 pM | [68] |
Progesterone | CV, EIS, SWV | AuNP/AMBI/rGO/SPCE | 0.9 × 10−9–27 × 10−6 M | 0.28 nM | [26] |
Progesterone | CV, DPV | PEDOT/ZrO2-NPs/GCE | 1–100 and 100–6 × 103 nM | 0.32 nM | [163] |
Progesterone | EIS, CV | AuNPs | 0.2 to 125 nM | 0.17 nM | [154] |
Progesterone | CV, DPV | GQDs-PSSA/GO/GCE | 0.001–6.0 μM | 0.31 nM | [146] |
Progesterone | CV, EIS, DPV | CNS/CFP | 0.037 nM to 0.25 nM | 0.012 nM | [84] |
Hormone | Electrochemical Method | Type of Nanostructures | Linear Range | LOD | Ref. |
---|---|---|---|---|---|
Insulin | CV, DPV, CA | Si-CPE | 90–1400 pM. | 36 pM | [30] |
Insulin | CV, EIS, CA | NiNPs/ITO | 100 pM to 2400 pM, and 1 nM to 125 nM | 10 pM | [167] |
Insulin | DPV, EIS, DPV | MSTF/GCE | 10.0 to 350.0 nM. | 3.0 nM | [168] |
Insulin | EIS, Amperometry | Carboxylated graphene/paper electrode | 5–500 pM | 1.5 pM | [169] |
Insulin | CV, DPV, CA | Ppy-GF/PGE/GCE | 0.225–1.235 μM | 8.65 nM | [170] |
Insulin | EIS, DPV | AuNPs-Apt/insulin/AuNPs-Apt/LSGE, AuNPs-Apt/insulin/AuNPs-Apt/GCE | 0.1 pM to 1 μM | 22.7 fM for LSGE-based sensor 9.8 fM for GCE-based sensor | [171] |
Insulin | CV, amperometry | CHN/CCE | 0.5–15-nM | 0.11 nM | [174] |
Insulin | CV, EIS, CA, Hydrodynamic amperometry | Carbon quantum dots (CQDs) | 40–200 nM | 2.24 nM | [90] |
Insulin | DPV, EIS, CV | AuNP@MoS2/GCE | 0.1 pM–1 nM | 50 fmol L−1 | [172] |
Insulin | CV | CNT-NiCoO2/Nafion electrodes | 0.1–31.5 μg/mL | 0.22 μg/mL | [173] |
Insulin | CV, CA | NiONPs/chitosan-MWCNTs/SPCE | 0.25–5 μM | 94 nM | [176] |
Insulin | CV, DPV | Cu-BTC/ZIF-L/DGE | 0.1 pM to 5 μM | 0.027 pM | [166] |
Insulin | EIS, CV, SWV | DNA2Fc@GNPs/mDNA/MB-IBA/Au | 10 pM to 10 nM | 0.1 pM | [175] |
Hormone | Electrochemical Method | Type of Nanostructures | Linear Range | LOD | Reference |
---|---|---|---|---|---|
Oxytocin | SWSV, CV | PG, NG, NPG-modified electrode | 0.1 nM to 10 nM and 15 nM to 95 nM | 40 pM | [182] |
Oxytocin | FSCV, CV, MSW | CFMEs | 0.5 μM to 10 μM | - | [181] |
Oxytocin | DPV, CV | GCE/MWCNTs/PFA | (15.9–79.6) × 10−10 M and (95.4–298.3) × 10−10 M | - | [180] |
Oxytocin | EIS | Chitosan-CNF | 10 to 105 ng/mL | 24.98 ± 11.37 pg/mL | [179] |
Oxytocin | CV, CA | BDD microelectrode | 0.1 to 10.0 M | 50 nM | [29] |
Hormone | Electrochemical Method | Type of Nanostructures | Linear Range | LOD | Reference |
---|---|---|---|---|---|
Thyroxin | DPV | MoS2@Ti3C2Tx/SPCE | 7.8 × 10−1–7.8 × 106 pg/mL | 0.39 pg/mL | [186] |
Thyroxin | EIS, CV | DNA3WJ/pRhNPs/Au | 100 nM–1 pM | 10.33 pM | [187] |
Thyroxin | EIS, CV, DPV | S1-SA-Ab2-MFMGRS/GCE | 0.05 pg/mL–5 ng/mL | 15 fg/msL | [188] |
Thyroxin | CV | β–CD-SH/Au–NPs@rGO hybrid nanomaterial | 1.00 nM to 14 nM | 1.00 ± 0.02 nM | [190] |
Thyroxin | CV, DPV | Cu-MOF@PANI composite | 10–105 pM | 0.33 pM–0.17 pM | [44] |
Thyroxin | CV | MIP/ITO | 5–50 pg/mL | 7.96 pM (6.16 pg/mL) | [189] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haroon, N.; Stine, K.J. Electrochemical Detection of Hormones Using Nanostructured Electrodes. Coatings 2023, 13, 2040. https://doi.org/10.3390/coatings13122040
Haroon N, Stine KJ. Electrochemical Detection of Hormones Using Nanostructured Electrodes. Coatings. 2023; 13(12):2040. https://doi.org/10.3390/coatings13122040
Chicago/Turabian StyleHaroon, Naila, and Keith J. Stine. 2023. "Electrochemical Detection of Hormones Using Nanostructured Electrodes" Coatings 13, no. 12: 2040. https://doi.org/10.3390/coatings13122040
APA StyleHaroon, N., & Stine, K. J. (2023). Electrochemical Detection of Hormones Using Nanostructured Electrodes. Coatings, 13(12), 2040. https://doi.org/10.3390/coatings13122040