Experimental and Modelling of Lightning Damage to Carbon Fibre-Reinforced Composites under Swept Stroke
Abstract
:1. Introduction
2. Experimental Setup
2.1. Materials Preparation
2.2. Experimental
3. FE Model
4. Results and Discussion
4.1. Lightning Damage under Single-Point Current Injection
4.2. Lightning Damage under Swept Stroke
4.3. Parametric Analysis
5. Conclusions
- (1)
- The swept stroke FE model was developed to predict the lightning damage, and the model prediction was comparable to that by experiments with a deviation of less than 23%.
- (2)
- The FE results showed that the swept stroke-induced lightning damage in a CFRP composite was linearly proportional to the action integral of the current waveform.
- (3)
- Both the swept strike tests and corresponding FE models showed that total lightning damage to the CFRP composites decreases with an increase in the distance from the initial attachment point. The majority of the injected electrical energy is dissipated around the initial attachment region, thus causing the most severe damage to that location.
- (4)
- The coupling effect of electrical potential and lightning damage between each attachment point was strongly dependent on the skip distance and the applied current magnitude. The coupling effect was insignificant when the skip distance is large and the current magnitude is low.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, J.; Gharghabi, P.; Boushab, D.; Ricks, T.M.; Lacy, T.E.; Pittman, C.U.; Mazzola, M.S.; Velicki, A. Artificial lightning strike tests on PRSEUS panels. Compos. Part B Eng. 2018, 154, 467–477. [Google Scholar] [CrossRef]
- Chakravarthi, D.K.; Khabashesku, V.N.; Vaidyanathan, R.; Blaine, J.; Yarlagadda, S.; Roseman, D.; Zeng, Q.; Barrera, E.V. Carbon Fiber-Bismaleimide Composites Filled with Nickel-Coated Single-Walled Carbon Nanotubes for Lightning-Strike Protection. Adv. Funct. Mater. 2011, 21, 2527–2533. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, X.; Hei, Y.; Xing, L.; Li, Z. Lightning strike damage on the composite laminates with carbon nanotube films: Protection effect and damage mechanism. Compos. Part B Eng. 2019, 168, 342–352. [Google Scholar] [CrossRef]
- Marsh, G. Airbus A350 XWB update. Reinf. Plast. 2010, 54, 20–24. [Google Scholar] [CrossRef]
- Kumar, V.; Yokozeki, T.; Okada, T.; Hirano, Y.; Goto, T.; Takahashi, T.; Ogasawara, T. Effect of through-thickness electrical conductivity of CFRPs on lightning strike damages. Compos. Part A Appl. Sci. Manuf. 2018, 114, 429–438. [Google Scholar] [CrossRef]
- Sun, J.; Yao, X.; Huang, Y.; Jiao, Z.; Chen, J. Experimental and numerical analysis of damage characteristics to opgw strands under first lightning strike and continuous current. Electr. Power Syst. Res. 2020, 187, 106515. [Google Scholar] [CrossRef]
- Senis, E.C.; Golosnoy, I.O.; Dulieu-Barton, J.M.; Thomsen, O.T. Enhancement of the electrical and thermal properties of unidirectional carbon fibre/epoxy laminates through the addition of graphene oxide. J. Mater. Sci. 2019, 54, 8955–8970. [Google Scholar] [CrossRef]
- Brown, S.; Robert, C.; Koutsos, V.; Ray, D. Methods of modifying through-thickness electrical conductivity of CFRP for use in structural health monitoring, and its effect on mechanical properties—A review. Compos. Part A Appl. Sci. Manuf. 2020, 133, 105885. [Google Scholar] [CrossRef]
- Zhang, D.; Ye, L.; Deng, S.; Zhang, J.; Tang, Y.; Chen, Y. CF/EP composite laminates with carbon black and copper chloride for improved electrical conductivity and interlaminar fracture toughness. Compos. Sci. Technol. 2012, 72, 412–420. [Google Scholar] [CrossRef]
- Newcomb, B.A.; Chae, H.G. 21—The properties of carbon fibers. In Handbook of Properties of Textile and Technical Fibres, 2nd ed.; Bunsell, A.R., Ed.; Woodhead Publishing: Sawston, UK, 2018; pp. 841–871. [Google Scholar] [CrossRef]
- Zhu, H.; Fu, K.; Yang, B.; Li, Y. Nickel-coated nylon sandwich film for combination of lightning strike protection and electromagnetic interference shielding of CFRP composite. Compos. Sci. Technol. 2021, 207, 108675. [Google Scholar] [CrossRef]
- Uman, M.A.; Rakov, V.A. The interaction of lightning with airborne vehicles. Prog. Aerosp. Sci. 2003, 39, 61–81. [Google Scholar] [CrossRef]
- Huang, L.; Gao, C.; Guo, F.; Sun, C. Lightning Indirect Effects on Helicopter: Numerical Simulation and Experiment Validation. IEEE Trans. Electromagn. Compat. 2017, 59, 1171–1179. [Google Scholar] [CrossRef]
- Larsson, A.; Lalande, P.; Bondiou-Clergerie, A.; Delannoy, A. The lightning swept stroke along an aircraft in flight. Part I: Thermodynamic and electric properties of lightning arc channels. J. Phys. D Appl. Phys. 2000, 33, 1866–1875. [Google Scholar] [CrossRef]
- Larsson, A.; Lalande, P.; Bondiou-Clergerie, A. The lightning swept stroke along an aircraft in flight. Part II: Numerical simulations of the complete process. J. Phys. D Appl. Phys. 2000, 33, 1876. [Google Scholar] [CrossRef]
- Broc, A.; Lalande, P.; Montreuil, E.; Moreau, J.-P.; Delannoy, A.; Larsson, A.; Laroche, P. A lightning swept stroke model: A valuable tool to investigate the lightning strike to aircraft. Aerosp. Sci. Technol. 2006, 10, 700–708. [Google Scholar] [CrossRef]
- Ma, X.; Wang, F.; Chen, H.; Wang, D.; Xu, B. Thermal damage analysis of aircraft composite laminate suffered from lightning swept stroke and arc propagation. Chin. J. Aeronaut. 2020, 33, 1242–1251. [Google Scholar] [CrossRef]
- Chemartin, L.; Lalande, P.; Peyrou, B.; Chazottes, A.; Elias, P.Q.; Delalondre, C.; Cheron, B.G.; Lago, F. Direct effects of lightning on aircraft structure: Analysis of the thermal, electrical and mechanical constraints. Aerosp. Lab. 2012, 5, 1–15. [Google Scholar]
- Wang, Y.; Zhupanska, O. Lightning strike thermal damage model for glass fiber reinforced polymer matrix composites and its application to wind turbine blades. Compos. Struct. 2015, 132, 1182–1191. [Google Scholar] [CrossRef]
- Chemartin, L.; Lalande, P.; Montreuil, E.; Delalondre, C.; Chéron, B.; Lago, F. Three dimensional simulation of a DC free burning arc. Application to lightning physics. Atmos. Res. 2009, 91, 371–380. [Google Scholar] [CrossRef]
- Dobbing, J.A.; Hanson, A.W. A swept stroke experiment with a rocket sled. In Proceedings of the 1978 IEEE International Symposium on Electromagnetic Compatibility, Atlanta, GA, USA, 20–22 June 1978; pp. 1–6. [Google Scholar]
- Fu, K.; Ye, L.; Chang, L.; Yang, C.; Zhang, Z. Modelling of lightning strike damage to CFRP composites with an advanced protection system. Part I: Thermal–electrical transition. Compos. Struct. 2017, 165, 83–90. [Google Scholar] [CrossRef]
- Feraboli, P.; Kawakami, H. Damage of Carbon/Epoxy Composite Plates Subjected to Mechanical Impact and Simulated Lightning. J. Aircr. 2010, 47, 999–1012. [Google Scholar] [CrossRef]
- Guo, Y.L.; Dong, Q.; Chen, J.L.; Yao, X.L.; Yi, X.; Jia, Y. Comparison between temperature and pyrolysis dependent models to evaluate the lightning strike damage of carbon fiber composite laminates. Compos. Part A Appl. Sci. Manuf. 2017, 97, 10–18. [Google Scholar] [CrossRef]
- Ogasawara, T.; Hirano, Y.; Yoshimura, A. Coupled thermal–electrical analysis for carbon fiber/epoxy composites exposed to simulated lightning current. Compos. Part A Appl. Sci. Manuf. 2010, 41, 973–981. [Google Scholar] [CrossRef]
- Abdelal, G.; Murphy, A. Nonlinear numerical modelling of lightning strike effect on composite panels with temperature dependent material properties. Compos. Struct. 2014, 109, 268–278. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Yue, Z.F.; Wang, F.S.; Ji, Y.Y. Combining analysis of coupled electrical-thermal and blow-off impulse effects on composite laminate induced by lightning strike. Appl. Compos. Mater. 2015, 22, 189–207. [Google Scholar] [CrossRef]
- Hirano, Y.; Katsumata, S.; Iwahori, Y.; Todoroki, A. Artificial lightning testing on graphite/epoxy composite laminate. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1461–1470. [Google Scholar] [CrossRef]
- Martins, R.S.; Chemartin, L.; Zaepffel, C.; Lalande, P.; Soufiani, A. Electrical and hydrodynamic characterization of a high current pulsed arc. J. Phys. D Appl. Phys. 2016, 49, 185204. [Google Scholar] [CrossRef]
- Lee, J.; Lacy, T.E., Jr.; Pittman, C.U., Jr. Coupled thermal electrical and mechanical lightning damage predictions to carbon/epoxy composites during arc channel shape expansion. Compos. Struct. 2021, 255, 112912. [Google Scholar] [CrossRef]
- Millen, S.; Murphy, A.; Abdelal, G.; Catalanotti, G. Sequential finite element modelling of lightning arc plasma and composite specimen thermal-electric damage. Comput. Struct. 2019, 222, 48–62. [Google Scholar] [CrossRef]
- Karch, C.; Arteiro, A.; Camanho, P. Modelling mechanical lightning loads in carbon fibre-reinforced polymers. Int. J. Solids Struct. 2018, 162, 217–243. [Google Scholar] [CrossRef]
- Lee, J.; Lacy, T.E., Jr.; Pittman, C.U., Jr. Lightning mechanical damage prediction in carbon/epoxy laminates using equivalent air blast overpressure. Compos. Part B Eng. 2021, 212, 108649. [Google Scholar] [CrossRef]
- Feraboli, P.; Miller, M. Damage resistance and tolerance of carbon/epoxy composite coupons subjected to simulated lightning strike. Compos. Part A Appl. Sci. Manuf. 2009, 40, 954–967. [Google Scholar] [CrossRef]
- Millen SL, J.; Murphy, A. Understanding the influence of test specimen boundary conditions on material failure resulting from artificial lightning strike. Eng. Fail. Anal. 2020, 114, 104577. [Google Scholar] [CrossRef]
- Griffis, C.; Nemes, J.; Stonesifer, F.; Chang, C. Degradation in Strength of Laminated Composites Subjected to Intense Heating and Mechanical Loading. J. Compos. Mater. 1986, 20, 216–235. [Google Scholar] [CrossRef]
- Luo, T.; Li, Y.; Fu, K.; Yang, B.; Li, Y. Artificial Neutral Network-based Integrity Analysis of Carbon Fiber Reinforced Polymer Composites After High-Temperature Exposure. Appl. Compos. Mater. 2022, 30, 41–55. [Google Scholar] [CrossRef]
- Teixeira, F.L.; Moreira, F.J.S.; Pereira-Filho, O.M.C. Electromagnetic Wave Propagation. In Encyclopedia of RF and Microwave Engineering; Chang, K., Ed.; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
Type | T1/T2 (µs) | Peak Current (kA) | Action Integral (A2s) |
---|---|---|---|
Single point current injection | 34.6/56.5 | 112 | 5 × 105 |
Swept stroke | 36 | 6.4 × 104 |
Material | Density (kg/m3) | Specific Heat (J/kg) | Thermal Conductivity (W/m/K) | Electrical Conductivity (S/m) | Breakdown Strength (kV/mm) | |||
---|---|---|---|---|---|---|---|---|
Trans. | Longi. | Trans. | Longi. | In-Depth | ||||
CFRP | 1520 | 1065 | 8 | 0.67 | 34,633 a 34,633 b | 1.218 a 3000 b | 0.0032386 a 3000 b | 33.4 |
Type | Attachment Location | Lightning Current Parameters | ||
---|---|---|---|---|
T1/T2 | Peak Current | Action Integral | ||
Single-point current injection | Centre point | 34.6/56.5 μs | Ipeak | Ipeak2t |
Swept stroke | #1 | Ipeak/ | Ipeak2t/3 | |
#2 | Ipeak/ | Ipeak2t/3 | ||
#3 | Ipeak/ | Ipeak2t/3 |
Flow Speed (m/s) | Skip Distance (m) | Dwell Time (ms) |
---|---|---|
25 | 0.62 | 25 |
52 | 0.39 | 7.4 |
75 | 0.30 | 4.0 |
255 * | 0.02 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuang, C.; Fu, K.; Lee, J.; Zhu, H.; Shi, Q.; Cui, X. Experimental and Modelling of Lightning Damage to Carbon Fibre-Reinforced Composites under Swept Stroke. Coatings 2023, 13, 2048. https://doi.org/10.3390/coatings13122048
Kuang C, Fu K, Lee J, Zhu H, Shi Q, Cui X. Experimental and Modelling of Lightning Damage to Carbon Fibre-Reinforced Composites under Swept Stroke. Coatings. 2023; 13(12):2048. https://doi.org/10.3390/coatings13122048
Chicago/Turabian StyleKuang, Chengzhao, Kunkun Fu, Juhyeong Lee, Huixin Zhu, Qizhen Shi, and Xiaoyu Cui. 2023. "Experimental and Modelling of Lightning Damage to Carbon Fibre-Reinforced Composites under Swept Stroke" Coatings 13, no. 12: 2048. https://doi.org/10.3390/coatings13122048
APA StyleKuang, C., Fu, K., Lee, J., Zhu, H., Shi, Q., & Cui, X. (2023). Experimental and Modelling of Lightning Damage to Carbon Fibre-Reinforced Composites under Swept Stroke. Coatings, 13(12), 2048. https://doi.org/10.3390/coatings13122048