Synthesis of Magnesium-Based Alloys by Mechanical Alloying for Implant Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. XRD Analysis
3.2. Sintering
3.3. Electrochemical Polarization Curves
3.4. Cytotoxicity Test
3.5. Microhardness Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gu, X.; Zheng, Y.; Cheng, Y.; Zhong, S.; Xi, T. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 2009, 30, 484–498. [Google Scholar] [CrossRef]
- Witte, F.; Kaese, V.; Haferkamp, H.; Switzer, E.; Meyer-Lindenberg, A.; Wirth, C.J.; Windhagen, H. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005, 26, 3557–3563. [Google Scholar] [CrossRef] [PubMed]
- Song, G. Control of biodegradation of biocompatable magnesium alloys. Corros. Sci. 2007, 49, 1696–1701. [Google Scholar] [CrossRef]
- Staiger, M.P.; Pietak, A.M.; Huadmai, J.; Dias, G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 2006, 27, 1728–1734. [Google Scholar] [CrossRef] [PubMed]
- Saris, N.E.; Mervaala, E.; Karppanen, H.; Khawaja, J.A.; Lewenstam, A. Magnesium. An update on physiological, clinical and analytical aspects. Clin. Chim. Acta 2000, 294, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.E.; Mabuchi, M.; Yamada, Y.; Shimojima, K.; Chino, Y.; Asahina, T. Processing of biocompatible porous Ti and Mg. Scr. Mater. 2001, 45, 1147–1153. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, B.; Wang, Y.; Geng, L.; Jiao, X. Preparation and characterization of a new biomedical Mg–Zn–Ca alloy. Mater. Des. 2012, 34, 58–64. [Google Scholar] [CrossRef]
- Shadanbaz, S.; Dias, G.J. Calcium phosphate coatings on magnesium alloys for biomedical applications: A review. Acta Biomater. 2012, 8, 20–30. [Google Scholar] [CrossRef]
- Tapiero, H.; Tew, K.D. Trace elements in human physiology and pathology: Zinc and metallothioneins. Biomed. Pharmacother. 2003, 57, 399–411. [Google Scholar] [CrossRef]
- Sandstead, H.H. Understanding zinc: Recent observations and interpretations. J. Lab. Clin. Med. 1994, 124, 322–327. [Google Scholar]
- Prasad, A.S. Zinc: An overview. Nutrition 1995, 11, 93–99. [Google Scholar]
- Schaafsma, A.; Beelen, G.M. Eggshell powder, a comparable or better source of calcium than purified calcium carbonate: Piglet studies. J. Sci. Food Agric. 1999, 79, 1596–1600. [Google Scholar] [CrossRef]
- Brini, M.; Calì, T.; Ottolini, D.; Carafoli, E. Intracellular calcium homeostasis and signaling. Met. Ions Life Sci. 2013, 12, 119–168. [Google Scholar] [CrossRef] [PubMed]
- Sigel, A.; Sigel, H.; Sigel, R.K.O. Interrelations between Essential Metal Ions and Human Diseases; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Li, Z.; Gu, X.; Lou, S.; Zheng, Y. The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials 2008, 29, 1329–1344. [Google Scholar] [CrossRef] [PubMed]
- Velikokhatnyi, O.I.; Kumta, P.N. First-principles studies on alloying and simplified thermodynamic aqueous chemical stability of calcium-, zinc-, aluminum-, yttrium- and iron-doped magnesium alloys alloys☆. Acta Biomater. 2010, 6, 1698–1704. [Google Scholar] [CrossRef] [PubMed]
- El-Rahman, S.S. Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment). Pharmacol. Res. 2003, 47, 189–194. [Google Scholar] [CrossRef]
- Hirano, S.; Suzuki, K.T. Exposure, metabolism, and toxicity of rare earths and related compounds. Environ. Health Perspect. 1996, 104 (Suppl. S1), 85–95. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, M.; Sajjadi, S.A.; Azadbeh, M. An investigation on the variations occurring during Ni3Al powder formation by mechanical alloying technique. J. Alloys Compd. 2010, 497, 171–175. [Google Scholar] [CrossRef]
- Neves, F.; Fernandes, F.M.B.; Martins, I.; Correia, J.B. Parametric optimization of Ti–Ni powder mixtures produced by mechanical alloying. J. Alloys Compd. 2011, 509, S271–S274. [Google Scholar] [CrossRef]
- Matias, T.; Roche, V.; Nogueira, R.; Asato, G.; Kiminami, C.; Bolfarini, C.; Jorge, A. MG-Zn-CA Amorphous Alloys for application as temporary implant: Effect of zn content on the mechanical and corrosion properties. Mater. Des. 2016, 110, 188–195. [Google Scholar] [CrossRef]
- Gu, X.; Zheng, Y.; Zhong, S.; Xi, T.; Wang, J.; Wang, W. Corrosion of, and cellular responses to Mg–Zn–Ca Bulk Metallic Glasses. Biomaterials 2010, 31, 1093–1103. [Google Scholar] [CrossRef]
- González, S.; Pellicer, E.; Fornell, J.; Blanquer, A.; Barrios, L.; Ibáñez, E.; Sort, J. Improved mechanical performance and delayed corrosion phenomena in biodegradable Mg–Zn–ca alloys through pd-alloying. J. Mech. Behav. Biomed. Mater. 2012, 6, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Campos Becerra, L.H.; Hernández Rodríguez, M.A.; Esquivel Solís, H.; Lesso Arroyo, R.; Torres Castro, A. Bio-inspired biomaterial mg–zn–ca: A review of the main mechanical and biological properties of MG-based alloys. Biomed. Phys. Eng. Express 2020, 6, 042001. [Google Scholar] [CrossRef] [PubMed]
- Gonzaga, S.R.; Sedano, A.; Colín, J.M.; Torres-Islas, A.; Molina-Ocampo, A. Production of biodegradable Mg-based alloys by mechanical alloying. Dig. J. Nanomater. Biostructures 2021, 16, 1537–1545. [Google Scholar]
- ISO 10993–12 2012; Biological Evaluation of Medical Devices, Part 12: Sample Preparation and Reference Materials. ISO: Geneva, Switzerland, 2012.
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. JNCI J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Savale, S.K. Sulforhodamine B (SRB) Assay of curcumin loaded nanoemulsion by using glioblastoma cell line. Asian J. Biomater. Res. 2017, 3, 26–30. [Google Scholar]
- Orellana, E.; Kasinski, A. Sulforhodamine B (SRB) assay in cell culture to investigate cell proliferation. Bioprotocol 2016, 6, e1984. [Google Scholar] [CrossRef] [Green Version]
- Paula, A.; Laranjo, M.; Marto, C.M.; Abrantes, A.M.; Casalta-Lopes, J.; Gonçalves, A.C.; Carrilho, E. Biodentine™ Boosts, whiteproroot® MTA increases and Life® suppresses odontoblast activity. Materials 2019, 12, 1184. [Google Scholar] [CrossRef] [Green Version]
- Kazak, M.; Donmez, N.; Bahadori, F.; Betul, Y.V.; Kocyigit, A. A preliminary research study on the cytotoxicity of expired and non-expired composite resins: In vitro study. Odovtos-Int. J. Dent. Sci. 2020, 22, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Suryanarayana, C. Mechanical alloying: A novel technique to synthesize Advanced Materials. Research 2019, 2019, 4219812. [Google Scholar] [CrossRef] [Green Version]
- Abdoli, H.; Farnoush, H.; Salahi, E.; Pourazrang, K. Study of the densification of a nanostructured composite powder: Part 1: Effect. Mater. Sci. Eng. 2008, 486, 580–584. [Google Scholar] [CrossRef]
- Jang, J.S.C.; Koch, C.C. Amorphization and disordering of the Ni3Al ordered intermetallic by mechanical milling. J. Mater. Res. 1990, 5, 498–510. [Google Scholar] [CrossRef]
- Suryanarayana, C.; Korth, G.E.; Chen, G.-H.; Frefer, A.; Froes, F.H. Thermal stability of nanostructured titanium aluminides. Nanostruct. Mater. 1993, 2, 527–535. [Google Scholar] [CrossRef]
- Zartner, P.; Cesnjevar, R.; Singer, H.; Weyand, M. First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby. Catheter. Cardiovasc. Interv. 2005, 66, 590–594. [Google Scholar] [CrossRef]
- Erbel, R.; Di Mario, C.; Bartunek, J.; Bonnier, J.; de Bruyne, B.; Eberli, F.R.; Erne, P.; Haude, M.; Heublein, B.; Horrigan, M.; et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: A prospective, non-randomised multicentre trial. Lancet 2007, 369, 1869–1875. [Google Scholar] [CrossRef]
- Goodship, A.E. AO principles of fracture management (book and CD-ROM). J. Bone Jt. Surg. 2001, 83-B, 933–934. [Google Scholar] [CrossRef]
- ASTM Standard G102-89; Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical. ASTM International: West Conshohocken, PE, USA, 2015.
- Salleh, E.M.; Zuhailawati, H.; Mohd Noor, S.N.F.; Othman, N.K. In vitro biodegradation and mechanical properties of Mg-Zn alloy and Mg-Zn-hydroxyapatite composite Produced by Mechanical Alloying for Potential Application in Bone Repair. Metall. Mater. Trans. A 2018, 49, 5888–5903. [Google Scholar] [CrossRef]
- Witte, F.; Hort, N.; Vogt, C.; Cohen, S.; Kainer, K.U.; Willumeit, R.; Feyerabend, F. Degradable biomaterials based on magnesium corrosion. Curr. Opin. Solid State Mater. Sci. 2008, 12, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Yu, G.; Zhang, E.; Pan, F.; Yang, K. In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. J. Biomed. Mater. Res. Part A 2007, 83, 703–711. [Google Scholar] [CrossRef]
- Wang, H.; Estrin, Y.; Zúberová, Z. Bio-corrosion of a magnesium alloy with different processing histories. Mater. Lett. 2008, 62, 2476–2479. [Google Scholar] [CrossRef]
- Suryanarayana, C.; Ivanov, E.; Boldyrev, V.V. The science and technology of mechanical alloying. Mater. Sci. Eng. 2001, 304–306, 151–158. [Google Scholar] [CrossRef]
- Cipriano, A.F.; Zhao, T.; Johnson, I.; Guan, R.G.; Garcia, S.; Liu, H. In vitro degradation of four magnesium–zinc–strontium alloys and their cytocompatibility with human embryonic stem cells. J. Mater. Sci. Mater. Med. 2013, 24, 989–1003. [Google Scholar] [CrossRef] [PubMed]
- Witte, F. The history of biodegradable magnesium implants: A review. Acta Biomater. 2010, 6, 1680–1692. [Google Scholar] [CrossRef] [PubMed]
Initial Powders | Average Particle Size (µm) | Morphology |
---|---|---|
Mg | 30 | Flake-like |
Zn | 5 | Spherical |
Ca | 20 | Irregular |
Composition | (wt. %) | ||
---|---|---|---|
Mg | Zn | Ca | |
Mg65–Zn30–Ca5 | 65.54 ± 1.23 | 29.32 ± 4.33 | 5.13 ± 3.11 |
Mg70–Zn25–Ca5 | 71.68 ± 2.97 | 25.32 ± 4.13 | 2.74 ± 3.01 |
Symbol | Angle (2 θ) | Element or Phase (Chemical Composition) |
---|---|---|
Δ | 47.76 | Mg |
Δ | 54.30 | Mg |
Δ | 57.30 | Mg |
Δ | 63.00 | Mg |
Δ | 68.55 | Mg |
Δ | 69.92 | Mg |
□ | 39.33 | Zn |
□ | 43.21 | Zn |
♦ | 32.05 | MgZn |
♦ | 34.74 | MgZn |
♦ | 37.12 | MgZn |
Sample | Ecorr (mV) | Icorr (mA/cm2) | CR (mm/year) |
---|---|---|---|
Mg | −1456.81 | 5.93 × 10−1 | 0.277 |
Mg65–Zn30–Ca5 | −1374.45 | 4.02 × 10−1 | 0.191 |
Mg70–Zn25–Ca5 | −1311.61 | 4.54 × 10−1 | 0.218 |
Specimen | Vickers Microhardness (Hv) |
---|---|
Mg | 52.70 ± 8 |
Mg65–Zn30–Ca5 | 72.80 ± 4 |
Mg70–Zn25–Ca5 | 79.90 ± 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzaga, S.; Molina, A.; Guardián, R.; Martínez, H.; Vélez, E.V.; Tapia, J.S.-O. Synthesis of Magnesium-Based Alloys by Mechanical Alloying for Implant Applications. Coatings 2023, 13, 260. https://doi.org/10.3390/coatings13020260
Gonzaga S, Molina A, Guardián R, Martínez H, Vélez EV, Tapia JS-O. Synthesis of Magnesium-Based Alloys by Mechanical Alloying for Implant Applications. Coatings. 2023; 13(2):260. https://doi.org/10.3390/coatings13020260
Chicago/Turabian StyleGonzaga, Sergio, Arturo Molina, René Guardián, Horacio Martínez, Edna Vázquez Vélez, and Jesús Santa-Olalla Tapia. 2023. "Synthesis of Magnesium-Based Alloys by Mechanical Alloying for Implant Applications" Coatings 13, no. 2: 260. https://doi.org/10.3390/coatings13020260
APA StyleGonzaga, S., Molina, A., Guardián, R., Martínez, H., Vélez, E. V., & Tapia, J. S. -O. (2023). Synthesis of Magnesium-Based Alloys by Mechanical Alloying for Implant Applications. Coatings, 13(2), 260. https://doi.org/10.3390/coatings13020260