Novel Method for Deposition of Gas-Tight SiC Coatings
Abstract
:1. Introduction
- -
- Isolation of the substrate material from contact with an oxidizing atmosphere in order to prevent corrosion;
- -
- Increasing the wear resistance of the surface of the product;
- -
- Increase in the strength of the product;
- -
- Surface engineering, etc.
2. Materials and Methods
3. Results and Discussion
3.1. Deposition of Protective SiC Coatings on the Carbon–Carbon Composite Materials and Graphites
3.2. Deposition of Protective SiC Coatings on SiC-C-Si and Siliconized Graphites
3.3. Deposition of SiC Coatings on SiC-C-MoSi2 Ceramic Products
3.4. Deposition of SiC Coatings on Products from SiC-Si Material
3.5. Deposition of SiC Coatings on SiC-C-MoSi2 Ceramic Products
4. Conclusions
- --
- The deposition rate is approximately two orders of magnitude higher;
- --
- The adhesion of the protective coating to the surface of a carbon- and/or silicon-containing material is significantly higher. This is because the process is carried out at a high temperature with the participation of carbon and silicon located directly in the substrate material;
- --
- Simpler technological equipment;
- --
- Low cost due to the speed of coating deposition and the use of more accessible and cheaper components compared to silicon-containing precursors.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raj, R. Fundamental research in structural ceramics for service near 2000 °C. J. Amer. Ceram. Soc. 1993, 9, 2147. [Google Scholar] [CrossRef]
- Elizarova, Y.A.; Zakharov, A.I. High-temperature protective coatings of the functional purpose. New Refract. 2020, 10, 52. [Google Scholar] [CrossRef]
- Filonov, K.N.; Kurlov, V.N.; Klassen, N.V.; Kudrenko, E.A.; Steinman, E.A. Peculiarities of nanostructured silicon carbide films and coatings obtained by novel technique. Bull. Russ. Ac. Sci. Phys. 2009, 73, 1374. [Google Scholar] [CrossRef]
- Locke, C.W. SiC Films and Coatings: Amorphous, Polycrystalline, and Single Crystal Forms: In Silicon Carbide Biotechnology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 379, Available online: http://books.google.com/books?hl=en&lr=&id=tdRnnGs0UsgC&oi=fnd&pg=PA17&dq=info%3 (accessed on 20 December 2022).
- Dhanaraj, G.; Dudley, M.; Chen, Y.; Ragothamachar, B.; Wu, B.; Zhang, H. Epitaxial ghrowth and characterization of silicon carbide films. J. Cryst. Growth 2006, 287, 344. [Google Scholar] [CrossRef]
- Zhang, W.G.; Hüttinger, K.J. CVD of SiC from methyltrichlorosilane. Part I: Deposition rates. Chem. Vapor Depos. 2001, 7, 167. [Google Scholar] [CrossRef]
- Park, K.-I.; Kim, J.-H.; Lee, H.-K.; Kim, D.K. High temperature mechanical properties of CVD-SiC thin films. Mod. Phys. Lett. B 2009, 23, 3877. [Google Scholar] [CrossRef]
- Powell, J.A.; Larkin, D.J.; Matus, L.G.; Choyke, W.J.; Bradshaw, J.L.; Henderson, L.; Yoganathan, M.; Yang, J.; Pirouz, P. Growth of high quality 6H-SiC epitaxial films on vicinal (0001) 6H-SiC wafers. Appl. Phys. Lett. 1990, 15, 1442. [Google Scholar] [CrossRef]
- Landry, C.C.; Barron, A.R. MOCVD of alumina-silica oxidation resistant coatings on carbon fibers. Carbon 1995, 33, 381. [Google Scholar] [CrossRef]
- Baklanova, N.I.; Zima, T.M.; Boronin, A.I.; Kosheev, S.V.; Titov, A.T.; Isaeva, N.V.; Graschenkov, D.V.; Solntsev, S.S. Protective ceramic multilayer coatings for carbon fibers. Surf. Coat. Technol. 2006, 201, 2313. [Google Scholar] [CrossRef]
- Han, M.X.; Zhou, W.; Zheng, D.H.; Tu, R.; Zhang, S.; Goto, T. High-speed deposition of SiC thick film by halide precursor. Key Eng. Mater. 2014, 616, 37. [Google Scholar] [CrossRef]
- Károlya, Z.; Bartha, C.; Mohai, I.; Balázsi, C.; Sajó, I.E.; Szépvölgyi, J. Deposition of silicon carbide and nitride based coatings by atmospheric plasma spraying. Int. J. Appl. Ceram. Technol. 2013, 10, 72. [Google Scholar] [CrossRef]
- Tului, M.; Giambi, B.; Lionetti, S.; Pulci, G.; Sarasini, F.; Valente, T. Silicon carbide based plasma sprayed coatings. Surf. Coat. Technol. 2012, 207, 182. [Google Scholar] [CrossRef]
- Wielage, B.; Wilden, J.; Schnick, T.; Wank, A. Development of SiC-composite feedstock for HVOF applications. Proc. Int. Therm. Spray Conf. 2002, 2002, 749. [Google Scholar] [CrossRef]
- Tang, H.D.; Tan, S.H.; Huang, Z.R. SiC coatings deposited by RF magnetron sputtering. Key Eng. Mater. 2007, 280–283, 1309. [Google Scholar] [CrossRef]
- Ordine, A.; Achete, C.; Mattos, O.; Margarit, I.C.P.; Camargo, S.S., Jr.; Hirsch, T. Magnetron sputtered SiC coatings as corrosion protection barriers for Steels. Surf. Coat. Technol. 2000, 133–134, 583. [Google Scholar] [CrossRef]
- Gadiou, R.; Serverin, S.; Gibot, P.; Vix-Guterl, C. The synthesis of SiC and TiC protective coatings for carbon fibers by the reactive replica process. J. Europ. Ceram. Soc. 2008, 28, 2265. [Google Scholar] [CrossRef]
- Kerans, R.J.; Hay, R.S.; Parthasarathy, T.A.; Cinibulk, M.K. Interface design for oxidation-resistant ceramic composites. J. Amer. Ceram. Soc. 2002, 85, 2599. [Google Scholar] [CrossRef]
- Zhitomirsky, I.; Petric, A. Cathodic electrodeposition of ceramic coatings for oxidation protection of materials at elevated temperatures. Can. J. Metal. Mater. Sci. 2002, 41, 497. [Google Scholar] [CrossRef]
- Sheveleva, I.V.; Zemskova, L.A.; Voit, A.A.; Zheleznov, S.V.; Kuryavyi, V.G. Relationship between electrochemical and structural properties of modified carbon fibers. Russ. J. Appl. Chem. 2007, 80, 240. [Google Scholar] [CrossRef]
- Daves, W.; Krauss, A.; Behnel, N.; Häublein, V.; Bauer, A.; Frey, L. Amorphous silicon carbide thin films (a-SiC:H) deposited by plasma-enhanced chemical vapor deposition as protective coatings for harsh environment applications. Thin Solid Films 2011, 519, 5892. [Google Scholar] [CrossRef]
- Loboda, J.; Seifferly, J.A.; Dall, F.C. Plasma-enhanced chemical vapor deposition of a-SiC:H films from organosilicon precursors. J. Vacuum Sci. Technol. A 1994, 12, 90. [Google Scholar] [CrossRef]
- Dai, P.Y.; Wang, Y.Z.; Liu, G.L.; Wang, B.; Shi, Y.G.; Yang, J.F.; Qiao, G.J.; Wang, H.J. Fabrication of highly dense pure SiC ceramics via the HTPVT method. Acta Mater. 2011, 59, 6257. [Google Scholar] [CrossRef]
- Paccaud, O.; Derré, A. Silicon carbide coating by reactive pack cementation—Part II: Silicon monoxide/carbon reaction. Chem. Vapor Dep. 2000, 6, 41. [Google Scholar] [CrossRef]
- Kablov, E.N.; Kuznetcov, N.T.; Sarkisov, P.D.; Graschenkov, D.V.; Sevast’yanov, V.G.; Orlova, L.A.; Simonenko, E.P. Method for Protecting Carbon-Containing Materials with Silicon Carbide. Patent RU 2350580, 27 March 2009. [Google Scholar]
- Nakamura, M.; Tojo, T.; Miyamoto, Y. Synthesis of ceramic bonded carbon using SiC-coated carbon particles and spark plasma sintering. Int. J. Appl. Ceram. Technol. 2012, 9, 1076. [Google Scholar] [CrossRef]
- Lessing, P.A.; Erickson, A.W.; Kunerth, D.C. Thermal cycling of siliconized-SiC at high temperatures. J. Mater. Sci. 2001, 36, 1389. [Google Scholar] [CrossRef]
- Krödel, M.R.; Ozaki, T. HB-Cesic composite for space optics and structures. Proc. SPIE 2007, 6666, 1. [Google Scholar] [CrossRef]
- Kurlov, V.N.; Shikunova, I.A.; Shikunov, S.L.; Ershov, A.E. Method of Applying Gastight Coating of Silicon Carbide. Patent RU 2601049, 27 October 2016. [Google Scholar]
- Shikunov, S.L.; Kurlov, V.N. SiC-based composite materials obtained by siliconizing carbon matrices. Tech. Phys. 2017, 62, 1869. [Google Scholar] [CrossRef]
- Kurlov, V.N.; Shikunov, S.L.; Shikunova, I.A. Composition of Carbon Blank for Obtaining SiC/C/Si Ceramics and Method for Obtaining SiC/C/Si Products. Patent RU 2573146, 24 December 2014. [Google Scholar]
- Kurlov, V.N.; Shikunova, I.A.; Shikunov, S.L. High Temperature Probe for Measurements in Gas Flow. Patent RU 165789, 10 November 2016. [Google Scholar]
- Kurlov, V.N.; Shikunov, S.L.; Shikunova, I.A.; Surmin, N.V.; Tihomirova, E.V.; Grishihin, S.A. Thermocouple Comb for Measuring the Temperature Field of a Gas Flow. Patent RU 160313, 10 March 2016. [Google Scholar]
- McKamey, C.G.; Tortorelli, P.F.; DeVan, J.H.; Carmichael, C.A. A Study of pest oxidation in polycrystalline MoSi2. J. Mater. Res. 1992, 7, 2747. [Google Scholar] [CrossRef]
- Meschter, P.J. Low temperature oxidation of molybdenum disilicide. Metall. Trans. A 1992, 23, 1763. [Google Scholar] [CrossRef]
- Mainzer, B.; Lin, C.; Frieß, M.; Riedel, R.; Riesch, J.; Feichtmayer, A.; Fuhr, M.; Almanstötter, J.; Koch, D. Novel ceramic matrix composites with tungsten and molybdenum fiber reinforcement. J. Eur. Ceram. Soc. 2021, 41, 3030. [Google Scholar] [CrossRef] [Green Version]
- Kaledin, A.V.; Shikunov, S.L.; Straumal, B.B.; Kurlov, V.N. SiC-based composite material reinforced by molybdenum wire. Metals 2023, 13, 313. [Google Scholar] [CrossRef]
- Kurlov, V.N.; Shikunov, S.L.; Shikunova, I.A. Method for Obtaining Products from Silicon Carbide Ceramics. Patent RU 2740984, 22 January 2021. [Google Scholar]
Substrate Material | Carbon from the Substrate | Silicon from the Substrate | Carbon from the External Source | Silicon from the External Source |
---|---|---|---|---|
CCCMs and graphite | yes | no | yes | yes |
SiC-C-Si, siliconized graphites | yes | yes | yes | yes |
SiC-C-MoSi2 | yes | no | yes | yes |
Modified RSiC | no | yes | yes | yes |
Metals and alloys | no | no | yes | yes |
Sample Description | Weight of Sample before Annealing, g | Weight of Sample after Annealing, g | Weight Loss, % |
---|---|---|---|
Sample 1, without coating | 29.35 | 18.76 | 36.08 |
Sample 2, without coating | 25.19 | 16.33 | 35.17 |
Sample 3, with protective SiC coating | 28.82 | 28.68 | 0.48 |
Sample 4, with protective SiC coating | 24.21 | 24.05 | 0.66 |
Property | Without Coating | With Coating, 20 °C | With Coating, 1000 °C |
---|---|---|---|
Compression strength, MPa | 398 ± 19 | 472 ± 11 | 483 ± 8 |
Bending strength, MPa | 126 ± 6 | 204 ± 11 | 203 ± 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shikunov, S.; Kaledin, A.; Shikunova, I.; Straumal, B.; Kurlov, V. Novel Method for Deposition of Gas-Tight SiC Coatings. Coatings 2023, 13, 354. https://doi.org/10.3390/coatings13020354
Shikunov S, Kaledin A, Shikunova I, Straumal B, Kurlov V. Novel Method for Deposition of Gas-Tight SiC Coatings. Coatings. 2023; 13(2):354. https://doi.org/10.3390/coatings13020354
Chicago/Turabian StyleShikunov, Sergey, Alexei Kaledin, Irina Shikunova, Boris Straumal, and Vladimir Kurlov. 2023. "Novel Method for Deposition of Gas-Tight SiC Coatings" Coatings 13, no. 2: 354. https://doi.org/10.3390/coatings13020354
APA StyleShikunov, S., Kaledin, A., Shikunova, I., Straumal, B., & Kurlov, V. (2023). Novel Method for Deposition of Gas-Tight SiC Coatings. Coatings, 13(2), 354. https://doi.org/10.3390/coatings13020354