Strain Modulation of Microstructure, Magnetic Domains, and Magnetic Properties of Ti/Fe/Ni81Fe19/Fe/Ti Multilayer Thin Films
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
3.1. Surface Morphology Analysis
3.2. Static Magnetic Property
3.3. Magnetic Domain Analysis
3.4. High-Frequency Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Su, Z.; Bennett, S.; Hu, B.; Chen, Y.; Harris, V.G. Magnetic and microwave properties of U-type hexaferrite films with high remanence and low ferromagnetic resonance linewidth. J. Appl. Phys. 2014, 115, 17A504. [Google Scholar] [CrossRef]
- Osaka, T.; Takai, M.; Hayashi, K.; Ohashi, K.; Saito, M.; Yamada, K. A Soft Magnetic CoNiFe film with high saturation magnetic flux density and low coercivity. Nature 1998, 392, 796–798. [Google Scholar] [CrossRef]
- Chen, X.; Ma, Y.G.; Ong, C.K. Magnetic Anisotropy and resonance frequency of patterned soft magnetic strips. J. Appl. Phys. 2008, 104, 013921. [Google Scholar] [CrossRef]
- Belyaev, B.A.; Lemberg, K.V.; Serzhantov, A.M.; Leksikov, A.A.; Bal’va, Y.F.; Leksikov, A.A. Magnetically tunable resonant phase shifters for UHF band. IEEE Trans. Magn. 2015, 51, 1–5. [Google Scholar] [CrossRef]
- Sharma, V.; Khivintsev, Y.; Harward, I.; Kuanr, B.K.; Celinski, Z. Fabrication and characterization of microwave phase shifter in microstrip geometry with Fe film as the frequency tuning element. J. Magn. Magn. Mater. 2019, 489, 165412. [Google Scholar] [CrossRef]
- Li, Q.; Chen, Y.; Yu, C.; Young, L.; Spector, J.; Harris, V.G. Emerging Magnetodielectric Materials for 5G Communications: 18H Hexaferrites. Acta Mater. 2022, 231, 117854. [Google Scholar] [CrossRef]
- Kuanr, B.K.; Veerakumar, V.; Camley, R.E.; Celinski, Z. Permalloy (NiFe) nanometer square-antidot arrays: Dynamic modes and use as a monolithic microwave band-pass filter. J. Magn. Magn. Mater. 2019, 484, 272–278. [Google Scholar] [CrossRef]
- Lu, Q.; Yu, B.; Hu, Z.; He, Y.; Hu, T.; Zhao, Y.; Wang, Z.; Zhou, Z.; Cui, W.; Liu, M. Surface roughness evolution induced low secondary electron yield in carbon coated Ag/Al substrates for space microwave devices. Appl. Surf. Sci. 2020, 501, 144236. [Google Scholar] [CrossRef]
- Paiva, D.V.M.; Silva, M.A.S.; Sombra, A.S.B.; Fechine, P.B.A. Properties of the Sr3MoO6 electroceramic for RF/microwave devices. J. Alloys Compd. 2018, 748, 766–773. [Google Scholar] [CrossRef]
- Talapatra, A.; Arout Chelvane, J.; Satpati, B.; Kumar, S.; Mohanty, J. Tunable magnetic domains and depth resolved microstructure in Gd-Fe thin films. J. Alloys Compd. 2019, 774, 1059–1068. [Google Scholar] [CrossRef]
- Streubel, R.; Lee, J.; Makarov, D.; Im, M.; Karnaushenko, D.; Han, L.; Schäfer, R.; Fischer, P.; Kim, S.; Schmidt, O.G. Magnetic microstructure of rolled-up single-layer ferromagnetic nanomembranes. Adv. Mater. 2014, 26, 316–323. [Google Scholar] [CrossRef]
- Zheng, C.; Kirmse, H.; Long, J.; Laughlin, D.E.; McHenry, M.E.; Neumann, W. Investigation of (Fe, Co)NbB-based nanocrystalline soft magnetic alloys by lorentz microscopy and off-axis electron holography. Microsc. Microanal. 2015, 21, 498–509. [Google Scholar] [CrossRef]
- Shen, C.Y.; Yeh, P.Y.; Yuan, F.T.; Chang, H.W.; Lee, M.Y.; Lin, D.Y.; Wang, C.R. Improved perpendicular magnetic properties of pulsed-dc-sputtered FePt thin films. Surf. Coat. Technol. 2018, 350, 795–800. [Google Scholar] [CrossRef]
- Jin, S.; Zhu, W.; Tiefel, T.H. Fe-Cr-N soft magnetic thin films. J. Appl. Phys. 1997, 81, 4042–4044. [Google Scholar] [CrossRef]
- Han, X.M.; Ma, J.H.; Wang, Z.; Yao, Y.L.; Zuo, Y.L.; Xi, L.; Xue, D.S. Tunable in-plane uniaxial anisotropy and the magnetization reversal mechanism of patterned high-frequency soft magnetic FeTa strips. J. Phys. D Appl. Phys. 2013, 46, 485004. [Google Scholar] [CrossRef]
- Phuoc, N.N.; Ong, C.K. Observation of magnetic anisotropy increment with temperature in composition-graded FeCoZr thin films. Appl. Phys. Lett. 2013, 102, 212406. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, L.; Shen, G. Recent advances in smart wearable sensing systems. Adv. Mater. Technol. 2018, 3, 1800444. [Google Scholar] [CrossRef]
- Liu, C.; Cai, J.; Li, X.; Zhang, W.; Zhang, D. Flexible and tunable electromagnetic meta-atom based on silver nanowire networks. Mater. Des. 2019, 181, 107982. [Google Scholar] [CrossRef]
- Yang, S.; Liu, P.; Yang, M.; Wang, Q.; Song, J.; Dong, L. From Flexible and Stretchable Meta-Atom to Metamaterial: A Wearable Microwave Meta-Skin with Tunable Frequency Selective and Cloaking Effects. Sci Rep. 2016, 6, 21921. [Google Scholar] [CrossRef] [PubMed]
- Gutruf, P.; Zou, C.; Withayachumnankul, W.; Bhaskaran, M.; Sriram, S.; Fumeaux, C. Mechanically Tunable Dielectric Resonator Metasurfaces at Visible Frequencies. ACS. Nano 2016, 10, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Shen, Y.; Xiao, G.; She, X.; Wang, J.; Jin, C. Mechanically tunable sub-10 nm metal gap by stretching PDMS substrate. Nanotechnology 2017, 28, 075301. [Google Scholar] [CrossRef]
- Li, J.; Shah, C.M.; Withayachumnankul, W.; Ung, B.S.-Y.; Mitchell, A.; Sriram, S.; Bhaskaran, M.; Chang, S.; Abbott, D. Mechanically tunable terahertz metamaterials. Appl. Phys. Lett. 2013, 102, 121101. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, B.; Yang, H.; Xu, X.; Liu, Y.; Sun, D.; Xia, L.; Zhan, Q.; Chen, B.; Tang, M.; et al. Magneto-mechanical coupling effect in amorphous Co40Fe40B20 films grown on flexible substrates. Appl. Phys. Lett. 2014, 105, 103504. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.; Zhang, Y.; Fu, S.; Chai, G.; Cao, C.; Zhu, X.; Guo, Y.; Cheng, W.; Jiang, D.; et al. Stretching-tunable high-frequency magnetic properties of wrinkled CoFeB films grown on PDMS. ACS. Appl. Mater. Interfaces 2021, 13, 29975–29983. [Google Scholar] [CrossRef]
- Dai, G.; Zhan, Q.; Liu, Y.; Yang, H.; Zhang, X.; Chen, B.; Li, R.-W. Mechanically tunable magnetic properties of Fe81Ga19 films grown on flexible substrates. Appl. Phys. Lett. 2012, 100, 122407. [Google Scholar] [CrossRef]
- Kittel, C. Interpretation of anomalous larmor frequencies in ferromagnetic resonance experiment. Phys. Rev. 1947, 71, 270–271. [Google Scholar] [CrossRef]
- Li, Y.F.; Li, E.; Zhang, Y.P.; Zhao, C.; Yang, T. Ultra-wideband variable temperature measurement system for complex permeability of magnetic thin film Fe66Co17B16Si1. IEEE Trans. Magn. 2018, 54, 1–7. [Google Scholar] [CrossRef]
- Kurlyandskaya, G.V.; Fernández, E.; Svalov, A.; Burgoa Beitia, A.; García-Arribas, A.; Larrañaga, A. Flexible Thin Film Magnetoimpedance Sensors. J. Magn. Magn. Mater. 2016, 415, 91–96. [Google Scholar] [CrossRef]
- Neudert, A.; McCord, J.; Schäfer, R.; Schultz, L. Dynamic anisotropy in amorphous CoZrTa films. J. Appl. Phys. 2004, 95, 6595–6597. [Google Scholar] [CrossRef]
- Wu, C.; Wang, W.; Li, Q.; Wei, M.; Luo, Q.; Fan, Y.; Jiang, X.; Lan, Z.; Jiao, Z.; Tian, Y.; et al. Barium Hexaferrites with Narrow Ferrimagnetic Resonance Linewidth Tailored by Site-controlled Cu Doping. J. Am. Ceram. Soc. 2022, 105, 7492–7501. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, J.; Wang, J.; Hong, B.; Peng, X.; Wang, X.; Ge, H.; Hu, J. Effects of gradient diameter on magnetic properties of FeNi alloys nanowires arrays. J. Magn. Magn. Mater. 2020, 499, 166207. [Google Scholar] [CrossRef]
- Phuoc, N.N.; Xu, F.; Ong, C.K. Tuning magnetization dynamic properties of Fe–SiO2 multilayers by oblique deposition. J. Appl. Phys. 2009, 105, 113926. [Google Scholar] [CrossRef]
- Phuoc, N.N.; Xu, F.; Ong, C.K. Ultrawideband microwave noise filter: Hybrid antiferromagnet/ferromagnet exchange-coupled multilayers. Appl. Phys. Lett. 2009, 94, 092505. [Google Scholar] [CrossRef]
- Agra, K.; Mori, T.J.A.; Dorneles, L.S.; Escobar, V.M.; Silva, U.C.; Chesman, C.; Bohn, F.; Corrêa, M.A. Dynamic Magnetic Behavior in Non-Magnetostrictive Multilayered Films Grown on Glass and Flexible Substrates. J. Magn. Magn. Mater. 2014, 355, 136–141. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Ma, Z.; Li, Z.; Du, Y.; Yang, J.; Wu, C.; Li, Q.; Jiang, X.; Wang, C.; Yu, Z.; et al. Strain Modulation of Microstructure, Magnetic Domains, and Magnetic Properties of Ti/Fe/Ni81Fe19/Fe/Ti Multilayer Thin Films. Coatings 2023, 13, 363. https://doi.org/10.3390/coatings13020363
He Z, Ma Z, Li Z, Du Y, Yang J, Wu C, Li Q, Jiang X, Wang C, Yu Z, et al. Strain Modulation of Microstructure, Magnetic Domains, and Magnetic Properties of Ti/Fe/Ni81Fe19/Fe/Ti Multilayer Thin Films. Coatings. 2023; 13(2):363. https://doi.org/10.3390/coatings13020363
Chicago/Turabian StyleHe, Zongsheng, Zenan Ma, Ziyu Li, Yangzhong Du, Jun Yang, Chuanjian Wu, Qifan Li, Xiaona Jiang, Chaoming Wang, Zhong Yu, and et al. 2023. "Strain Modulation of Microstructure, Magnetic Domains, and Magnetic Properties of Ti/Fe/Ni81Fe19/Fe/Ti Multilayer Thin Films" Coatings 13, no. 2: 363. https://doi.org/10.3390/coatings13020363
APA StyleHe, Z., Ma, Z., Li, Z., Du, Y., Yang, J., Wu, C., Li, Q., Jiang, X., Wang, C., Yu, Z., Lan, Z., & Sun, K. (2023). Strain Modulation of Microstructure, Magnetic Domains, and Magnetic Properties of Ti/Fe/Ni81Fe19/Fe/Ti Multilayer Thin Films. Coatings, 13(2), 363. https://doi.org/10.3390/coatings13020363