Combined HF+MW CVD Approach for the Growth of Polycrystalline Diamond Films with Reduced Bow
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. SEM Characterization
3.2. Raman Spectroscopy
3.3. Bow of the PCD-Si Samples
3.4. Roughness and Thermal Conductivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Inyushkin, A.V.; Taldenkov, A.N.; Ralchenko, V.G.; Bolshakov, A.P.; Koliadin, A.V.; Katrusha, A.N. Thermal Conductivity of High Purity Synthetic Single Crystal Diamonds. Phys. Rev. B 2018, 97, 144305. [Google Scholar] [CrossRef]
- Hou, G.-Y.; Shu, S.-L.; Feng, J.; Popp, A.; Schmidt, B.; Lu, H.-Y.; Wang, L.-J.; Tian, S.-C.; Tong, C.-Z.; Wang, L.-J. High Power (>27 W) Semiconductor Disk Laser Based on Pre-Metalized Diamond Heat-Spreader. IEEE Photonics J. 2019, 11, 1501908. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Li, Y.; Liu, Y. Production and Heat Properties of an X-Ray Reflective Anode Based on a Diamond Heat Buffer Layer. Materials 2020, 13, 241. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhao, J.; Huang, Y.; Zhu, X.; Fu, W.; Li, C.; Miao, J. A Diamond Made Microchannel Heat Sink for High-Density Heat Flux Dissipation. Appl. Therm. Eng. 2019, 158, 113804. [Google Scholar] [CrossRef]
- Nosaeva, K.; Al-Sawaf, T.; John, W.; Stoppel, D.; Rudolph, M.; Schmückle, F.-J.; Janke, B.; Krüger, O.; Krozer, V.; Heinrich, W.; et al. Multifinger Indium Phosphide Double-Heterostructure Transistor Circuit Technology with Integrated Diamond Heat Sink Layer. IEEE Trans. Electron Devices 2016, 63, 1846–1852. [Google Scholar] [CrossRef]
- Karczemska, A.; Witkowski, D.; Ralchenko, V.; Bolshakov, A.; Sovyk, D.; Lysko, J.; Hassard, J. Diamond Microfluidic Devices Manufactured with the Replica Method. In Proceedings of the 2009 5th International Conference on Perspective Technologies and Methods in MEMS Design, Lviv, Ukraine, 22–24 April 2009; pp. 17–19. [Google Scholar]
- Zheng, Y.; Jia, Y.; Liu, J.; Wei, J.; Chen, L.; An, K.; Yan, X.; Zhang, X.; Ye, H.; Ouyang, X. Surface Etching Evolution of Mechanically Polished Single Crystal Diamond with Subsurface Cleavage in Microwave Hydrogen Plasma: Topography, State and Electrical Properties. Vacuum 2022, 199, 110932. [Google Scholar] [CrossRef]
- Alcantar-Peña, J.J.; de Obaldia, E.; Tirado, P.; Arellano-Jimenez, M.J.; Ortega Aguilar, J.E.; Veyan, J.F.; Yacaman, M.J.; Koudriavtsev, Y.; Auciello, O. Polycrystalline Diamond Films with Tailored Micro/Nanostructure/Doping for New Large Area Film-Based Diamond Electronics. Diam. Relat. Mater. 2019, 91, 261–271. [Google Scholar] [CrossRef]
- Shikata, S. Single Crystal Diamond Wafers for High Power Electronics. Diam. Relat. Mater. 2016, 65, 168–175. [Google Scholar] [CrossRef]
- Jagannadham, K. Multilayer Diamond Heat Spreaders for Electronic Power Devices. Solid-State Electron. 1998, 42, 2199–2208. [Google Scholar] [CrossRef]
- Tadjer, M.J.; Anderson, T.J.; Hobart, K.D.; Feygelson, T.I.; Caldwell, J.D.; Eddy, C.R.; Kub, F.J.; Butler, J.E.; Pate, B.; Melngailis, J. Reduced Self-Heating in AlGaN/GaN HEMTs Using Nanocrystalline Diamond Heat-Spreading Films. IEEE Electron Device Lett. 2012, 33, 23–25. [Google Scholar] [CrossRef]
- Amano, H.; Baines, Y.; Beam, E.; Borga, M.; Bouchet, T.; Chalker, P.R.; Charles, M.; Chen, K.J.; Chowdhury, N.; Chu, R.; et al. The 2018 GaN Power Electronics Roadmap. J. Phys. D: Appl. Phys. 2018, 51, 163001. [Google Scholar] [CrossRef]
- Qin, H.; Luan, X.; Feng, C.; Yang, D.; Zhang, G. Mechanical, Thermodynamic and Electronic Properties of Wurtzite and Zinc-Blende GaN Crystals. Materials 2017, 10, 1419. [Google Scholar] [CrossRef] [PubMed]
- Chernykh, M.Y.; Andreev, A.A.; Ezubchenko, I.S.; Chernykh, I.A.; Mayboroda, I.O.; Kolobkova, E.M.; Khrapovitskaya, Y.V.; Grishchenko, J.V.; Perminov, P.A.; Sedov, V.S.; et al. GaN-Based Heterostructures with CVD Diamond Heat Sinks: A New Fabrication Approach towards Efficient Electronic Devices. Appl. Mater. Today 2022, 26, 101338. [Google Scholar] [CrossRef]
- Zhou, Y.; Ramaneti, R.; Anaya, J.; Korneychuk, S.; Derluyn, J.; Sun, H.; Pomeroy, J.; Verbeeck, J.; Haenen, K.; Kuball, M. Thermal Characterization of Polycrystalline Diamond Thin Film Heat Spreaders Grown on GaN HEMTs. Appl. Phys. Lett. 2017, 111, 041901. [Google Scholar] [CrossRef]
- Mu, F.; He, R.; Suga, T. Room Temperature GaN-Diamond Bonding for High-Power GaN-on-Diamond Devices. Scr. Mater. 2018, 150, 148–151. [Google Scholar] [CrossRef]
- Ohki, T.; Yamada, A.; Minoura, Y.; Makiyama, K.; Kotani, J.; Ozaki, S.; Sato, M.; Okamoto, N.; Joshin, K.; Nakamura, N. An over 20-W/Mm S-Band InAlGaN/GaN HEMT with SiC/Diamond-Bonded Heat Spreader. IEEE Electron Device Lett. 2018, 40, 287–290. [Google Scholar] [CrossRef]
- Arnault, J.-C.; Saada, S.; Ralchenko, V. Chemical Vapor Deposition Single-Crystal Diamond: A Review. Phys. Status Solidi–Rapid Res. Lett. 2022, 16, 2100354. [Google Scholar] [CrossRef]
- Ralchenko, V.G.; Inyushkin, A.V.; Shu, G.; Dai, B.; Karateev, I.A.; Bolshakov, A.P.; Khomich, A.A.; Ashkinazi, E.E.; Zavedeev, E.V.; Han, J. Thermal Conductivity of Diamond Mosaic Crystals Grown by Chemical Vapor Deposition: Thermal Resistance of Junctions. Phys. Rev. Appl. 2021, 16, 014049. [Google Scholar] [CrossRef]
- Liu, N.; Sugawara, K.; Yoshitaka, N.; Yamada, H.; Takeuchi, D.; Akabane, Y.; Fujino, K.; Kawai, K.; Arima, K.; Yamamura, K. Damage-Free Highly Efficient Plasma-Assisted Polishing of a 20-Mm Square Large Mosaic Single Crystal Diamond Substrate. Sci. Rep. 2020, 10, 19432. [Google Scholar] [CrossRef]
- Sedov, V.; Martyanov, A.; Altakhov, A.; Popovich, A.; Shevchenko, M.; Savin, S.; Zavedeev, E.; Zanaveskin, M.; Sinogeykin, A.; Ralchenko, V.; et al. Effect of Substrate Holder Design on Stress and Uniformity of Large-Area Polycrystalline Diamond Films Grown by Microwave Plasma-Assisted CVD. Coatings 2020, 10, 939. [Google Scholar] [CrossRef]
- Liang, Y.; Zheng, Y.; Wei, J.; Jia, X.; Zhu, X.; An, K.; Liu, J.; Chen, L.; Li, C. Effect of Grain Boundary on Polycrystalline Diamond Polishing by High-Speed Dynamic Friction. Diam. Relat. Mater. 2021, 117, 108461. [Google Scholar] [CrossRef]
- Popovich, A.F.; Ralchenko, V.G.; Balla, V.K.; Mallik, A.K.; Khomich, A.A.; Bolshakov, A.P.; Sovyk, D.N.; Ashkinazi, E.E.; Yurov, V.Y. Growth of 4″ diameter Polycrystalline Diamond Wafers with High Thermal Conductivity by 915 MHz Microwave Plasma Chemical Vapor Deposition. Plasma Sci. Technol. 2017, 19, 035503. [Google Scholar] [CrossRef]
- Komlenok, M.S.; Dezhkina, M.A.; Sedov, V.S.; Klimenko, O.A.; Dyakov, S.A.; Gippius, N.A. Laser Ablated Nanocrystalline Diamond Membrane for Infrared Applications. Sensors 2022, 22, 829. [Google Scholar] [CrossRef] [PubMed]
- Komlenok, M.; Pashinin, V.; Sedov, V.; Konov, V. Femtosecond and Nanosecond Laser Polishing of Rough Polycrystalline Diamond. Laser Phys. 2022, 32, 084003. [Google Scholar] [CrossRef]
- Sood, A.; Cheaito, R.; Bai, T.; Kwon, H.; Wang, Y.; Li, C.; Yates, L.; Bougher, T.; Graham, S.; Asheghi, M. Direct Visualization of Thermal Conductivity Suppression Due to Enhanced Phonon Scattering near Individual Grain Boundaries. Nano Lett. 2018, 18, 3466–3472. [Google Scholar] [CrossRef]
- Anaya, J.; Bai, T.; Wang, Y.; Li, C.; Goorsky, M.; Bougher, T.L.; Yates, L.; Cheng, Z.; Graham, S.; Hobart, K.D.; et al. Simultaneous Determination of the Lattice Thermal Conductivity and Grain/Grain Thermal Resistance in Polycrystalline Diamond. Acta Mater. 2017, 139, 215–225. [Google Scholar] [CrossRef]
- Wort, C.J.H.; Sweeney, C.G.; Cooper, M.A.; Scarsbrook, G.A.; Sussmann, R.S. Thermal Properties of Bulk Polycrystalline CVD Diamond. Diam. Relat. Mater. 1994, 3, 1158–1167. [Google Scholar] [CrossRef]
- Hartmann, J.; Voigt, P.; Reichling, M. Measuring Local Thermal Conductivity in Polycrystalline Diamond with a High Resolution Photothermal Microscope. J. Appl. Phys. 1997, 81, 2966–2972. [Google Scholar] [CrossRef]
- Ralchenko, V.G.; Smolin, A.A.; Konov, V.I.; Sergeichev, K.F.; Sychov, I.A.; Vlasov, I.I.; Migulin, V.V.; Voronina, S.V.; Khomich, A.V. Large-Area Diamond Deposition by Microwave Plasma. Diam. Relat. Mater. 1997, 6, 417–421. [Google Scholar] [CrossRef]
- Sedov, V.S.; Martyanov, A.K.; Khomich, A.A.; Savin, S.S.; Zavedeev, E.V.; Ralchenko, V.G. Deposition of Diamond Films on Si by Microwave Plasma CVD in Varied CH4-H2 Mixtures: Reverse Nanocrystalline-to-Microcrystalline Structure Transition at Very High Methane Concentrations. Diam. Relat. Mater. 2020, 109, 108072. [Google Scholar] [CrossRef]
- Sedov, V.; Ralchenko, V.; Khomich, A.; Vlasov, I.; Vul, A.; Savin, S.; Goryachev, A.; Konov, V. Si-Doped Nano-and Microcrystalline Diamond Films with Controlled Bright Photoluminescence of Silicon-Vacancy Color Centers. Diam. Relat. Mater. 2015, 56, 23–28. [Google Scholar] [CrossRef]
- Sedov, V.; Martyanov, A.; Savin, S.; Bolshakov, A.; Bushuev, E.; Khomich, A.; Kudryavtsev, O.; Krivobok, V.; Nikolaev, S.; Ralchenko, V. Growth of Polycrystalline and Single-Crystal CVD Diamonds with Bright Photoluminescence of Ge-V Color Centers Using Germane GeH4 as the Dopant Source. Diam. Relat. Mater. 2018, 90, 47–53. [Google Scholar] [CrossRef]
- Sedov, V.S.; Martyanov, A.K.; Khomich, A.A.; Savin, S.S.; Voronov, V.V.; Khmelnitskiy, R.A.; Bolshakov, A.P.; Ralchenko, V.G. Co-Deposition of Diamond and β-SiC by Microwave Plasma CVD in H2-CH4-SiH4 Gas Mixtures. Diam. Relat. Mater. 2019, 98, 107520. [Google Scholar] [CrossRef]
- Popovich, A.; Martyanov, A.; Khomich, A.; Fedotov, P.; Savin, S.; Sedov, V.; Ralchenko, V. CVD Diamond-SiC Composite Films: Structure and Electrical Properties. Diam. Relat. Mater. 2022, 125, 108975. [Google Scholar] [CrossRef]
- Ralchenko, V.; Sedov, V.; Martyanov, A.; Voronov, V.; Savin, S.; Khomich, A.; Shevchenko, M.; Bolshakov, A. Diamond-Germanium Composite Films Grown by Microwave Plasma CVD. Carbon 2022, 190, 10–21. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Herrling, D.; Meyer, F.; Burmeister, F.; Nebel, C.E.; Ambacher, O.; Lebedev, V. Influence of Substrate Holder Configurations on Bias Enhanced Nucleation Area for Diamond Heteroepitaxy: Toward Wafer-Scale Single-Crystalline Diamond Synthesis. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2019, 37, 021207. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, L.; Shao, S.; Huang, K.; An, K.; Zheng, Y.; Liu, J.; Wei, J.; Li, C. The 7-in. Freestanding Diamond Thermal Conductive Film Fabricated by DC Arc Plasma Jet CVD with Multi-Stage Magnetic Fields. Diam. Relat. Mater. 2022, 122, 108812. [Google Scholar] [CrossRef]
- Fuentes-Fernandez, E.M.A.; Alcantar-Peña, J.J.; Lee, G.; Boulom, A.; Phan, H.; Smith, B.; Nguyen, T.; Sahoo, S.; Ruiz-Zepeda, F.; Arellano-Jimenez, M.J.; et al. Synthesis and Characterization of Microcrystalline Diamond to Ultrananocrystalline Diamond Films via Hot Filament Chemical Vapor Deposition for Scaling to Large Area Applications. Thin Solid Film. 2016, 603, 62–68. [Google Scholar] [CrossRef]
- Linnik, S.A.; Gaydaychuk, A.V.; Okhotnikov, V.V. Improvement to the Adhesion of Polycrystalline Diamond Films on WC-Co Cemented Carbides through Ion Etching of Loosely Bound Growth Centers. Surf. Coat. Technol. 2018, 334, 227–232. [Google Scholar] [CrossRef]
- Baba, K.; Aikawa, Y.; Shohata, N. Thermal Conductivity of Diamond Films. J. Appl. Phys. 1991, 69, 7313–7315. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Wang, X.; Sun, F. Effects of Carbon Concentration and Gas Pressure with Hydrogen-Rich Gas Chemistry on Synthesis and Characterizations of HFCVD Diamond Films on WC-Co Substrates. Surf. Coat. Technol. 2021, 409, 126839. [Google Scholar] [CrossRef]
- Martins, R.L.; Damm, D.D.; Volu, R.M.; Pinheiro, R.A.; Rosa, F.M.; Trava-Airoldi, V.J.; De Vasconcelos, G.; Barquete, D.M.; Corat, E.J. Laser Cladding of Vanadium Carbide Interlayer for CVD Diamond Growth on Steel Substrate. Surf. Coat. Technol. 2021, 421, 127387. [Google Scholar] [CrossRef]
- Van der Drift, A. Evolutionary Selection, a Principle Governing Growth Orientation in Vapour-Deposited Layers. Philips. Res. Rep. 1967, 22, 267. [Google Scholar]
- Podgursky, V.; Bogatov, A.; Sedov, V.; Sildos, I.; Mere, A.; Viljus, M.; Buijnsters, J.G.; Ralchenko, V. Growth Dynamics of Nanocrystalline Diamond Films Produced by Microwave Plasma Enhanced Chemical Vapor Deposition in Methane/Hydrogen/Air Mixture: Scaling Analysis of Surface Morphology. Diam. Relat. Mater. 2015, 58, 172–179. [Google Scholar] [CrossRef]
- Podgursky, V.; Bogatov, A.; Yashin, M.; Viljus, M.; Bolshakov, A.P.; Sedov, V.; Volobujeva, O.; Mere, A.; Raadik, T.; Ralchenko, V. A Comparative Study of the Growth Dynamics and Tribological Properties of Nanocrystalline Diamond Films Deposited on the (110) Single Crystal Diamond and Si (100) Substrates. Diam. Relat. Mater. 2019, 92, 159–167. [Google Scholar] [CrossRef]
- Dong, H.; Wen, B.; Melnik, R. Relative Importance of Grain Boundaries and Size Effects in Thermal Conductivity of Nanocrystalline Materials. Sci. Rep. 2014, 4, 7073. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Imai, T.; Tanabe, K.; Tsuno, T.; Kumazawa, Y.; Fujimori, N. The Measurement of Thermal Properties of Diamond. Diam. Relat. Mater. 1997, 6, 1057–1061. [Google Scholar] [CrossRef]
- Ashkihazi, E.E.; Sedov, V.S.; Sovyk, D.N.; Khomich, A.A.; Bolshakov, A.P.; Ryzhkov, S.G.; Khomich, A.V.; Vinogradov, D.V.; Ralchenko, V.G.; Konov, V.I. Plateholder Design for Deposition of Uniform Diamond Coatings on WC-Co Substrates by Microwave Plasma CVD for Efficient Turning Application. Diam. Relat. Mater. 2017, 75, 169–175. [Google Scholar] [CrossRef]
- Bolshakov, A.P.; Ralchenko, V.G.; Yurov, V.Y.; Popovich, A.F.; Antonova, I.A.; Khomich, A.A.; Ashkinazi, E.E.; Ryzhkov, S.G.; Vlasov, A.V.; Khomich, A.V. High-Rate Growth of Single Crystal Diamond in Microwave Plasma in CH4/H2 and CH4/H2/Ar Gas Mixtures in Presence of Intensive Soot Formation. Diam. Relat. Mater. 2016, 62, 49–57. [Google Scholar] [CrossRef]
- Sukhadolau, A.V.; Ivakin, E.V.; Ralchenko, V.G.; Khomich, A.V.; Vlasov, A.V.; Popovich, A.F. Thermal Conductivity of CVD Diamond at Elevated Temperatures. Diam. Relat. Mater. 2005, 14, 589–593. [Google Scholar] [CrossRef]
- Ager, J.W. Residual Stress in Diamond and Amorphous Carbon Films. MRS Online Proc. Libr. Arch. 1995, 383, 143. [Google Scholar] [CrossRef]
- Gaydaychuk, A.; Zenkin, S.; Linnik, S. Influence of Al-Si-N Interlayer on Residual Stress of CVD Diamond Coatings. Surf. Coat. Technol. 2019, 357, 348–352. [Google Scholar] [CrossRef]
- Haddad, M.; Kurtulus, O.; Mertens, M.; Brühne, K.; Glüche, P.; Fecht, H. Optimization of Residual Stresses inside Diamond Thin Films Grown by Hot Filament Chemical Vapor Deposition (HFCVD). Diam. Relat. Mater. 2023, 131, 109564. [Google Scholar] [CrossRef]
- Vlasov, I.I.; Goovaerts, E.; Ralchenko, V.G.; Konov, V.I.; Khomich, A.V.; Kanzyuba, M.V. Vibrational Properties of Nitrogen-Doped Ultrananocrystalline Diamond Films Grown by Microwave Plasma CVD. Diam. Relat. Mater. 2007, 16, 2074–2077. [Google Scholar] [CrossRef]
- Uher, C.; Morelli, D.T. Influence of Neutron Irradiation on the Thermal Conductivity of Vapor-Deposited Diamond. J. Appl. Phys. 1994, 76, 1515–1517. [Google Scholar] [CrossRef]
Sample | Thickness, µm | Δh, µm | r, m | Rrms, µm | TC, W/m·K |
---|---|---|---|---|---|
MW | 112 | 66 | 0.55 | 3.2 | 870 ± 104 |
HF | 93 | −45 | −0.8 | 2.7 | 130 ± 15 |
MW+HF | 110 | −19 | −1.9 | 1.8 | 210 ± 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sedov, V.; Popovich, A.; Linnik, S.; Martyanov, A.; Wei, J.; Zenkin, S.; Zavedeev, E.; Savin, S.; Gaydaychuk, A.; Li, C.; et al. Combined HF+MW CVD Approach for the Growth of Polycrystalline Diamond Films with Reduced Bow. Coatings 2023, 13, 380. https://doi.org/10.3390/coatings13020380
Sedov V, Popovich A, Linnik S, Martyanov A, Wei J, Zenkin S, Zavedeev E, Savin S, Gaydaychuk A, Li C, et al. Combined HF+MW CVD Approach for the Growth of Polycrystalline Diamond Films with Reduced Bow. Coatings. 2023; 13(2):380. https://doi.org/10.3390/coatings13020380
Chicago/Turabian StyleSedov, Vadim, Alexey Popovich, Stepan Linnik, Artem Martyanov, Junjun Wei, Sergei Zenkin, Evgeny Zavedeev, Sergey Savin, Alexander Gaydaychuk, Chengming Li, and et al. 2023. "Combined HF+MW CVD Approach for the Growth of Polycrystalline Diamond Films with Reduced Bow" Coatings 13, no. 2: 380. https://doi.org/10.3390/coatings13020380
APA StyleSedov, V., Popovich, A., Linnik, S., Martyanov, A., Wei, J., Zenkin, S., Zavedeev, E., Savin, S., Gaydaychuk, A., Li, C., Ralchenko, V., & Konov, V. (2023). Combined HF+MW CVD Approach for the Growth of Polycrystalline Diamond Films with Reduced Bow. Coatings, 13(2), 380. https://doi.org/10.3390/coatings13020380