Investigation of Factors Affecting the Intermediate-Temperature Cracking Resistance of In-Situ Asphalt Mixtures Based on Semi-Circular Bending Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information about Field-Cored Samples
2.2. Testing Procedure
3. Results and Discussion
3.1. Effect of Factors on the Top Layer
3.2. Effect of Factors on the Middle Layer
3.3. Effect of Factors on the Bottom Layer
3.4. Summary of Factors Influencing the Three Asphalt Layers
4. Conclusions
- Regarding the top asphalt layer, ESALs had a significant effect on both indices, while service age only had a significant effect on FI. The FI declined with increasing ESALs, while the rate of decline gradually decreased. The most rapid decline in crack resistance with age occurred on medium-traffic-level sections that served for over 14 years.
- For the middle asphalt layer, the FI was significantly affected by ESALs, followed by the overload rate. The FI was highly sensitive to an overload rate of approximately 10%–19%.
- For the bottom asphalt layer, FI and tensile strength were only affected significantly by the air void.
- Comparing the five factors, the effect of the traffic load decreased with the depth of the pavement structure. The air void gradually becomes a crucial factor with increasing depth. The current results on the effect of air void and mix type agree with the ones in previous studies. The effect of external factors on the cracking performance of different asphalt layers in the field was revealed, which has rarely been studied in the past.
- Indicating the overall ductility of the asphalt mixture, the FI was more sensitive to the traffic load than the tensile strength. The tensile strength was more sensitive to the air void as a stiffness index. When the traffic load was a significant factor, both FI and tensile strength decreased as the traffic load increased. When the effect of the air void was dominant, the tensile strength decreased as the air void increased, whereas FI, counterintuitively, exhibited the opposite trend.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lei, G.; Ni, F.; Braham, A.; Luo, H. Mixed-Mode cracking behavior of cold recycled mixes with emulsion using Arcan configuration. Construct. Build. Mater. 2014, 55, 415–422. [Google Scholar]
- Al-Qadi, I.L. Pavement Damage Due to Conventional and New Generation of Wide-Base Super Single Tires. Tire Sci. Technol. 2005, 33, 210–226. [Google Scholar] [CrossRef]
- Saha, G.; Biligiri, K.P. Fracture properties of asphalt mixtures using semi-circular bending test: A state-of-the-art review and future research. Constr. Build. Mater. 2016, 105, 103–112. [Google Scholar] [CrossRef]
- Roque, R.; Buttlar, W.G. Development of a measurement and analysis system to accurately determine asphalt concrete properties using the indirect tensile mode. Phys. Rev. D Part. Fields 1992, 83, 2235–2239. [Google Scholar]
- Kim, Y.R.; Wen, H. Fracture energy from indirect tension testing. Asph. Paving Technol. 2002, 71, 779–793. [Google Scholar]
- Wagoner, M.P.; Buttlar, W.G.; Paulino, G.H. Development of a Single-Edge Notched Beam Test for Asphalt Concrete Mixtures. J. Test. Eval. 2005, 33, 1–13. [Google Scholar]
- Kim, H.; Wagoner, P.M.; Buttlar, W.G. Micromechanical fracture modeling of asphalt concrete using a single-edge notched beam test. Mater. Struct. 2008, 42, 677–689. [Google Scholar] [CrossRef]
- Wagoner, M.; Buttlar, W.; Paulino, G.; Blankenship, P. Investigation of the Fracture Resistance of Hot-Mix Asphalt Concrete Using a Disk-Shaped Compact Tension Test. Transp. Res. Rec. J. Transp. Res. Board 2005, 1929, 183–192. [Google Scholar] [CrossRef]
- Zhou, J.; Scullion, T. Upgraded Overlay Tester and Its Application to Characterize Reflection Cracking Resistance of Asphalt Mixtures; FHWA/TX-04/0-4467-1; Texas Transportation Institute: Austin, TX, USA, 2003. [Google Scholar]
- Zhou, F.; Sheng, H.; Chen, D.H.; Scullion, T. Overlay Tester: Simple Performance Test for Fatigue Cracking. Transp. Res. Rec. J. Transp. Res. Board 2007, 2001, 1–8. [Google Scholar] [CrossRef]
- Jiménez, F.P.; Vidal, G.V.; Recasens, J.M.; Nieto, R.B. Fenix test: Development of a new test procedure for evaluating cracking resistance in bituminous mixtures. Transp. Res. Rec. J. Transp. Res. Board 2010, 46, 36–43. [Google Scholar] [CrossRef]
- Koh, C.; Lopp, G.; Roque, R. Development of a Dog-Bone Direct Tension Test (DBDT) for Asphalt Concrete. In Proceedings of the 7th International RILEM Symposium on Advanced Testing and Characterisation of Bituminous Materials, Rhodes, Greece, 27 May 2009; pp. 585–596. [Google Scholar]
- Zhou, F.; Im, S.; Sun, L.; Scullion, T. Development of an IDEAL Cracking Test for Asphalt Mix Design and QC/QA. Road Mater. Pavement Des. 2017, 18, 405–427. [Google Scholar] [CrossRef]
- Molenaar, A.; Scarpas, A.; Liu, X.; Erkens, S. Semi-Circular Bending Test; Simple but Useful? Asph. Paving Technol. 2002, 71, 794–815. [Google Scholar]
- Ozer, H.; Al-Qadi, I.L.; Lambros, J.; El-Khatib, A.; Singhvi, P.; Doll, B. Development of the fracture-based flexibility index for asphalt concrete cracking potential using modified semi-circle bending test parameters. Constr. Build. Mater. 2016, 115, 390–401. [Google Scholar] [CrossRef]
- Braham, A.; Underwood, S. State of the Art and Practice in Fatigue Cracking Evaluation of Asphalt Concrete Pavements; Version 1.0; Association of Asphalt Paving Technologists: Lino Lakes, MN, USA, 2016. [Google Scholar]
- Alkuime, H.; Tousif, F.; Kassem, E.; Bayomy, F. Review and evaluation of intermediate temperature monotonic cracking performance assessment testing standards and indicators for asphalt mixes. Constr. Build. Mater. 2020, 263, 120121. [Google Scholar] [CrossRef]
- Sreedhar, S.; Coleri, E.; Haddadi, S.S. Selection of a Performance Test to Assess the Cracking Resistance of Asphalt Concrete Materials. Constr. Build. Mater. 2018, 179, 285–293. [Google Scholar] [CrossRef]
- Elseifi, M.A. Modeling and evaluation of the cracking resistance of asphalt mixtures using the semi-circular bending test at intermediate temperatures. Road Mater. Pavement Des. 2012, 13, 124–139. [Google Scholar] [CrossRef]
- Ozer, H.; Al-Qadi, I.L.; Singhvi, P.; Khan, T.; Rivera-Perez, J.; El-Khatib, A. Fracture Characterization of Asphalt Mixtures with High Recycled Content Using Illinois Semicircular Bending Test Method and Flexibility Index. Transp. Res. Rec. J. Transp. Res. Board 2016, 2575, 130–137. [Google Scholar] [CrossRef]
- AASHTO TP 124-2018; Standard Method of Test for Determining the Fracture Potential of Asphalt Mixtures Using the Flexibility Index Test (FIT). American Association of State Highway and Transportation Officials: Washington, DC, USA, 2018.
- Zhou, Z.; Gu, X.; Ni, F.; Li, Q.; Ma, X. Cracking Resistance Characterization of Asphalt Concrete Containing Reclaimed Asphalt Pavement at Intermediate Temperatures. Transp. Res. Rec. J. Transp. Res. Board 2017, 2633, 46–57. [Google Scholar] [CrossRef]
- Molenaar, J.M.M. Performance Related Characterisation of the Mechanical Behavior of Asphalt Mixtures. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2003. [Google Scholar]
- Yan, C.; Zhang, Y.; Bahia, H.U. Comparison between SCB-IFIT, un-notched SCB-IFIT and IDEAL-CT for measuring cracking resistance of asphalt mixtures. Constr. Build. Mater. 2020, 252, 119060. [Google Scholar] [CrossRef]
- Jiang, J.; Dong, Q.; Ni, F.; Zhao, Y.J. Effects of Loading Rate and Temperature on Cracking Resistance Characteristics of Asphalt Mixtures Using Nonnotched Semicircular Bending Tests. J. Test. Eval. 2019, 47, 4. [Google Scholar] [CrossRef]
- Kaseer, F.; Yin, F. Development of an index to evaluate the cracking potential of asphalt mixtures using the semi-circular bending test. Constr. Build. Mater. 2018, 167, 286–298. [Google Scholar] [CrossRef]
- Kim, S.S.; Yang, J.J.; Etheridge, R.A. Effects of mix design variables on flexibility index of asphalt concrete mixtures. Int. J. Pavement Eng. 2020, 21, 1275–1280. [Google Scholar] [CrossRef]
- Hanz, A.; Dukatz, E.; Retake, G. Use of Performance Based Testing for High RAP Mix Design and Production Monitoring. Asph. Paving Technol. 2016, 85, 449–483. [Google Scholar] [CrossRef]
- Zhu, Z.; Singhvi, P.; Espinoza-Luque, A.F.; Ozer, H.; Al-Qadi, I.L. Influence of mix design parameters on asphalt concrete aging rate using I-FIT specimens. Constr. Build. Mater. 2019, 200, 181–187. [Google Scholar] [CrossRef]
- Brown, E.R. Hot Mix Asphalt Materials Mixture Design, and Construction; National Asphalt Pavement Association Research and Education Foundation: Lanham, MD, USA, 2009. [Google Scholar]
- Sreedhar, S.; Coleri, E. The effect of long-term aging on fatigue cracking resistance of asphalt mixtures. Int. J. Pavement Eng. 2020, 23, 308–320. [Google Scholar] [CrossRef]
- Jahangiri, B.; Majidifard, H.; Meister, J.; Buttlar, W.G. Performance Evaluation of Asphalt Mixtures with Reclaimed Asphalt Pavement and Recycled Asphalt Shingles in Missouri. Transp. Res. Rec. J. Transp. Res. Board 2019, 2673, 036119811982563. [Google Scholar] [CrossRef]
- Batioja-Alvarez, D.; Lee, J.; Haddock, J.E. Understanding the Illinois Flexibility Index Test (I-FIT) using Indiana Asphalt Mixtures. Transp. Res. Rec. J. Transp. Res. Board 2019, 2673, 036119811984128. [Google Scholar] [CrossRef]
- Koek, B.V.; Yilmaz, M.; Alatas, T.J. Evaluation of the Mechanical Properties of Field- and Laboratory-Compacted Hot-Mix Asphalt. J. Mater. Civ. Eng. 2014, 26, 9. [Google Scholar]
- Biligiri, K.P.; Said, S.; Hakim, H.J. Asphalt mixtures’ crack propagation assessment using semi-circular bending tests. Int. J. Pavement Res. Technol. 2012, 5, 209–217. [Google Scholar]
- Yuan, F.; Cheng, L.; Shao, X.; Dong, Z.; He, X.J. Full-field Measurement and Fracture and Fatigue Characterizations of Asphalt Concrete based on the SCB Test and Stereo-DIC. Eng. Fract. Mech. 2020, 235, 107127. [Google Scholar] [CrossRef]
- Zhao, Z.; Jiang, J.; Ni, F. Factors Affecting the Rutting Resistance of Asphalt Pavement Based on the Field Cores Using Multi-Sequenced Repeated Loading Test. Constr. Build. Mater. 2020, 253, 118902. [Google Scholar] [CrossRef]
- Du, H.; Ni, F.; Zhao, Y. Characterization of the Influence Factors of Low-Temperature Fracture Properties for Serving Asphalt Pavements Using Layer Core Samples. J. Transp. Eng. Part B-Pavements 2021, 147, 04021016. [Google Scholar] [CrossRef]
- Du, H.; Ni, F.; Ma, X. Crack Resistance Evaluation for In-Service Asphalt Pavements by Using SCB Tests of Layer-Core Samples. J. Mater. Civ. Eng. 2021, 33, 04020418. [Google Scholar] [CrossRef]
- JTG E20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. Research Institute of Highway Ministry of Transport: Beijing, China, 2011.
- Al-Qadi, I.; Ozer, H.; Lambros, J.; El Khatib, A.; Singhvi, P.; Khan, T.; Rivera, J.; Doll, B. Testing Protocols to Ensure Performance of High Asphalt Binder Replacement Mixes Using RAP and RAS; Report No. FHWA-ICT-15-017; Illinois Center for Transportation: Urbana, IL, USA, 2015. [Google Scholar]
- AASHTO T 166-2013; Standard Method of Test for Bulk Specific Gravity (Gmb) of Compacted Hot Mix Asphalt (HMA) Using Saturated Surface-Dry Specimens. American Association of State Highway and Transportation Officials: Washington, DC, USA, 2013.
- Li, X.J.; Marasteanu, M.O. Using Semi Circular Bending Test to Evaluate Low Temperature Fracture Resistance for Asphalt Concrete. Exp. Mech. 2010, 50, 867–876. [Google Scholar] [CrossRef]
- Chen, X.; Solaimanian, M.J. Simple Indexes to Identify Fatigue Performance of Asphalt Concrete. J. Test. Eval. 2020, 48, 3999–4015. [Google Scholar] [CrossRef]
- Majidifard, H.; Jahangiri, B.; Rath, P.; Buttlar, W.G. Development of a Balanced Cracking Index for Asphalt Mixtures Tested in Semi-Circular Bending with Load-LLD. Measurement 2020, 173. [Google Scholar] [CrossRef]
- Riveraperez, J.J. Effect of Specimen Geometry and Test Configuration on the Fracture Process Zone for Asphalt Materials; University of Illinois at Urbana-Champaign: Urbana, IL, USA, 2017. [Google Scholar]
- Barry, M.K. An Analysis of Impact Factors on the Illinois Flexibility Index Test; University of Illinois at Urbana-Champaign: Urbana, IL, USA, 2016. [Google Scholar]
Road Sections | Service Age (Year) | Pavement Structure | ESALs (Million Times/ Lane) | Overload Rate (%) | ||
---|---|---|---|---|---|---|
Top Layer | Middle Layer | Bottom Layer | ||||
1 | 4.2 | SMA-13 1 | SUP-20 2 | SUP-25 | 2.19 | 14.10 |
2 | 9.2 | SMA-13 | SUP-20 | SUP-25 | 4.18 | 13.34 |
3 | 9.5 | SMA-13 | SUP-20 | SUP-25 | 1.69 | 12.44 |
4 | 9.7 | SMA-13 | SUP-20 | SUP-25 | 2.87 | 7.88 |
5 | 10.4 | SMA-13 | SUP-20 | SUP-25 | 6.12 | 16.04 |
6 | 10.4 | SMA-13 | SUP-20 | SUP-25 | 8.88 | 17.60 |
7 | 11.2 | SMA-13 | SUP-20 | SUP-25 | 2.15 | 10.05 |
8 | 14.1 | SMA-13 | SUP-20 | SUP-25 | 15.36 | 9.27 |
9 | 14.1 | SMA-13 | AC-20 3 | AC-25 | 10.13 | 11.10 |
10 | 14.1 | SMA-13 | AC-20 | AC-25 | 25.63 | 19.15 |
11 | 14.8 | SMA-13 | SUP-20 | SUP-25 | 9.35 | 14.43 |
12 | 17.4 | SMA-13 | AC-20 | AC-25 | 13.15 | 15.59 |
13 | 17.6 | SMA-13 | SUP-20 | SUP-25 | 14.65 | 19.08 |
14 | 17.6 | SMA-13 | SUP-20 | SUP-25 | 18.47 | 19.20 |
15 | 18.1 | AK-13 4 | AC-20 | AC-25 | 25.90 | 21.68 |
16 | 18.6 | AK-13 | AC-20 | AC-25 | 22.18 | 18.65 |
Index | Factors | Mean Square | F-Value 1 | p-Value 2 | Significance 3 |
---|---|---|---|---|---|
FI | Air void | 1.2114 | 1.4624 | 0.2330 | N |
Mixture type | 0.9256 | 1.1174 | 0.2962 | N | |
Service age | 3.5536 | 4.2899 | 0.0442 4 | Y | |
ESALs | 13.6821 | 16.5171 | 0.0002 4 | Y | |
Overload rate | 3.1338 | 3.7832 | 0.0582 | N | |
Tensile strength | Air void | 0.0362 | 0.0176 | 0.8953 | N |
Mixture type | 2.0054 | 0.9715 | 0.3304 | N | |
Service age | 6.8863 | 3.3360 | 0.0754 | N | |
ESALs | 15.0725 | 7.3016 | 0.0101 4 | Y | |
Overload rate | 0.2629 | 0.1274 | 0.7231 | N |
Group | Service Age (Years) | ESALs (Million Times/Lane) | Traffic Level |
---|---|---|---|
A | 4.2–11.2 | 2.15–2.19 | Light |
B | 10.4–14.8 | 8.88–9.35 | Medium |
C | 14.1–17.6 | 14.65–15.36 | Medium |
D | 14.1–18.1 | 25.63–25.9 | Heavy |
Layers | Cracking Indices | Significant Factors | p-Value |
---|---|---|---|
Top | FI | Service age | 0.0442 |
ESALs | 0.0002 | ||
Tensile strength | ESALs | 0.0101 | |
Middle | FI | ESALs | 0.0013 |
Overload rate | 0.0156 | ||
Tensile strength | Air void | 0.0029 | |
Bottom | FI | Air void | 0.0007 |
Tensile strength | Air void | <0.0001 |
Correlation Item | ESALs | FI of Top Layer | FI of Middle Layer | FI of Bottom Layer |
---|---|---|---|---|
ESALs | 1 | −0.67382 | −0.30739 | 0.03645 |
FI of top layer | −0.67382 | 1 | 0.179072 | −0.11837 |
FI of middle layer | −0.30739 | 0.179072 | 1 | −0.18856 |
FI of bottom layer | 0.03645 | −0.11837 | −0.18856 | 1 |
Factors | Cracking Resistance at Intermediate Temperature | |
---|---|---|
Current Results | Previous Studies | |
Air void (↑) 1 | FI (↑) Tensile strength (↓) 2 | FI (↑) Tensile strength (↓) [26,38,44,45] |
Mixture type | Non-sensitive | Non-sensitive [26,45] |
Service age (↑) | ↓ (top layer only) | Not found |
ESALs (↑) | ↓ (not for bottom layer) | Not found |
Overload rate (↑) | ↓ (middle layer only) | Not found |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, D.; Ni, F.; Du, H.; Zhao, Z.; Wang, J.; Chen, S. Investigation of Factors Affecting the Intermediate-Temperature Cracking Resistance of In-Situ Asphalt Mixtures Based on Semi-Circular Bending Test. Coatings 2023, 13, 384. https://doi.org/10.3390/coatings13020384
Xu D, Ni F, Du H, Zhao Z, Wang J, Chen S. Investigation of Factors Affecting the Intermediate-Temperature Cracking Resistance of In-Situ Asphalt Mixtures Based on Semi-Circular Bending Test. Coatings. 2023; 13(2):384. https://doi.org/10.3390/coatings13020384
Chicago/Turabian StyleXu, Duo, Fujian Ni, Hui Du, Zili Zhao, Jingling Wang, and Sheng Chen. 2023. "Investigation of Factors Affecting the Intermediate-Temperature Cracking Resistance of In-Situ Asphalt Mixtures Based on Semi-Circular Bending Test" Coatings 13, no. 2: 384. https://doi.org/10.3390/coatings13020384
APA StyleXu, D., Ni, F., Du, H., Zhao, Z., Wang, J., & Chen, S. (2023). Investigation of Factors Affecting the Intermediate-Temperature Cracking Resistance of In-Situ Asphalt Mixtures Based on Semi-Circular Bending Test. Coatings, 13(2), 384. https://doi.org/10.3390/coatings13020384