The Influence of Assembly Unit of Fibers on the Mechanical and Long-Term Properties of Reactive Powder Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Sample Preparation and Measurement Methods
2.2.1. Sample Manufacturing
2.2.2. Measurement of Mechanical Strengths
2.2.3. Measurement of Impact Toughness
2.2.4. NaCl Erosion Environment
3. Results and Discussion
3.1. Action of NaCl FT-C
3.1.1. Mass Loss Rate and RDEM after Different NaCl FT-C
3.1.2. Mechanical Strength Loss Rates after NaCl FT-C
3.1.3. CMC during NaCl FT-C
3.1.4. Impact Toughness during NaCl FT-C
3.2. Action of NaCl DW-A
3.2.1. Mass Loss Rate and RDEM after Different NaCl DW-A
3.2.2. Mechanical Strength Loss Rates after NaCl DW-A
3.2.3. CMC during NaCl DW-A
3.2.4. Impact Toughness during NaCl DW-A
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, S.F.; Li, L.W.; Ashour, A.; Dong, X.F.; Han, B.G. Self-assembled 0D/2D nano carbon materials engineered smart and multifunctional cement-based composites. Constr. Build. Mater. 2021, 272, 121632. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Tan, Y. Effect of aging on fatigue performance of cement emulsified asphalt repair material. Constr. Build. Mater. 2021, 292, 123417. [Google Scholar] [CrossRef]
- Ju, Y.; Zhao, J.; Wang, D.; Song, Y. Experimental study on flexural behaviour of reinforced reactive powder concrete pole. Constr. Build. Mater. 2021, 312, 125399. [Google Scholar] [CrossRef]
- Rajasekar, A.; Arunachalam, K.; Kottaisamy, M. Durability of ultra-high strength concrete with waste granite sand as partial substitute for aggregate. J. Comput. Theor. Nanosci. 2018, 15, 446–452. [Google Scholar] [CrossRef]
- Shen, W.G.; Liu, Y.; Cao, L.G.; Huo, X.J.; Yang, Z.G.; Zhou, C.C.; He, P.T.; Lu, Z.L. Mixing design and microstructure of ultra-high strength concrete with manufactured sand. Constr. Build. Mater. 2017, 143, 312–321. [Google Scholar] [CrossRef]
- Shan, B.; Lai, D.D.; Xiao, Y.; Luo, X.B. Experimental research on concrete-filled RPC tubes under axial compression load. Eng. Struct. 2018, 155, 358–370. [Google Scholar] [CrossRef]
- Haselbach, L.; Valavala, S.; Montes, F. Permeability predictions for sand clogged Portland cement pervious concrete pavement systems. J. Environ. Manag. 2005, 81, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Q.; Feng, Y.C.; Yang, J.B.; Cerny, R. Expansion mechanism and properties of magnesium oxide expansive hydraulic cement for engineering applications. Adv. Mater. Sci. Eng. 2021, 2021, 5542072. [Google Scholar] [CrossRef]
- Yoo, D.Y.; Banthia, N.; Lee, J.Y.; Yoon, Y.S. Effect of fiber geometric property on rate dependent flexural behavior of ultra-high-performance cementitious composite. Cem. Concr. Compos. 2018, 86, 57–71. [Google Scholar] [CrossRef]
- Dong, S.; Wang, Y.; Ashour, A.; Han, B.G.; Ou, J.P. Uniaxial compressive fatigue behavior of ultra-high performance concrete reinforced with super-fine stainless wires. Int. J. Fatigue 2021, 142, 105959. [Google Scholar] [CrossRef]
- Heng, K.; Jia, P.C.; Xu, J.P.; Li, R.W.; Wu, H. Vehicular impact resistance of highway bridge with seismically-designed UHPC pier. Eng. Struct. 2022, 252, 113635. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, S.; Song, L.; Qu, Z.; Wang, H. Influence of Carbon Dioxide Curing on the Corrosion Resistance of Reinforced Cement Mortar under the External Erosion of NaCl Freeze–Thaw Cycle. Appl. Sci. 2022, 12, 5061. [Google Scholar] [CrossRef]
- Tan, C.J.; Zhang, Y.; Zhao, H.; Zhang, B.; Du, T. Study on Shear-Lag Effect of Steel–UHPC Ribbed Slab Composite Structures Using Bar Simulation Method. Buildings 2022, 12, 1884. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Yue, Q.; Wang, N.; Zheng, M.Z. Longitudinal shear behavior and design method of UHPC connection for prefabricated slabs in composite beams. Eng. Struct. 2023, 277, 115386. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, A.; Zhang, L.; Wang, Q.; Yang, X.; Gao, X.; Shi, F. Electrical and piezoresistive properties of carbon nanofiber cement mortar under different temperatures and water contents. Constr. Build. Mater. 2020, 265, 120740. [Google Scholar] [CrossRef]
- Zhao, X.; Cai, L.; Ji, X.H.; Zeng, W.; Liu, J.T. Mechanical Properties of Polyethylene Fiber Reinforced Ultra High Performance Concrete (UHPC). Materials. 2022, 15, 8374. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.L.; Zhu, Y.P.; Shao, X.D. Experimental study on flexural behavior of damaged reinforced concrete (RC) beam strengthened by toughness-improved ultra-high performance concrete (UHPC) layer. Composites Part B 2020, 186, 107834. [Google Scholar] [CrossRef]
- Sohn, Y.S.; Lee, J.H.; Lee, S.H. Fire resistance of hybrid fibre-reinforced, ultra-high-strength concrete columns with compressive strength from 120 to 200 MPa. Mag. Concr. Res. 2012, 64, 539–550. [Google Scholar]
- Wang, H.; Gao, X.; Liu, J.; Ren, M.; Lu, A. Multi-functional properties of carbon nanofiber reinforced reactive powder concrete. Constr. Build. Mater. 2018, 187, 699–707. [Google Scholar] [CrossRef]
- Alhoubi, Y.; Mahaini, Z.; Abed, F. The Flexural Performance of BFRP-Reinforced UHPC Beams Compared to Steel and GFRP-Reinforced Beams. Sustainability 2022, 14, 15139. [Google Scholar] [CrossRef]
- Sun, M.; Visintin, P.; Bennett, T. The effect of specimen size on autogenous and total shrinkage of ultra-high performance concrete (UHPC). Constr. Build. Mater. 2022, 327, 126952. [Google Scholar] [CrossRef]
- Huang, G.; Wang, H.; Shi, F. Coupling Effect of Salt Freeze-Thaw Cycles and Carbonation on the Mechanical Performance of Quick Hardening Sulphoaluminate Cement-Based Reactive Powder Concrete with Basalt Fibers. Coatings 2021, 11, 1142. [Google Scholar] [CrossRef]
- Wang, H.; Jin, K.; Zhang, A.; Zhang, L.; Han, Y.; Liu, J.; Shi, F.; Feng, L. External erosion of sodium chloride on the degradation of self-sensing and mechanical properties of aligned stainless steel fiber reinforced reactive powder concrete. Constr. Build. Mater. 2021, 287, 123028. [Google Scholar] [CrossRef]
- Shi, X.; Fay, L.; Peterson, M.; Yang, Z. Freeze-thaw damage and chemical change of a portland cement concrete in the presence of diluted deicers. Mater. Struct. 2010, 43, 933–946. [Google Scholar] [CrossRef]
- Cai, Z.; Wang, H. Influence of NaCl Freeze–thaw Cycles on the Mechanical Strength of Reactive Powder Concrete with the Assembly Unit of Sulphoaluminate Cement and Ordinary Portland Cement. Coatings 2021, 11, 1238. [Google Scholar] [CrossRef]
- Cao, H.; Liang, Z.; Peng, X.; Cai, X.; Wang, K.; Wang, H.; Lyu, Z. Research of Carbon Dioxide Curing on the Properties of Reactive Powder Concrete with Assembly Unit of Sulphoaluminate Cement and Ordinary Portland Cement. Coatings 2022, 12, 209. [Google Scholar] [CrossRef]
- Hong, X.; Wang, H.; Shi, F. Influence of NaCl freeze thaw cycles and cyclic loading on the mechanical performance and permeability of sulphoaluminate cement reactive powder concrete. Coatings 2020, 10, 1227. [Google Scholar] [CrossRef]
- Qiang, L.; Ibrahim, L.; Zhou, W.; Zhang, M.; Yuan, Z. Treatment methods for plant fifibers for use as reinforcement in cement-based materials. Cellulose 2021, 28, 5257–5268. [Google Scholar]
- Zhong, S.; Fu, J. Surface modifification of copper-plated steel fiber and its corrosion resistance and bonding properties. J. Build. Mater. 2019, 22, 606–610. [Google Scholar]
- Liang, X.; Kang, J.; Chen, J.; Geng, L.; You, Z. Mechanical properties test of copper-coated steel fifiber lightweight aggregate concrete. J. North China Univ. Sci. Technol. 2021, 43, 32–37. [Google Scholar]
- Zhu, J.; Qu, Z.; Liang, S.; Li, B.; Du, T.; Wang, H. The macro-scopic and microscopic properties of cement paste with carbon dioxide curing. Materials 2022, 15, 1578. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, A.; Zhang, L.; Liu, J.; Han, Y.; Wang, J. Research on the Influence of Carbonation on the Content and State of Chloride Ions and the Following Corrosion Resistance of Steel Bars in Cement Paste. Coatings 2020, 10, 1071. [Google Scholar] [CrossRef]
- Liang, J.; Zhu, H.; Chen, L.; Han, X.; Guo, Q.; Gao, Y.; Liu, C. Rebar corrosion investigation in rubber aggregate concrete via the chloride electro-accelerated test. Materials 2019, 12, 862. [Google Scholar] [CrossRef]
- Xu, Q.; Ji, T.; Yang, Z.; Ye, Y. Steel rebar corrosion in artifificial reef concrete with sulphoaluminate cement, sea water and marine sand. Constr. Build. Mater. 2019, 227, 116685. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Z.; Wu, K. Properties of calcium sulfoaluminate cement made ultra-high performance concrete: Tensile performance, acoustic emission monitoring of damage evolution and microstructure. Constr. Build. Mater. 2019, 208, 767–779. [Google Scholar] [CrossRef]
- Keshavarzian, F.; Saberian, M.; Li, J. Investigation on mechanical properties of steel fifiber reinforced reactive powder concrete containing nano-SiO2: An experimental and analytical study. J. Build. Eng. 2021, 44, 102601. [Google Scholar] [CrossRef]
Types’ Particle Size (%) | 0.3 μm | 0.6 μm | 1 μm | 4 μm | 8 μm | 64 μm | 360 μm |
---|---|---|---|---|---|---|---|
OPC | 0 | 0.3 | 2.7 | 15.0 | 28.8 | 93.6 | 100 |
BFS | 0.04 | 0.11 | 3.6 | 19.7 | 35.1 | 98.0 | 100 |
Sand | 0.01 | 0.02 | 0.02 | 0.02 | 0.04 | 20 | 100 |
FA | 12.3 | 41.7 | 66.2 | 100 | 100 | 100 | 100 |
SF | 31.3 | 58.4 | 82.2 | 94.6 | 99.4 | 99.4 | 100 |
Types’ Compositions | SiO2 | Al2O3 | FexOy | MgO | CaO | SO3 | K2O | Na2O | Ti2O | Loss on Ignition |
---|---|---|---|---|---|---|---|---|---|---|
OPC | 20.9 | 5.5 | 3.9 | 1.7 | 62.2 | 2.7 | - | - | - | 3.1 |
BFS | 34.1 | 14.7 | 0.2 | 9.7 | 35.9 | 0.2 | 3.5 | - | - | - |
Sand | 99.6 | - | 0.02 | - | - | - | - | - | - | - |
FA | 55.00 | 20.00 | 6.00 | 10.20 | 4.50 | 0.11 | 1.26 | 2.13 | 0.06 | 0.74 |
SF | 90.0 | 0.2 | 0.6 | 0.2 | 0.4 | 0 | 7.4 | - | - | - |
Water | OPC | FA | SF | BFS | Sand | WR | BFs | SFs |
---|---|---|---|---|---|---|---|---|
183.3 | 740.7 | 148.12 | 222.18 | 111.1 | 977.9 | 16.3 | 0 | 157 |
183.3 | 740.7 | 148.12 | 222.18 | 111.1 | 977.9 | 16.3 | 0 | 235.5 |
183.3 | 740.7 | 148.12 | 222.18 | 111.1 | 977.9 | 16.3 | 54.2 | 0 |
183.3 | 740.7 | 148.12 | 222.18 | 111.1 | 977.9 | 16.3 | 81.3 | 0 |
183.3 | 740.7 | 148.12 | 222.18 | 111.1 | 977.9 | 16.3 | 13.55 | 117.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Z.; Ren, J.; Shen, G.; Jin, C.; Gu, X.; Cheng, W.; Wang, H. The Influence of Assembly Unit of Fibers on the Mechanical and Long-Term Properties of Reactive Powder Concrete. Coatings 2023, 13, 412. https://doi.org/10.3390/coatings13020412
Cai Z, Ren J, Shen G, Jin C, Gu X, Cheng W, Wang H. The Influence of Assembly Unit of Fibers on the Mechanical and Long-Term Properties of Reactive Powder Concrete. Coatings. 2023; 13(2):412. https://doi.org/10.3390/coatings13020412
Chicago/Turabian StyleCai, Zhangjie, Jie Ren, Guangming Shen, Changhong Jin, Xingqing Gu, Wenjie Cheng, and Hui Wang. 2023. "The Influence of Assembly Unit of Fibers on the Mechanical and Long-Term Properties of Reactive Powder Concrete" Coatings 13, no. 2: 412. https://doi.org/10.3390/coatings13020412
APA StyleCai, Z., Ren, J., Shen, G., Jin, C., Gu, X., Cheng, W., & Wang, H. (2023). The Influence of Assembly Unit of Fibers on the Mechanical and Long-Term Properties of Reactive Powder Concrete. Coatings, 13(2), 412. https://doi.org/10.3390/coatings13020412