Electrochemical Dealloying Preparation and Morphology Evolution of Nanoporous Au with Enhanced SERS Activity
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
4. Conclusions
- (1)
- NPG films with a fine pore size of approximately 10~12 nm were prepared by the electrochemical dealloying of sputtered Au-Ag alloy film;
- (2)
- The diameter of the pores was relatively stable but the density of the pores increased with the extending dealloying time or increasing dealloying potential;
- (3)
- The Au content in the NPG films first rapidly increased, then slowly increased, and gradually became stable with extending the dealloying time, while it rapidly increased when the potential was less than 0.73 V, and then decreased when the potential was higher than 0.73 V;
- (4)
- The electrochemical dealloyed NPG films exhibited enhanced SERS activity with a high EF of 7.3 × 106 and an excellent detection limit of 10−9 M, which were much better than that of the NPG prepared by chemical dealloying;
- (5)
- This work provides insights into the morphology and composition evolution of the NPG during the electrochemical dealloying process, which can help to prepare a new substrate with enhanced SERS performance for trace molecule detection.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.F.; Huang, Y.F.; Ding, Y.; Yang, Z.L.; Li, S.B.; Zhou, X.S.; Fan, F.R.; Zhang, W.; Zhou, Z.Y.; Wu, D.Y.; et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392–395. [Google Scholar] [CrossRef]
- Dai, X.; Fu, W.H.; Chi, H.Y.; Mesias, V.S.; Zhu, H.N.; Leung, C.W.; Liu, W.; Huang, J.Q. Optical tweezers-controlled hotspot for sensitive and reproducible surface-enhanced Raman spectroscopy characterization of native protein structures. Nat. Commun. 2021, 12, 9. [Google Scholar] [CrossRef]
- Liu, X.; Shao, Y.; Tang, Y.; Yao, K.F. Highly uniform and reproducible surface enhanced Raman scattering on air-stable metallic glassy nanowire array. Sci. Rep. 2014, 4, 5835. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Xiao, T.H.; Luo, Z.Y.; Kitahama, Y.; Hiramatsu, K.; Kishimoto, N.; Itoh, T.; Cheng, Z.Z.; Goda, K. Porous carbon nanowire array for surface-enhanced Raman spectroscopy. Nat. Commun. 2020, 11, 8. [Google Scholar] [CrossRef]
- Guerra, F.A.E.; Aouzal, Z.; Bouabdallaoui, M.; Jadi, S.B.; Bazzaoui, E.A. Electrochemically roughened silver surface versus fractal leaf-shaped silver crystals for surface-enhanced Raman scattering investigation of polypyrrole. J. Solid State Electrochem. 2019, 23, 1811–1827. [Google Scholar] [CrossRef]
- Yu, Q.; Kong, X.; Chen, C.; Kang, C.; Huang, S. Synthesis of Ag NPs layer and its application as SERS substrate in the determination of p-phenylenediamine. J. Solid State Electrochem. 2021, 25, 683–688. [Google Scholar] [CrossRef]
- Shvalya, V.; Filipič, G.; Zavašnik, J.; Abdulhalim, I.; Cvelbar, U. Surface-enhanced Raman spectroscopy for chemical and biological sensing using nanoplasmonics: The relevance of interparticle spacing and surface morphology. Appl. Phys. Rev. 2020, 7, 031307. [Google Scholar] [CrossRef]
- Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14, 28–117. [Google Scholar] [CrossRef] [Green Version]
- Tong, L.; Zhu, T.; Liu, Z. Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: From self-assembled arrays to individual gold nanoparticles. Chem. Soc. Rev. 2011, 40, 1296–1304. [Google Scholar] [CrossRef]
- Liu, T.Y.; Tsai, K.T.; Wang, H.H.; Chen, Y.; Chen, Y.H.; Chao, Y.C.; Chang, H.H.; Lin, C.H.; Wang, J.K.; Wang, Y.L. Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood. Nat. Commun. 2011, 2, 538. [Google Scholar] [CrossRef] [Green Version]
- Lan, L.L.; Gao, Y.M.; Fan, X.C.; Li, M.Z.; Hao, Q.; Qiu, T. The origin of ultrasensitive SERS sensing beyond plasmonics. Front. Phys. 2021, 16, 26. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, L.; Lang, X.; Yamaguchi, Y.; Iwasaki, H.; Inouye, Y.; Xue, Q.; Chen, M. Single molecule detection from a large-scale SERS-active Au79Ag21 substrate. Sci. Rep. 2011, 1, srep00112. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; He, Z.; Liu, Y.; Liu, L.; He, X.; Wang, T.; Yi, Y.; Xie, C.; Du, K. Large surface-enhanced Raman scattering from nanoporous gold film over nanosphere. Appl. Surf. Sci. 2019, 478, 793–801. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Z.W.; Cai, C.; Qi, Z.M. Facile fabrication of nanoporous gold films for surface plasmon resonance (SPR) sensing and SPR-based SERS. J. Mater. Chem. C 2021, 9, 6815–6822. [Google Scholar] [CrossRef]
- Xue, Y.P.; Scaglione, F.; Celegato, F.; Denis, P.; Fecht, H.J.; Rizzi, P.; Battezzati, L. Shape controlled gold nanostructures on de-alloyed nanoporous gold with excellent SERS performance. Chem. Phys. Lett. 2018, 709, 46–51. [Google Scholar] [CrossRef]
- Hu, L.W.; Liu, X.; Le, G.M.; Li, J.F.; Qu, F.S.; Lu, S.Y.; Qi, L. Morphology evolution and SERS activity of the nanoporous Au prepared by dealloying sputtered Au-Ag film. Phys. B Condens. Matter 2019, 558, 49–53. [Google Scholar] [CrossRef]
- Haensch, M.; Graf, M.; Wang, W.J.; Nefedov, A.; Woll, C.; Weissmuller, J.; Wittstock, G. Thermally Driven Ag-Au Compositional Changes at the Ligament Surface in Nanoporous Gold: Implications for Electrocatalytic Applications. ACS Appl. Nano Mater. 2020, 3, 2197–2206. [Google Scholar] [CrossRef]
- Xue, Y.; Scaglione, F.; Rizzi, P.; Battezzati, L. High performance SERS on nanoporous gold substrates synthesized by chemical de-alloying a Au-based metallic glass. Appl. Surf. Sci. 2017, 426, 1113–1120. [Google Scholar] [CrossRef]
- Zhang, L.; Jing, Z.; Li, Z.; Fujita, T. Surface Defects Improved SERS Activity of Nanoporous Gold Prepared by Electrochemical Dealloying. Nanomaterials 2023, 13, 187. [Google Scholar] [CrossRef]
- Chen, T.; Liu, X.; Zhao, L.; Hu, L.; Li, J.; Qu, F.; Le, G.; Qi, L.; Wang, X. Investigation on the two-stage hierarchical phase separation in the laser cladded Cu–Mn–Fe coating. Vacuum 2020, 176, 109331. [Google Scholar] [CrossRef]
- Erlebacher, J.; Aziz, M.J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001, 410, 450–453. [Google Scholar] [CrossRef] [Green Version]
- Ge, X.B.; Chen, L.Y.; Kang, J.L.; Fujita, T.; Hirata, A.; Zhang, W.; Jiang, J.H.; Chen, M.W. A Core-Shell Nanoporous Pt-Cu Catalyst with Tunable Composition and High Catalytic Activity. Adv. Funct. Mater. 2013, 23, 4156–4162. [Google Scholar] [CrossRef]
- Chen, N.; Frank, R.; Asao, N.; Louzguine-Luzgin, D.V.; Sharma, P.; Wang, J.Q.; Xie, G.Q.; Ishikawa, Y.; Hatakeyama, N.; Lin, Y.C.; et al. Formation and properties of Au-based nanograined metallic glasses. Acta Mater. 2011, 59, 6433–6440. [Google Scholar] [CrossRef]
- Liu, X.; Chen, N.; Gu, J.L.; Du, J.; Yao, K.F. Novel Cu-Ag bimetallic porous nanomembrane prepared from a multi-component metallic glass. RSC Adv. 2015, 5, 50565–50571. [Google Scholar] [CrossRef]
- Liu, X.; Du, J.; Shao, Y.; Zhao, S.F.; Yao, K.F. One-pot preparation of nanoporous Ag-Cu@Ag core-shell alloy with enhanced oxidative stability and robust antibacterial activity. Sci. Rep. 2017, 7, 10249. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, S.F.; Shao, Y.; Yao, K.F. Facile synthesis of air-stable nano/submicro dendritic copper structures and their anti-oxidation properties. RSC Adv. 2014, 4, 33362–33365. [Google Scholar] [CrossRef]
- Liu, X.; Shao, Y.; Chen, N.; Zhao, S.; Du, J.; Li, J.; Le, G.-M.; Yao, K. Magical oxygen: Tuning Cu&Ag nanoporous membrane into nanoporous (Cu&Ag)@Ag core-shell alloy. Phys. B Condens. Matter 2021, 614, 413011. [Google Scholar]
- Zhang, J.; Li, X.; Sun, X.; Li, Y. Surface Enhanced Raman Scattering Effects of Silver Colloids with Different Shapes. J. Phys. Chem. B 2005, 109, 12544–12548. [Google Scholar] [CrossRef]
- Hildebrandt, P.; Stockburger, M. Surface-Enhanced Resonance Raman Spectroscopy of Rhodamine 6G adsorbed on colloidal silver. J. Phys. Chem. 1984, 88, 5935–5944. [Google Scholar] [CrossRef]
- Niu, Z.Q.; Liu, H.M.; Chen, Y.; Gu, C.J.; Zhao, Z.Q.; Jiang, T. Sandwich Au/SMSiO2/Ag hybrid substrate: Synthesis, characterization, and surface-enhanced Raman scattering performance. J. Nanopart. Res. 2020, 22, 12. [Google Scholar] [CrossRef]
- Chen, X.-H.; Zhu, J.; Li, J.-J.; Zhao, J.-W. A plasmonic and SERS dual-mode iodide ions detecting probe based on the etching of Ag-coated tetrapod gold nanostars. J. Nanopart. Res. 2019, 21, 158. [Google Scholar] [CrossRef]
Sample No. | Dealloying Potential (V) | Dealloying Time (min) |
---|---|---|
1 | 0.66 | 2 |
2 | 0.66 | 5 |
3 | 0.66 | 15 |
4 | 0.73 | 5 |
5 | 0.80 | 5 |
Raman Shift (cm−1) | Assignments [3,28,29] | |
---|---|---|
Literature [3,28,29] | Experimental | |
619 | 619 | Aromatic bending |
776 | 776 | C-H out of plane |
933 | 934 | - |
1009 | 1012 | - |
1080 | 1085 | - |
1132 | 1130 | C-H in plane |
1195 | 1196 | Aromatic C-H bending |
1275 | 1280 | C-C bridge bands stretching |
1356 | 1359 | Aromatic C-C stretching |
1433 | 1433 | - |
1507 | 1506 | Aromatic C-C stretching |
1526 | 1527 | - |
1563 | 1564 | Aromatic C-C stretching |
1596 | 1595 | C=C stretching |
1648 | 1646 | Aromatic C-C stretching |
Spectra | Area (mm2) | CRhB (mol·L−1) | Average Intensity @1646 cm−1 | EF |
---|---|---|---|---|
3# Sample | 14.2 | 10−5 | 17,795 | 1.0 × 104 |
14.0 | 10−6 | 6137 | 3.5 × 104 | |
13.1 | 10−8 | 2279 | 1.2 × 106 | |
14.6 | 10−9 | 1243 | 7.3 × 106 | |
As-sputtered Au-Ag film | 41.2 | 10−1 | 5994 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Luo, S.; Qu, F.; Wang, D.; Li, C.; Liu, X. Electrochemical Dealloying Preparation and Morphology Evolution of Nanoporous Au with Enhanced SERS Activity. Coatings 2023, 13, 489. https://doi.org/10.3390/coatings13030489
Li F, Luo S, Qu F, Wang D, Li C, Liu X. Electrochemical Dealloying Preparation and Morphology Evolution of Nanoporous Au with Enhanced SERS Activity. Coatings. 2023; 13(3):489. https://doi.org/10.3390/coatings13030489
Chicago/Turabian StyleLi, Fei, Silang Luo, Fengsheng Qu, Dou Wang, Chao Li, and Xue Liu. 2023. "Electrochemical Dealloying Preparation and Morphology Evolution of Nanoporous Au with Enhanced SERS Activity" Coatings 13, no. 3: 489. https://doi.org/10.3390/coatings13030489
APA StyleLi, F., Luo, S., Qu, F., Wang, D., Li, C., & Liu, X. (2023). Electrochemical Dealloying Preparation and Morphology Evolution of Nanoporous Au with Enhanced SERS Activity. Coatings, 13(3), 489. https://doi.org/10.3390/coatings13030489