Preparation of Anticorrosive Epoxy Nanocomposite Coating Modified by Polyethyleneimine Nano-Alumina
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pretreatment of Substrate
2.3. Functionalization of Nano-Al2O3
2.4. Preparation of Composite Coatings
2.5. Characterization
3. Results and Discussion
3.1. FTIR Spectra of PEI and Nanofillers
3.2. The Thickness and Adhesion of the As-Prepared Coatings
3.3. The Cross-Sectional Morphology of As-Prepared Coatings
3.4. Electrochemical Corrosion Behavior
3.5. Potentiodynamic Polarization Test
3.6. Corrosion Products Analysis
3.7. Anticorrosion Mechanism
4. Conclusions
- (a)
- The PEI-Al2O3 nanoparticles have excellent dispersive properties in the coating;
- (b)
- The coating resistance of the PEI-Al2O3/EP coating (6.61 × 106 Ω·cm2) was 10 times larger than that of the EP coating because nano-Al2O3 could fill the defects within the coating and slow the diffusion rate of corrosion media;
- (c)
- The surface of the PEI-Al2O3/EP substrate had the fewest corrosion products and lowest oxygen content (3.26 wt.%) compared to EP and the Al2O3/EP coating, indicating PEI-Al2O3/EP has the best protective effect.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, B.B.; Xu, W.C.; Zhu, Q.J.; Li, Y.T.; Hou, B.R. Ultrafast One Step Construction of Non-Fluorinated Superhydrophobic Aluminum Surfaces with Remarkable Improvement of Corrosion Resistance and Anti-contamination. J. Colloid Interface Sci. 2018, 532, 201–209. [Google Scholar] [CrossRef]
- Koli, D.K.; Agnihotri, G.; Purohit, R. Advanced Aluminium Matrix Composites: The Critical Need of Automotive and Aerospace Engineering Fields. Mater. Today Proc. 2015, 2, 3032–3041. [Google Scholar] [CrossRef]
- Canepa, E.; Stifanese, R.; Merotto, L.; Traverso, P. Corrosion Behaviour of Aluminium Alloys in Deep-sea Environment: A Review and the KM3NeT Test Results. Mar. Struct. 2018, 59, 271–284. [Google Scholar] [CrossRef]
- Yan, H.; Cai, M.; Li, W.; Fan, X.Q.; Zhu, M.H. Amino-functionalized Ti3C2T with Anti-corrosive/Wear Function for Waterborne Epoxy Coating. J. Mater. Sci. Technol. 2018, 54, 144–159. [Google Scholar] [CrossRef]
- Song, S.J.; Yan, H.; Cai, M.; Huang, Y.; Fan, X.Q.; Cui, X.J.; Zhu, M.H. Superhydrophobic Composite Coating for Reliable Corrosion Protection of Mg Alloy. Mater. Design 2022, 215, 110433. [Google Scholar] [CrossRef]
- Cui, X.J.; Lin, X.Z.; Liu, C.H.; Yang, R.S.; Zheng, X.W.; Gong, M. Fabrication and Corrosion Resistance of A Hydrophobic Micro-Arc Oxidation Coating on AZ31 Mg Alloy. Corros. Sci. 2015, 90, 402–412. [Google Scholar] [CrossRef]
- Song, S.J.; Yan, H.; Cai, M.; Huang, Y.; Fan, X.Q.; Zhu, M.H. Multilayer Structural Epoxy Composite Coating towards Long-Term Corrosion/Wear Protection. Carbon 2021, 183, 42–52. [Google Scholar] [CrossRef]
- Cai, M.; Yan, H.; Li, Y.T.; Li, W.; Li, H.; Fan, X.Q.; Zhu, M.H. Ti3C2Tx/PANI Composites with Tunable Conductivity towards Anticorrosion Application. Chem. Eng. J. 2021, 410, 128310. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, F.; Wang, F.H. The Characterization and Corrosion Resistance of Cerium Chemical Conversion Coatings for 304 Stainless Steel. Corros. Sci. 2004, 46, 75–89. [Google Scholar] [CrossRef]
- Duan, G.Q.; Yang, L.X.; Liao, S.J.; Zhang, C.Y.; Lu, X.P.; Yang, Y.E.; Zhang, B.; Wei, Y.; Zhang, T.; Yu, B.X.; et al. Designing for the Chemical Conversion Coating with High Corrosion Resistance and Low Electrical Contact Resistance on AZ91D Magnesium Alloy. Corros. Sci. 2018, 135, 197–206. [Google Scholar] [CrossRef]
- Montemor, M.F. Functional and Smart Coatings for Corrosion Protection: A Review of Recent Advances. Surf. Coat. Technol. 2014, 258, 17–37. [Google Scholar] [CrossRef]
- Pezzato, L.; Lorenzetti, L.; Tonelli, L.; Bragaggia, G.; Dabalà, M.; Martini, C.; Brunelli, K. Effect of SiC and borosilicate glass particles on the corrosion and tribological behavior of AZ91D magnesium alloy after PEO process. Surf. Coat. Technol. 2021, 428, 127901. [Google Scholar] [CrossRef]
- Agarwala, R.C.; Agarwala, V. Electroless alloy/composite coatings: A review. Sadhana 2003, 28, 475–493. [Google Scholar] [CrossRef]
- Ramesh, K.; Nor, N.A.M.; Ramesh, S.; Vengadaesvaran, B.; Arof, A.K. Studies on Electrochemical Properties and FTIR analysis of Epoxy Polyester Hybrid Coating System. Int. J. Electrochem. Sci. 2013, 8, 8422–8432. [Google Scholar]
- Ghiyasi, S.; Sari, M.G.; Shabanian, M.; Hajibeygi, M.; Zarrintaj, P.; Rallini, M.; Torre, L.; Puglia, D.; Vahabi, H.; Jouyandeh, M.; et al. Hyperbranched Poly(ethyleneimine) Physically Attached to Silica Nanoparticles to Facilitate Curing of Epoxy Nanocomposite Coatings. Prog. Org. Coat. 2018, 120, 100–109. [Google Scholar] [CrossRef]
- Farag, A.A. Applications of Nanomaterials in Corrosion Protection Coatings and Inhibitors. Corros. Rev. 2020, 38, 67–86. [Google Scholar] [CrossRef]
- Christy, A.; Purohit, R.; Rana, R.S.; Singh, S.K.; Rana, S. Development and Analysis of Epoxy/nano SiO2 Polymer Matrix Composite Fabricated by Ultrasonic Vibration Assisted Processing. Mater. Today Proc. 2017, 4, 2748–2754. [Google Scholar] [CrossRef]
- Ghasemi-Kahrizsangi, A.; Neshati, J.; Shariatpanahi, H.; Akbarinezhad, E. Improving the UV Degradation Resistance of Epoxy Coatings Using Modified Carbon Black Nanoparticles. Prog. Org. Coat. 2015, 85, 199–207. [Google Scholar] [CrossRef]
- Yu, Z.X.; Di, H.H.; Ma, Y.; Lv, L.; Pan, Y.; Zhang, C.L.; He, Y. Fabrication of Graphene Oxide-alumina Hybrids to Reinforce the Anti-Corrosion Performance of Composite Epoxy Coatings. Appl. Surf. Sci. 2015, 351, 986–996. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, L.; Li, H.; Fan, X.Q.; Zhu, M.H. Towards High-performance Additive of Ti3C2/graphene Hybrid with A Novel Wrapping Structure in Epoxy Coating. Carbon 2020, 157, 217–233. [Google Scholar] [CrossRef]
- Yan, H.; Li, W.; Li, H.; Fan, X.Q.; Zhu, M.H. Ti3C2 MXene Nanosheets toward High-Performance Corrosion Inhibitor for Epoxy Coating. Prog. Org. Coat. 2019, 135, 156–167. [Google Scholar] [CrossRef]
- Yu, J.P.; Yan, H.; Yang, M.S.; Ma, Y.T.; Fan, X.Q.; Zhu, M.H. Polyphenol-reduced Graphene Oxide toward High-Performance Corrosion Inhibitor. Surf. Topogr. Metrol. Prop. 2019, 7, 025010. [Google Scholar] [CrossRef]
- Deyab, M.A.; Awadallah, A.E. Advanced Anticorrosive Coatings Based on Epoxy/functionalized Multiwall Carbon Nanotubes Composites. Prog. Org. Coat. 2020, 139, 105423. [Google Scholar] [CrossRef]
- Farhan, A.M.; Kadhim, N.J.; Hasan, A.F.; Jaafer, H.I. Corrosion Protection Study for Carbon Steel 1045 in Saline Water Using Nanocomposite by Spin Coating as protective coating. Res. J. Pharm. Biol. Chem. 2018, 9, 34–48. [Google Scholar]
- Karthik, A.; Arunmetha, S.; Srither, S.R.; Manivasakan, P.; Rajendran, V. Nano Alumina-zirconia Blended Epoxy Polymeric Composites for Anticorrosive Applications. J. Sol-Gel Sci. Technol. 2015, 74, 460–471. [Google Scholar] [CrossRef]
- Ramezanzadeh, B.; Haeri, Z.; Ramezanzadeh, M. A Facile Route of Making Silica Nanoparticles-covered Graphene Oxide Nanohybrids (SiO2-GO); Fabrication of SiO2-GO/Epoxy Composite Coating with Superior Barrier and Corrosion Protection Performance. Chem. Eng. J. 2016, 303, 511–528. [Google Scholar] [CrossRef]
- Yan, H.; Cai, M.; Wang, J.C.; Zhang, L.; Li, H.; Li, W.; Fan, X.Q.; Zhu, M.H. Insight into Anticorrosion/Antiwear Behavior of Inorganic-organic Multilayer Protection System Composed of Nitriding Layer and Epoxy Coating with Ti3C2Tx MXene. Appl. Surf. Sci. 2021, 536, 147974. [Google Scholar] [CrossRef]
- Zhang, B.B.; Xu, W.C.; Zhu, Q.J.; Hou, B.R. Scalable, Fluorine Free and Hot Water Repelling Superhydrophobic and Superoleophobic Coating Based on Functionalized Al2O3 Nanoparticles. J. Mater. Sci. Technol. 2021, 66, 74–81. [Google Scholar] [CrossRef]
- Yu, J.H.; Huo, R.M.; Wu, C.; Wu, X.F.; Wang, G.L.; Jiang, P.K. Influence of Interface Structure on Dielectric Properties of Epoxy/Alumina Nanocomposites. Macromol. Res. 2012, 20, 816–826. [Google Scholar] [CrossRef]
- Dhoke, S.K.; Mangal Sinha, T.J.; Khanna, A.S. Effect of Nano-Al2O3 Particles on the Corrosion Behavior of Alkyd Based Waterborne Coatings. J. Coat. Technol. Res. 2008, 6, 353–368. [Google Scholar] [CrossRef]
- Cai, W.; Hong, N.N.; Feng, X.M.; Zeng, W.R.; Shi, Y.Q.; Zhang, Y.; Wang, B.B.; Hu, Y. A Facile Strategy to Simultaneously Exfoliate and Functionalize Boron Nitride Nanosheets via Lewis Acid-base Interaction. Chem. Eng. J. 2017, 330, 309–321. [Google Scholar] [CrossRef]
- Wu, Y.Q.; He, Y.; Zhou, T.G.; Chen, C.L.; Zhong, F.; Xia, Y.Q.; Xie, P.; Zhang, C. Synergistic Functionalization of h-BN by Mechanical Exfoliation and PEI Chemical Modification for Enhancing the Corrosion Resistance of Waterborne Epoxy Coating. Prog. Org. Coat. 2020, 142, 105541. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Guo, H.; Zhang, H.H.; Zhang, N.; Hayat, T.; Sun, Y.B. Decontamination of U(VI) on Graphene Oxide/Al2O3 Composites Investigated by XRD, FT-IR and XPS Techniques. Environ. Pollut. 2019, 248, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Zhou, C.Y.; Wang, X.; Szpunar, J. Layer-by-Layer Assembly of a Self-healing Anticorrosion Coating on Magnesium Alloys. ACS Appl. Mater. Interfaces 2015, 7, 27271–27278. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Qiu, S.H.; Cui, M.J.; Qin, S.L.; Yan, G.P.; Zhao, H.C.; Wang, L.P.; Xue, Q.J. Achieving High Performance Corrosion and Wear Resistant Epoxy Coatings via Incorporation of Noncovalent Functionalized Graphene. Carbon 2017, 114, 356–366. [Google Scholar] [CrossRef]
- Shi, Z.M.; Liu, M.; Atrens, A. Measurement of the Corrosion Rate of Magnesium Alloys Using Tafel Extrapolation. Corros. Sci. 2010, 52, 579–588. [Google Scholar] [CrossRef]
Sample | 1/μm | 2/μm | 3/μm | Average Value/μm |
---|---|---|---|---|
EP | 129 | 130 | 129 | 129.3 |
Al2O3/EP | 122 | 125 | 123 | 123.3 |
PEI-Al2O3/EP | 127 | 128 | 130 | 128.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Hua, C.; Zhang, M.; Zheng, Y.; Song, S.; Cai, M.; Huang, Y.; He, C.; Fan, X. Preparation of Anticorrosive Epoxy Nanocomposite Coating Modified by Polyethyleneimine Nano-Alumina. Coatings 2023, 13, 561. https://doi.org/10.3390/coatings13030561
Liang X, Hua C, Zhang M, Zheng Y, Song S, Cai M, Huang Y, He C, Fan X. Preparation of Anticorrosive Epoxy Nanocomposite Coating Modified by Polyethyleneimine Nano-Alumina. Coatings. 2023; 13(3):561. https://doi.org/10.3390/coatings13030561
Chicago/Turabian StyleLiang, Xin, Cheng Hua, Mingrui Zhang, Yu Zheng, Shijie Song, Meng Cai, Yu Huang, Can He, and Xiaoqiang Fan. 2023. "Preparation of Anticorrosive Epoxy Nanocomposite Coating Modified by Polyethyleneimine Nano-Alumina" Coatings 13, no. 3: 561. https://doi.org/10.3390/coatings13030561
APA StyleLiang, X., Hua, C., Zhang, M., Zheng, Y., Song, S., Cai, M., Huang, Y., He, C., & Fan, X. (2023). Preparation of Anticorrosive Epoxy Nanocomposite Coating Modified by Polyethyleneimine Nano-Alumina. Coatings, 13(3), 561. https://doi.org/10.3390/coatings13030561