New Approach to Improving the Efficiency of Disinfectants against Biofilms
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Action of Disinfectants on Planktonic Bacterial Cultures
3.2. Effect of Disinfectants on Single-Species and Binary Biofilms Formed on Glass Fiber Filters
3.3. Action of Disinfectants on Binary Biofilms (St. aureus + S. typhimurium) Formed on Paper Filters
3.4. Cumulative Effect of Disinfectants and Adjuvants on Binary Biofilms (St. aureus + S. typhimurium)
3.5. Comparative Sensitivity to Disinfectants of the Biofilms Developing on Glass Fiber and Paper Filters
3.6. A Study of the Mechanisms of Action of the Adjuvants
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Combinations of Disinfectants | Viable Cell Titer, CFU/mL | ||||
---|---|---|---|---|---|
Paper Filters | Paper Filters | ||||
Age of the BP | |||||
2 Days | 7 Days | 2 Days | 7 Days | ||
Control without Disinfectants | 1.3 × 109 | 2.1 × 108 | 1.5 × 109 | 3.7 × 108 | |
Foodlex OXY 0.05% | +isopropyl alcohol 30% | 1.9 × 106 | 1.8 × 108 | 4.2 × 108 | 2.9 × 108 |
Dimax Chlor 0.038% | +ethyl alcohol 30% | 4.6 × 105 | <103 | 3.9 × 108 | 3.2 × 104 |
+isopropyl alcohol 30% | 1.8 × 105 | 4.4 × 104 | 2.3 × 107 | 2.7 × 107 | |
BFR Biocide Enzyme 0.5% | +hexylresorcinol 0.02% | 7.1 × 108 | 6.0 × 104 | 6.1 × 108 | 1.3 × 107 |
+ethyl alcohol 30% | 3.5 × 105 | 3.8 × 105 | 7.4 × 108 | 3.7 × 105 | |
+isopropyl alcohol 30% | 1.0 × 103 | <103 | 2.3 × 105 | <103 | |
+hydrogen peroxide 6% | <103 | <103 | <103 | <103 | |
Peracetic Acid 0.05% | +hexylresorcinol 0.02% | 4.4 × 108 | 5.3 × 107 | 1.9 × 108 | 2.4 × 107 |
+ethyl alcohol 30% | 3.6 × 108 | 1.6 × 108 | 5.3 × 108 | 2.7 × 108 | |
+isopropyl alcohol 30% | 8.1 × 106 | 2.2 × 107 | 4.6 × 108 | 3.0 × 107 | |
+hydrogen peroxide 6% | 8.2 × 108 | 3.6 × 106 | 8.3 × 109 | 3.5 × 107 |
References
- Ciofu, O.; Moser, C.; Østrup, P.; Høiby, J.; Høiby, N. Tolerance and resistance of microbial biofilms. Nat. Rev. Microbiol. 2022, 20, 621–634. [Google Scholar] [CrossRef] [PubMed]
- Satpathy, S.; Sen, S.K.; Pattanaik, S.; Raut, S. Review on bacterial biofilm: An universal cause of contamination. Biocatal. Agric. Biotechnol. 2016, 7, 56–66. [Google Scholar] [CrossRef]
- Muhammad, M.H.; Idris, A.L.; Fan, X.; Guo, Y.; Yu, Y.; Jin, X.; Qiu, J.; Guan, X.; Huang, T. Beyond Risk: Bacterial Biofilms and Their Regulating Approaches. Front. Microbiol. 2020, 11, 928. [Google Scholar] [CrossRef]
- Flemming, H.C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nature Reviews. Microbiology 2016, 14, 563–575. [Google Scholar] [PubMed]
- Akinbobola, A.B.; Sherrya, L.; Mckay, W.G.; Ramage, G.; Williams, C. Tolerance of Pseudomonas aeruginosa in in-vitro biofilms to high-level peracetic acid disinfection. J. Hosp. Infect. 2017, 97, 162–168. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Ordóñez, A.; Coughlan, L.M.; Briandet, R.; Cotter, P.D. Biofilms in food processing environments: Challenges and opportunities. Annu. Rev. Food Sci. Technol. 2019, 10, 173–195. [Google Scholar] [CrossRef]
- Cai, L.; Li, Y.; Wang, H.; Xu, X.; Zhou, G. Biofilm formation by meat-borne Pseudomonas fluorescens on stainless steel and its resistance to disinfectants. Food Control 2018, 91, 397–403. [Google Scholar]
- Hall, C.W.; Mah, T.-F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. 2017, 41, 276–301. [Google Scholar] [CrossRef] [Green Version]
- Srey, S.; Jahid, I.K.; Ha, S.D. Biofilm formation in food industries: A food safety concern. Food Control 2013, 31, 572–585. [Google Scholar] [CrossRef]
- Galié, S.; García-Gutiérrez, C.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Biofilms in the Food Industry: Health Aspects and Control Methods. Front. Microbiol. 2018, 9, 898. [Google Scholar] [CrossRef]
- Chitlapilly, D.S.; Wang, R. Biofilm through the Looking Glass: A Microbial Food Safety Perspective. Pathogens 2022, 11, 346. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Rivas, F.; Ripolles-Avila, C.; Fontecha-Umaña, F.; Ríos-Castillo, A.G.; Rodríguez-Jerez, J.J. Biofims in the spotlight: Detection, quantification and removal methods. Compr. Rev. Food Sci. Food Saf. 2018, 217, 1261–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, P.; Franklin, M. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 2008, 6, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Wimpenny, J.; Manz, W.; Szewzyk, U. Heterogeneity in biofilms. FEMS Microbiol. Rev. 2000, 24, 661–671. [Google Scholar] [CrossRef]
- Yuan, L.; Burmølle, M.; Sadiq, F.A.; Wang, N.; He, G. Interspecies variation in biofilm-forming capacity of psychrotrophic bacterial isolates from Chinese raw milk. Food Control 2018, 91, 47–57. [Google Scholar] [CrossRef]
- Zhurina, M.V.; Nikolaev, Y.A.; Plakunov, V.K. Role of the extracellular polymer matrix in azithromycin protection of Chromobacterium violaceum biofilms. Microbiology 2019, 88, 505–508. [Google Scholar] [CrossRef]
- Plakunov, V.K.; Nikolaev, Y.A.; Gannesen, A.V.; Chemaeva, D.S.; Zhurina, M.V. A New Approach to Detection of the Protective Effect of Escherichia coli on Gram-Positive Bacteria in Binary Biofilms in the Presence of Antibiotics. Microbiology 2019, 88, 275–281. [Google Scholar] [CrossRef]
- Sanchez-Vizuete, P.; Orgaz, B.; Aymerich, S.; Le Coq, D.; Briandet, R. Pathogens protection against the action of disinfectants in multispecies biofilms. Food Microbiol. 2015, 6, 705. [Google Scholar] [CrossRef] [Green Version]
- McDonnell, G.; Russell, A.D. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. 1999, 12, 147–179. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.R.W.; Gilbert, P. Sensitivity of biofilms to antimicrobial agents. J. Appl. Bacteriol. 1993, 74, 875–975. [Google Scholar] [CrossRef]
- Aggarwal, S.; Ikram, S. Surface modification of polysaccharide nanocrystals. In Innovation in Nano-Polysaccharides for Eco-Sustainability; Elsevier: Amsterdam, The Netherlands, 2022; Volume 1, pp. 133–161. [Google Scholar]
- Gómez de Saravia, S.G.; Lorenzo de Mele, M.F. Non-invasive methods for monitoring biofilm growth in industrial water systems. Lat. Am. Appl. Res. 2003, 33, 353–359. [Google Scholar]
- Carrascosa, C.; Raheem, D.; Ramos, F.; Saraiva, A.; Raposo, A. Microbial Biofilms in the Food Industry—A Comprehensive. J. Environ. Res. Public Health 2021, 18, 2014. [Google Scholar] [CrossRef]
- Smolik, N.A.; Rusznak, L.H.; Jenson, D.A. Biocidal Blends of Quaternary Ammonium Compounds and Chlorine Dioxide. U.S. Patent US5611938A, 18 March 1997. [Google Scholar]
- Delhalle, L.; Taminiau, B.; Fastrez, S.; Fall, A.; Ballesteros, M.; Burteau, S.; Daube, G. Evaluation of Enzymatic Cleaning on Food Processing Installations and Food Products Bacterial Microflora. Front. Microbiol. 2020, 11, 1827. [Google Scholar] [CrossRef] [PubMed]
- Alpatova, N.A.; Autovia, Z.L.; Lysikova, S.L.; Gelovinskaya, O.V.; Gaydereva, L.A. General Characteristics of Adjuvants and Their Mechanism of Action (Part 1). Bioprep. Prev. Diagn. Treat. 2020, 20, 245–256. [Google Scholar] [CrossRef]
- dos Santos, C.A.M.; do Nascimento, J.; Gonçalves, K.C.; Smaniotto, G.; de Freitas Zechin, L.; da Costa Ferreira, M.; Polanczyk, R.A. Compatibility of Bt biopesticides and adjuvants for Spodoptera frugiperda control. Sci. Rep. 2021, 11, 5271. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Prakash, O.; Tiwari, S.; Maiti, P.; Ghosh, S.; Singh, R.K.; Maiti, P. Efficient Herbicide Delivery through a Conjugate Gel Formulation for the Mortality of Broad Leaf Weeds. ACS Omega 2022, 7, 19964–19978. [Google Scholar] [CrossRef] [PubMed]
- Palma-Bautista, C.; Vazquez-Garcia, J.G.; Travlos, I.; Tataridas, A.; Kanatas, P.; Domínguez-Valenzuela, J.A.; Prado, R. Effect of Adjuvant on Glyphosate Effectiveness, Retention, Absorption and Translocation in Lolium rigidum and Conyza canadensis. Plants 2020, 9, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikolaev, Y.A.; Tutel’yan, A.V.; Loiko, N.G.; Buck, J.; Sidorenko, S.V.; Lazareva, I.; Gostev, V.; Manzen’yuk, O.Y.; Shemyakin, I.G.; Abramovich, R.A.; et al. The use of 4-Hexylresorcinol as antibiotic adjuvant. PLoS ONE 2020, 15, e0239147. [Google Scholar] [CrossRef]
- Douafer, H.; Andrieu, V.; Phanstiel, O., 4th; Brunel, J.M. Antibiotic Adjuvants: Make Antibiotics Great Again! J. Med. Chem. 2019, 62, 8665–8681. [Google Scholar] [CrossRef]
- Mohapatra, S. Sterilization and Disinfection. In Essentials of Neuroanesthesia; Academic Press: Cambridge, MA, USA, 2017; pp. 929–944. [Google Scholar] [CrossRef]
- Plakunov, V.K.; Martyanov, S.V.; Teteneva, N.A.; Zhurina, M.V. Universal method for quantitative characterization of growth and metabolic activityof microbial biofilms in static models. Microbiology 2016, 85, 484–489. [Google Scholar] [CrossRef]
- Bas, S.; Kramer, M.; Stopar, D. Biofilm Surface Density Determines Biocide Effectiveness. Front. Microbiol. 2017, 8, 2443. [Google Scholar] [CrossRef]
- Roy, R.; Tiwari, M.; Donelli, G.; Tiwari, V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018, 9, 522–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verderosa, A.D.; Totsika, M.; Fairfull-Smith, K.E. Bacterial Biofilm Eradication Agents: A Current Review. Front Chem. 2019, 7, 824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denyer, S.P.; Hugo, W.B.; Harding, V.D. Synergy in preservative combinations. Int. J. Pharm. 1985, 25, 245–253. [Google Scholar] [CrossRef]
- Lambert, R.J.W.; Johnston, M.D.; Hanlon, G.W.; Denyer, S.P. Theory of antimicrobial combinations: Biocidemixtures—Synergy or addition? J. Appl. Microbiol. 2003, 94, 747–759. [Google Scholar] [CrossRef]
- Fan, L.; Idris, M.A.; Bilyaminu, I.B.; Liu, D. Sonodynamic antimicrobial chemotherapy: An emerging alternative strategy for microbial inactivation. Ultrason. Sonochem. 2021, 75, 105591. [Google Scholar] [CrossRef] [PubMed]
- Ciecholewska-Juśko, D.; Żywicka, A.; Junka, A.; Woroszyło, M.; Wardach, M.; Chodaczek, G.; Szymczyk-Ziółkowska, P.; Migdał, P.; Fijałkowski, K. The effects of rotating magnetic field and antiseptic on in vitro pathogenic biofilm and its milieu. Sci. Rep. 2022, 12, 8836. [Google Scholar] [CrossRef]
- Orazi, G.; Ruoff, K.L.; O’Toole, G.A. Pseudomonas aeruginosa Increases the Sensitivity of Biofilm-Grown Staphylococcus aureus to Membrane-Targeting Antiseptics and Antibiotics. MBio 2019, 10, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Mehta, K.C.; Dargad, R.R.; Borade, D.M.; Swami, O.C. Burden of antibiotic resistance in common infectious diseases: Role of antibiotic combination therapy. J. Clin. Diagn. Res. 2014, 8, ME05. [Google Scholar] [CrossRef]
- Ramakrishnan, R.; Singh, A.K.; Singh, S.; Chakravortty, D.; Das, D. Enzymatic dispersion of biofilms: An emerging biocatalytic avenue to combat biofilm-mediated microbial infections. J. Biol. Chem. 2022, 298, 102352. [Google Scholar] [CrossRef]
- Jee, S.C.; Kim, M.; Sung, J.S.; Kadam, A.A. Efficient Biofilms Eradication by Enzymatic-Cocktail of Pancreatic Protease Type-I and Bacterial α-Amylase. Polymers 2020, 12, 3032. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, R. β-Lactamase inhibitors and reversal of antibiotic resistance. Trends Pharmacol. Sci. 1991, 12, 227–232. [Google Scholar] [CrossRef] [PubMed]
Disinfectant | Concentration of Disinfectants | CFU/mL After Exposure to Disinfectant (% of Control in Parentheses) | |
---|---|---|---|
10 min | 30 min | ||
E. coli | |||
Control without disinfectants | 5.0 × 109 (100%) | ||
Foodlex OXY | 0.05% * | 4.5 × 109 (90%) | 3.1 × 109 (62%) |
0.2% | 4.5 × 109 (90%) | 1.0 × 108 (2%) | |
Dimax Chlor | 0.038% * | 5.2 × 108 (10%) | 1.8 × 109 (36%) |
0.152% | <102 | 3.5 × 103 (0.0001%) | |
BFR Biocide Enzyme | 0.5% * | <102 | <102 |
0.25% | <102 | <102 | |
0.125% | <102 | <102 | |
S. aureus | |||
Control without disinfectants | 2.8 × 109 (100%) | ||
Foodlex OXY | 0.05% * | 7.9 × 108 (28%) | 7.3 × 108 (23%) |
0.2% | 1.0 × 109 (36%) | 2.7 × 108 (10%) | |
Dimax Chlor | 0.038% * | 2.8 × 108 (10%) | 1.3 × 107 (0.5%) |
0.152% | <102 | <102 | |
BFR Biocide Enzyme | 0.5% * | <102 | <102 |
0.25% | <102 | <102 | |
0.125% | <102 | <102 | |
Binary culture (S. aureus + E. coli—3:1) | |||
Control without disinfectants | 1.0 × 1010 (100%) | ||
Foodlex OXY | 0.05% * | 3.5 × 109 (34%) | 4.2 × 109 (41%) |
0.2% | 3.5 × 109 (34%) | 8.1 × 107 (1%) | |
Dimax Chlor | 0.038% * | 5.1 × 108 (5%) | 4.2 × 108 (4%) |
0.152% | <102 | <102 | |
BFR Biocide Enzyme | 0.5% * | <102 | <102 |
0.25% | <102 | <102 | |
0.125% | <102 | <102 |
Combinations of Disinfectants with Adjuvants | Decrease in Titer after Exposure to Disinfectant (10 min), Orders (% CFU from Baseline Value) | ||
---|---|---|---|
2 Days | 7 Days | ||
Control without disinfectants | (100%) | (100%) | |
Foodlex OXY 0.05% | +hexylresorcinol 0.02% | (100%) | >1 order of magnitude (40%) |
+ethyl alcohol 30% | >1 order of magnitude (97%) | (100%) | |
+isopropyl alcohol 30% | 3 orders of magnitude (0.1%) | (100%) | |
Dimax Chlor 0.038% | +hexylresorcinol 0.02% | 1 orders of magnitude (11%) | 1.3 orders of magnitude (5%) |
+ethyl alcohol 30% | 6 orders of magnitude (<0.0002%) | 6 orders of magnitude (<0.0002%) | |
+isopropyl alcohol 30% | 3 orders of magnitude (0.03%) | 3.5 orders of magnitude (0.04%) | |
BFR Biocide Enzyme 0.5% | +hexylresorcinol 0.02% | (100%) | 4 orders of magnitude (0.03%) |
+ethyl alcohol 30% | 3 orders of magnitude (0.05%) | 1.5 orders of magnitude (6%) | |
+isopropyl alcohol 30% | 4 orders of magnitude (0.01%) | 6 orders of magnitude (<0.0002%) | |
+hydrogen peroxide 3% | 1.5 × 108 (27%) | 2.9 × 106 (3%) | |
+hydrogen peroxide 6% | 6 orders of magnitude (0.0002%) | 6 orders of magnitude (<0.0002%) | |
Peracetic acid 0.05% | +hexylresorcinol 0.02% | 4 orders of magnitude (0.008%) | (100%) |
+ethyl alcohol 30% | 6 orders of magnitude (0.0002%) | (100%) | |
+isopropyl alcohol 30% | 2 orders of magnitude (1%) | 1 order of magnitude (22%) | |
+hydrogen peroxide 6% | (100%) | 2 orders of magnitude (4%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demkina, E.V.; Ilicheva, E.A.; El-Registan, G.I.; Pankratov, T.A.; Yushina, Y.K.; Semenova, A.A.; Nikolaev, Y.A. New Approach to Improving the Efficiency of Disinfectants against Biofilms. Coatings 2023, 13, 582. https://doi.org/10.3390/coatings13030582
Demkina EV, Ilicheva EA, El-Registan GI, Pankratov TA, Yushina YK, Semenova AA, Nikolaev YA. New Approach to Improving the Efficiency of Disinfectants against Biofilms. Coatings. 2023; 13(3):582. https://doi.org/10.3390/coatings13030582
Chicago/Turabian StyleDemkina, Elena V., Ekaterina A. Ilicheva, Galina I. El-Registan, Timofey A. Pankratov, Yulia K. Yushina, Anastasia A. Semenova, and Yuriy A. Nikolaev. 2023. "New Approach to Improving the Efficiency of Disinfectants against Biofilms" Coatings 13, no. 3: 582. https://doi.org/10.3390/coatings13030582
APA StyleDemkina, E. V., Ilicheva, E. A., El-Registan, G. I., Pankratov, T. A., Yushina, Y. K., Semenova, A. A., & Nikolaev, Y. A. (2023). New Approach to Improving the Efficiency of Disinfectants against Biofilms. Coatings, 13(3), 582. https://doi.org/10.3390/coatings13030582