Effect of ZrH2 Doping on Electron Emission Performance of Rare Earth Tungsten Electrode
Abstract
:1. Introduction
2. Experimental
2.1. Sample Preparation
2.2. Material Analysis and Testing
3. Results and Discussion
3.1. Emission Performance of the Electrode Material
3.2. Analysis of XRD and TG-DTA
3.3. SEM and Metallographic Analysis
3.4. XPS Analysis
4. Conclusions
- (1)
- Adding ZrH2 to rare earth tungsten electrodes will consume the impurity oxygen in the electrode and generate La2Zr2O7 particles.
- (2)
- With the addition of ZrH2, the size of tungsten grains and the size of second-phase particles will gradually become smaller, which will promote the uniform distribution of the activated substance.
- (3)
- With the addition of ZrH2, the content of impurity oxygen is gradually decreasing and the content of lattice oxygen is gradually increasing. The decrease of the impurity oxygen content will improve the electron emission performance of the electrode.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, M.L.; Zhang, J.X.; Nie, Z.R.; Wang, J.S.; Zuo, T.Y. Study on thermionic properties of tungsten and molybdenum doped with rare earth oxides and their application. China Tungsten Ind. 2001, 16, 52–56. [Google Scholar]
- Nakata, D.; Toki, K.; Funaki, I.; Kuninaka, H. Performance of ThO2-W, Y2O3-W and La2O3-W cathodes in quasi-steady magnetoplasmadynamic thrusters. J. Propul. Power 2011, 27, 912–915. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Wang, P.; Yang, J.C.; Zhou, S.X.; Zhang, P.; Nie, Z.R. Study on morphology and chemical states of surface active layer of Ce-W cathode. Appl. Surf. Sci. 2019, 479, 815–821. [Google Scholar] [CrossRef]
- Wang, K.; Liu, W.; Hong, Y.; Sohan, H.M.S.; Tong, Y.; Hu, Y.; Zhang, M.; Zhang, J.; Xiang, D.; Fu, H.; et al. An overview of technological parameter optimization in the case of laser cladding. Coatings 2023, 13, 496. [Google Scholar] [CrossRef]
- Zhou, M.L.; Nie, Z.R.; Chen, Y.; Zhang, J.X.; Zuo, T.Y. Research and development of Re-tungsten electrodes. China Tungsten Ind. 2000, 15, 30–34. [Google Scholar]
- Langmuir, I. The electron emission from thoriated tungsten filaments. Phys. Rev. 1923, 22, 357–398. [Google Scholar] [CrossRef]
- Paschen, P. Alternatives to thorium additions to tungsten-based materials. JOM 1996, 48, 45–47. [Google Scholar] [CrossRef]
- Yang, J.C.; Nie, Z.R.; Zhou, M.L.; Xi, X.L. On tungsten electrode doped with rare earth oxides. China Tungsten Ind. 2007, 22, 39–44. [Google Scholar]
- Cui, Y.T.; Zhang, S.G.; Wang, M.; Zhang, X.; Ren, X.J. Study on rare earths doped tungsten cathode for high performance plasma spray torch. Therm. Spray Technol. 2014, 6, 24–27. [Google Scholar]
- Yang, J.C.; Cao, J.; Zhang, X.; Huang, L. Welding performance of several rare earth tungsten electrodes in 5A62 aluminum alloy. J. Beijing Univ. Technol. 2014, 40, 1561–1564. [Google Scholar]
- Zhang, X.X.; Yan, Q.Z. Morphology evolution of La2O3 and crack characteristic in W-La2O3 alloy under transient heat loading. J. Nucl. Mater. 2014, 451, 283–291. [Google Scholar] [CrossRef]
- Hoebing, T.; Hermanns, P.; Bergner, A.; Ruhrmann, C.; Traxler, H.; Wesemann, I.; Knabl, W.; Mentel, J.; Awakowicz, P. Investigation of the flickering of La2O3 and ThO2 doped tungsten cathodes. J. Appl. Phys. 2015, 118, 023306. [Google Scholar] [CrossRef]
- Li, J.F.; Cheng, J.G.; Wei, B.Z.; Zhang, M.L.; Luo, L.M.; Wu, Y.C. Microstructure and properties of La2O3 doped W composites prepared by a wet chemical process. Int. J. Refract. Met. Hard Mater. 2017, 66, 226–233. [Google Scholar] [CrossRef]
- Cui, Y.T.; Li, B.S.; Peng, Y.; Wang, L.Y.; Yang, J.C. Study on welding performance and fabrication of tungsten electrode doped with non-radiating rare earths oxide. Therm. Spray Technol. 2013, 5, 65–68. [Google Scholar]
- Lai, C.; Wang, J.; Zhou, F.; Liu, W.; Engelsen, D.; Miao, N. Emission and evaporation properties of 75 at.% Re-25 at.% W mixed matrix impregnated cathode. Appl. Surf. Sci. 2018, 427, 874–882. [Google Scholar] [CrossRef]
- Xie, Z.M.; Liu, R.; Zhang, T.; Fang, Q.F.; Liu, C.S.; Liu, X.; Luo, G.N. Achieving high strength/ductility in bulk W-Zr-Y2O3 alloy plate with hybrid microstructure. Mater. Des. 2016, 107, 144. [Google Scholar] [CrossRef]
- Ren, C.; Fang, Z.Z.; Koopman, M.; Butler, B.; Paramore, J.; Middlemas, S. Methods for improving ductility of tungsten-a review. Int. J. Refract. Met. Hard Mater. 2018, 75, 170–183. [Google Scholar] [CrossRef]
- Lassner, E.; Schubert, W.D. Tungsten Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds; Plenum Publishers: New York, NY, USA, 1999. [Google Scholar]
- Sadek, A.A.; Ushio, M.; Matsuda, F. Effect of rare earth metal oxide additions to tungsten electrodes. Metall. Trans. A 1990, 21, 3221–3236. [Google Scholar] [CrossRef]
- Huang, L.; Jiang, L.; Topping, T.D.; Dai, C.; Wang, X.; Carpenter, R.; Haines, C.; Schoenung, J.M. In situ oxide dispersion strengthened tungsten alloys with high compressive strength and high strain-to-failure. Acta Mater. 2017, 122, 19–31. [Google Scholar] [CrossRef]
- Xue, J.; Guo, W.; Yang, J.; Xia, M.S.; Zhao, G.; Tan, C.W.; Wan, Z.D.; Chi, J.X.; Zhang, H. In-situ observation of microcrack initiation and damage nucleation modes on the HAZ of laser-welded DP1180 joint. J. Mater. Sci. Technol. 2023, 148, 138–149. [Google Scholar] [CrossRef]
- Zhang, H.; Shen, H.S.; Che, X.K.; Wang, L.J. Zirconium powder production through hydrogenation and dehydrogenation process. Chin. J. Rare Met. 2011, 35, 417–421. [Google Scholar]
- Huang, Z.; Li, S.S.; Tan, C.; Liu, J.H.; Lu, L.L.; Zhang, S.W.; Zhang, H.J. La2Zr2O7 powder with pyrochlore structure by molten salt synthesis. Mate. Mech. Eng. 2016, 40, 55–58. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.G.; Song, H.; Wang, M.L.; Ding, B.J. Effects of second phase particle size on electron emission ability of Mo-La2O3 Cathode. Rare Met. Mater. Eng. 2010, 11, 51–55. [Google Scholar]
- Hua, S.M. Discussion on the evaluation method of measurement uncertainty of grain size. Qual. Tech. Superv. Res. 2015, 2, 9–11. [Google Scholar]
- NIST X-ray Photoelectron Spectroscopy Database. Version 3.5 ed. National Institute of Standards and Technology Gaithersburg. 2010. Available online: http://srdata.nist.gov/xps/ (accessed on 1 December 2010).
- Howng, W.Y.; Thorn, R.J. Investigation of the electronic structure of La1−x(M2+) × CrO3, Cr2O3 and La2O3 by X-ray photoelectron spectroscopy. J. Phys. Chem. Solids 1980, 41, 75–81. [Google Scholar] [CrossRef]
- Uwamino, Y.; Ishizuka, T.; Yamatera, H. X-ray photoelectron spectroscopy of rare-earth compounds. J. Electron. Spectrosc. Relat. Phenom. 1984, 34, 67–78. [Google Scholar] [CrossRef]
- Kumar, R.; Mintz, M.H.; Rabalais, J.W. Surface recoiling XPS and UPS study of chemisorption of H2O2 and H2O on lanthanum. Surf. Sci. 1984, 147, 37–47. [Google Scholar] [CrossRef]
- Marsella, L.; Fiorentini, V. Structure and stability of rare-earth and transition-metal oxides. Phys. Rev. B 2004, 69, 172103. [Google Scholar] [CrossRef]
- Sunding, M.F.; Hadidi, K.; Diplas, S.; Løvvik, O.M.; Norby, T.E.; Gunnæs, A.E. XPS characterisation of in situ treated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures. J. Electron. Spectrosc. Relat. Phenom. 2011, 184, 399–409. [Google Scholar] [CrossRef]
- Parthé, E. Modern Perspectives in Inorganic Crystal Chemistry; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1992; pp. 163–175. [Google Scholar]
- Giuliano, M. Auger parameter shifts in the case of the non-local screening mechanism: Applications of the electrostatic model to molecules, solids and adsorbed species. Surf. Interface Anal. 1991, 17, 352–356. [Google Scholar]
- Moretti, G. Auger parameter and wagner plot in the characterization of chemical states by X-ray photoelectron spectroscopy: A review. J. Electron. Spectrosc. Relat. Phenom. 1998, 95, 95–144. [Google Scholar] [CrossRef]
- Stoychev, D.; Valov, I.; Stefanov, P.; Atanasova, G.; Stoycheva, M.; Marinova, Ts. Electrochemical growth of thin La2O3 films on oxide and metal surfaces. Mater. Sci. Eng. C 2003, 23, 123–128. [Google Scholar] [CrossRef]
- Jafer, R.M.; Coetsee, E.; Yousif, A.; Keoon, R.E.; Ntwaeaborwa, O.M.; Swart, H.C. X-ray photoelectron spectroscopy and luminescent properties of Y2O3:Bi3+ phosphor. Appl. Surf. Sci. 2015, 332, 198–204. [Google Scholar] [CrossRef]
- Zhu, J.Q.; Zhu, Y.K.; Shen, W.X.; Wang, Y.J.; Han, J.C.; Gui, T.; Peng, L.; Bing, D. Growth and characterization of yttrium oxide films by reactive magnetron sputtering. Thin Solid Films 2011, 519, 4894–4898. [Google Scholar] [CrossRef]
Sample | W | La2O3 (wt.%) | Y2O3 (wt.%) | ZrH2 (wt.%) |
---|---|---|---|---|
1# | Bal. | 1.5 | 0.08 | 0 |
2# | Bal. | 1.5 | 0.08 | 0.05 |
3# | Bal. | 1.5 | 0.08 | 0.1 |
Unit | W | La | O | Zr |
---|---|---|---|---|
At. % | 43.98 | 0.54 | 55.48 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Zhang, Y.; Liang, S.; Yang, J.; Nie, Z. Effect of ZrH2 Doping on Electron Emission Performance of Rare Earth Tungsten Electrode. Coatings 2023, 13, 666. https://doi.org/10.3390/coatings13040666
Zhou S, Zhang Y, Liang S, Yang J, Nie Z. Effect of ZrH2 Doping on Electron Emission Performance of Rare Earth Tungsten Electrode. Coatings. 2023; 13(4):666. https://doi.org/10.3390/coatings13040666
Chicago/Turabian StyleZhou, Shaoxin, Yingchao Zhang, Shangshang Liang, Jiancan Yang, and Zuoren Nie. 2023. "Effect of ZrH2 Doping on Electron Emission Performance of Rare Earth Tungsten Electrode" Coatings 13, no. 4: 666. https://doi.org/10.3390/coatings13040666
APA StyleZhou, S., Zhang, Y., Liang, S., Yang, J., & Nie, Z. (2023). Effect of ZrH2 Doping on Electron Emission Performance of Rare Earth Tungsten Electrode. Coatings, 13(4), 666. https://doi.org/10.3390/coatings13040666