E-Wave Interaction with the One-Dimensional Photonic Crystal with Weak Conductive and Transparent Materials
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeh, P. Optical Waves in Layered Media; Wiley: New York, NY, USA, 1988; 406p. [Google Scholar]
- Dai, X.; Xiang, Y.; Wen, S.; He, H. Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb. J. Appl. Phys. 2011, 109, 053104. [Google Scholar] [CrossRef]
- Li, Y.; Xiang, Y.; Wen, S.; Yong, J.; Fan, D. Tunable terahertz-mirror and multi-channel terahertz-filter based on one-dimensional photonic crystals containing semiconductors. J. Appl. Phys. 2011, 110, 073111. [Google Scholar] [CrossRef]
- Belousov, S.; Bogdanova, M.; Deinega, A.; Eyderman, S.; Valuev, I.; Lozovik, Y.; Polischuk, I.; Potapkin, B.; Ramamurthi, B.; Deng, T.; et al. Using metallic photonic crystals as visible light sources. Phys. Rev. B 2012, 86, 174201. [Google Scholar] [CrossRef] [Green Version]
- Howell, I.R.; Li, C.; Colella, N.S.; Ito, K.; Watkins, J.J. Strain-tunable one dimensional photonic crystals based on zirconium dioxide/slide-ring elastomer nanocomposites for mechanochromic sensing. ACS Appl. Mater. Interfaces 2015, 7, 3641–3646. [Google Scholar] [CrossRef]
- Gorelik, V.S.; Kapaev, V.V. Electromagnetic-field amplification in finite one-dimensional photonic crystals. J. Exp. Theor. Phys. 2016, 123, 373–381. [Google Scholar] [CrossRef]
- Yushkanov, A.A.; Zverev, N.V. Quantum Electron Plasma in One-Dimensional Metallic-Dielectric Photonic Crystal. Opt. Spectrosc. 2017, 122, 202–206. [Google Scholar]
- Belyakov, V.A.; Sonin, A.S. Optics of Cholesteric Liquid Crystals; Nauka: Moscow, Russia, 1982; 359p. (In Russian) [Google Scholar]
- Shabanov, V.F.; Vetrov, S.Y.; Shabanov, A.V. Optics of Real Photonic Crystals. Liquid Crystal Defects, Inhomogeneities; Siberian Branch of RAS: Novosibirsk, Russia, 2005; 239p, ISBN 5-7692-0737-X. (In Russian) [Google Scholar]
- Belyaev, V.V.; Chilaya, G.S. Liquid Crystals at the Beginning of the XXI Century; MRSU: Moscow, Russia, 2017; 142p. (In Russian) [Google Scholar]
- Chepeleva, D.S.; Yakovleva, A.S.; Murauski, A.A.; Kukhta, I.N.; Muravsky, A.A. Phototunable selective reflection of cholesteric liquid crystals. Doklady BGUIR 2019, 7, 28–30. [Google Scholar] [CrossRef]
- Park, S.; Stinson, V.P.; Boreman, G.D.; Hofmann, T. Terahertz anisotropic response of additively manufactured one-dimensional photonic crystals. Opt. Lett. 2021, 46, 3396–3399. [Google Scholar] [CrossRef]
- Yin, S.; Zhu, Z.; Gao, X.; Wang, Q.; Yuan, J.; Liu, Y.; Jiang, L. Terahertz nonreciprocal and functionality-switchable devices based on dielectric multilayers integrated with graphene and VO2. Opt. Lett. 2022, 47, 678–681. [Google Scholar] [CrossRef]
- Lu, F.; Gong, L.; Kuai, Y.; Tang, X.; Xiang, Y.; Wang, P.; Zhang, D. Controllable optofluidic assembly of biological cells using an all-dielectric one-dimensional photonic crystal. Photonics Res. 2022, 10, 14–20. [Google Scholar] [CrossRef]
- Ma, L.; Li, C.; Sun, L.; Song, Z.; Lu, Y.; Li, B. Submicrosecond electro-optical switching of one-dimensional soft photonic crystals. Photonics Res. 2022, 10, 786–792. [Google Scholar] [CrossRef]
- Zeng, X.; He, W.; Frosz, M.H.; Geilen, A.; Roth, P.; Wong, G.K.L.; Russell, P.S.J.; Stiller, B. Stimulated Brillouin scattering in chiral photonic crystal fiber. Photonics Res. 2022, 10, 711–718. [Google Scholar] [CrossRef]
- Faramarzi, S.; Hervieuxa, P.-A.; Bigota, J.-Y. Temperature dependence of longitudinal and transverse dielectric functions of inhomogeneous Fermi systems in the local density approximation. J. Optoelectron. Adv. Mater. 2005, 7, 3083–3092. [Google Scholar]
- Jones, W.E.; Kliewer, K.L.; Fuchs, R. Nonlocal Theory of the Optical Properties of Thin Metallic Films. Phys. Rev. 1969, 178, 1201–1203. [Google Scholar] [CrossRef]
- Paredes-Juarez, A.; Diaz-Monge, F.; Makarov, N.M.; Perez-Rodriguez, F. Nonlocal effects in the electrodynamics of metallic slabs. JETP Lett. 2010, 90, 623–627. [Google Scholar] [CrossRef]
- Latyshev, A.V.; Yushkanov, A.A. Surface plasma oscillations in thin metallic films. Bull. Mosc. Reg. State Univ. Ser. Phys. Math. 2012, 2, 116–121. (In Russian) [Google Scholar]
- Yushkanov, A.A.; Zverev, N.V. Quantum Electron Plasma, Visible and Ultraviolet P-wave and Thin Metallic Film. Phys. Lett. A 2017, 381, 679–684. [Google Scholar] [CrossRef] [Green Version]
- Zverev, N.V.; Yushkanov, A.A. Quantum electron plasma and P-wave interaction with thin graphite layer. In PHYSICAL ELECTRONICS: Proceedings of the X All-Russian Conference FE-2018; DSU: Makhachkala, Russia, 2018; pp. 149–153. ISBN 978-5-9913-0156-5. (In Russian) [Google Scholar]
- Zotov, A.A.; Zverev, N.V. Longitudinal Plasmons in a Thin Flat Conductive Film. J. Phys. Conf. Ser. 2021, 2056, 012020. [Google Scholar] [CrossRef]
- Bedrikova, E.A.; Golovlyova, S.D.; Zverev, N.V.; Kondakova, A.V. Optical coefficients of the one-dimensional metal-dielectric photonic crystal. In Topical Problems of the Mathematics, Physics and Mathematical Education: Proceedings of the Mathematical Analysis and Geometry Department at MRSU; MRSU: Moscow, Russia, 2020; pp. 28–37. ISBN 978-5-7017-3339-6. (In Russian) [Google Scholar]
- Zverev, N.V. Surface Impedances of a Flat Layer of a Medium with a Mirror-Symmetric Dielectric Response Function. Bull. Mosc. Reg. State Univ. Ser. Phys. Math. 2018, 1, 23–37. (In Russian) [Google Scholar] [CrossRef]
- Latyshev, A.V.; Yushkanov, A.A. Transverse electrical conductivity of a quantum collisional plasma in the Mermin approach. Theor. Math. Phys. 2013, 175, 559–569. [Google Scholar] [CrossRef]
- Latyshev, A.V.; Yushkanov, A.A. Longitudinal electric conductivity in a quantum plasma with a variable collision frequency in the framework of the Mermin approach. Theor. Math. Phys. 2014, 178, 130–141. [Google Scholar] [CrossRef]
- Alabina, Y.F.; Bugrimov, A.L.; Latyshev, A.V.; Yushkanov, A.A. Longitudinal dielectric permeability of the quantum Maxwell collisional plasma. Bull. Mosc. Reg. State Univ. Ser. Phys. Math. 2013, 3, 6–20. (In Russian) [Google Scholar]
- Alexandrov, A.F.; Bogdankevich, L.S.; Rukhadze, A.A. Principles of Plasma Electrodynamics; Springer: Berlin/Heidelberg, Germany, 1984; 490p. [Google Scholar]
- Dresselhaus, M.S.; Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 2002, 51, 1–186. [Google Scholar] [CrossRef]
- Grigoriev, I.S.; Meilikhov, E.Z. (Eds.) Handbook of Physical Quantities; CRC Press: Boca Raton, FL, USA, 1997; 1548p, ISBN 978-0849328619. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belyaev, V.; Zverev, N.; Abduev, A.; Zotov, A. E-Wave Interaction with the One-Dimensional Photonic Crystal with Weak Conductive and Transparent Materials. Coatings 2023, 13, 712. https://doi.org/10.3390/coatings13040712
Belyaev V, Zverev N, Abduev A, Zotov A. E-Wave Interaction with the One-Dimensional Photonic Crystal with Weak Conductive and Transparent Materials. Coatings. 2023; 13(4):712. https://doi.org/10.3390/coatings13040712
Chicago/Turabian StyleBelyaev, Victor, Nikolai Zverev, Aslan Abduev, and Alexander Zotov. 2023. "E-Wave Interaction with the One-Dimensional Photonic Crystal with Weak Conductive and Transparent Materials" Coatings 13, no. 4: 712. https://doi.org/10.3390/coatings13040712
APA StyleBelyaev, V., Zverev, N., Abduev, A., & Zotov, A. (2023). E-Wave Interaction with the One-Dimensional Photonic Crystal with Weak Conductive and Transparent Materials. Coatings, 13(4), 712. https://doi.org/10.3390/coatings13040712