Self-Supporting Conductive Polyaniline–Sodium Alginate–Graphene Oxide/Carbon Brush Hydrogel as Anode Material for Enhanced Energy in Microbial Fuel Cells
Abstract
:1. Introduction
2. Experiment
2.1. Preparation of the PANI–SA–GO/CB Composite
2.2. MFC Construction
2.3. Measurement and Characterization
3. Results and Discussion
3.1. Physicochemical Characterization
3.2. Capacitive Behavior
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, B.; Li, J.; Wang, Z.; Ali, J.; Wang, L.; Zhang, Z.; Liu, F.; Glebov, E.M.; Zhang, J.; Zhang, H. N-doped Fe Nanoparticles Anchored on 3D Carbonized Sugarcane Anode for High Power Density and Efficient Chromium(VI) Removal. J. Environ. Chem. Eng. 2022, 10, 108751. [Google Scholar] [CrossRef]
- Sun, X.; Wu, X.; Shi, Z.; Li, X.; Qian, S.; Ma, Y.; Sun, W.; Guo, C.; Li, C.M. Electrospinning Iron-Doped Carbon Fiber to Simultaneously Boost Both Mediating and Direct Biocatalysis for High-Performance Microbial Fuel Cell. J. Power Sources 2022, 530, 231277. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, J.; Zhang, Y.; Guo, Q.; Hu, T.; Xiao, H.; Lu, W.; Jia, J. Progress on Anodic Modification Materials and Future Development Directions in Microbial Fuel Cells. J. Power Sources 2023, 556, 232486. [Google Scholar] [CrossRef]
- Khilari, S.; Pandit, S.; Varanasi, J.L.; Das, D.; Pradhan, D. Bifunctional Manganese Ferrite/Polyaniline Hybrid as Electrode Material for Enhanced Energy Recovery in Microbial Fuel Cell. ACS Appl. Mater. Inter. 2015, 7, 20657–20666. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhao, Y.; Doherty, L.; Hu, Y.; Hao, X. The Integrated Processes for Wastewater Treatment Based on the Principle of Microbial Fuel Cells: A Review. Crit. Rev. Environ. Sci. Technol. 2016, 46, 60–91. [Google Scholar] [CrossRef]
- Li, P.; Yang, Y.; Shi, E.; Shen, Q.; Shang, Y.; Wu, S.; Wei, J.; Wang, K.; Zhu, H.; Yuan, Q.; et al. Core-Double-Shell, Carbon Nanotube@ Polypyrrole@MnO2 Sponge as Freestanding, Compressible Supercapacitor Electrode. ACS Appl. Mater. Inter. 2014, 6, 5228–5234. [Google Scholar] [CrossRef]
- Luo, J.; Ma, Q.; Gu, H.; Zheng, Y.; Liu, X. Three-Dimensional Graphene-Polyaniline Hybrid Hollow Spheres by Layer-By-Layer Assembly for Application in Supercapacitor. Electrochim. Acta 2015, 173, 184–192. [Google Scholar] [CrossRef]
- Qiao, Y.; Li, C.; Bao, S.; Bao, Q. Carbon Nanotube/Polyaniline Composite as Anode Material for Microbial Fuel Cells. J. Power Sources 2007, 170, 79–84. [Google Scholar] [CrossRef]
- Hou, J.; Liu, Z.; Zhang, P. A New Method for Fabrication of Graphene/Polyaniline Nanocomplex Modified Microbial Fuel Cell Anodes. J. Power Sources 2013, 224, 139–144. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Wen, Q. Microbial Fuel Cells: Enhancement with a Polyaniline/Carbon Felt Capacitive Bioanode and Reduction of Cr (VI) Using the Intermittent Operation. Environ. Chem. Lett. 2018, 16, 319–326. [Google Scholar] [CrossRef]
- Lai, B.; Tang, X.; Li, H.; Du, Z.; Liu, X.; Zhang, Q. Power Production Enhancement with a Polyaniline Modified Anode in Microbial Fuel Cells. Biosens. Bioelectron. 2011, 28, 373–377. [Google Scholar] [CrossRef]
- Wang, P.; Li, H.; Du, Z. Polyaniline Synthesis by Cyclic Voltammetry for Anodic Modification in Microbial Fuel Cells. Int. J. Electrochem. Sci. 2014, 9, 2038–2046. [Google Scholar]
- Hou, J.; Liu, Z.; Li, Y. Polyaniline Modified Stainless Steel Fiber Felt for Highperformance Microbial Fuel Cell Anodes. J. Clean. Energy Technol. 2015, 3, 165–169. [Google Scholar] [CrossRef]
- Qi, R.; Guo, J.; Liu, Y.; Zhang, R.; Gan, Z. Effects of Salt Content on Secondary Structure of Protein in Sodium Alginate/Antarctic Krill Protein Composite System and Characterization of Fiber Properties. Dyes Pigment. 2019, 171, 107686. [Google Scholar] [CrossRef]
- Huang, H.B.; Zeng, X.P.; Li, W.; Wang, H.; Wang, Q.; Yang, Y. Reinforced Conducting Hydrogels Prepared from the in-Situ Polymerization of Aniline in an Aqueous Solution of Sodium Alginate. J. Mater. Chem. A 2014, 2, 16516–16522. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, X.; Xu, Q.; Zhang, Q.; Chen, D. Facile Preparation and Enhanced Capacitance of the Polyaniline/Sodium Alginate Nanofiber Network for Supercapacitors. Langmuir 2011, 27, 6458–6463. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, H.; Lin, C.; Zheng, J.; Chen, Y.; Wen, Q.; Wang, S.; Xu, H.; Qi, L. Development of a 3D Porous Sponge as a Bioanode Coated with Polyaniline/Sodium Alginate/Nitrogen-Doped Carbon Nanotube Composites for High-Performance Microbial Fuel Cells. J. Appl. Electrochem. 2020, 50, 621–630. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, Q.; Chen, Y.; Zheng, H.; Wang, S. Enhanced Performance of Microbial Fuel Cell with Polyaniline/Sodium Alginate/Carbon Brush Hydrogel Bioanode and Removal of COD. Energy 2020, 202, 117780. [Google Scholar] [CrossRef]
- Gnana Kumar, G.; Kirubaharan, C.J.; Udhayakumar, S.; Karthikeyan, C.; Nahm, K.S. Conductive Polymer/Graphene Supported Platinum Nanoparticles as Anode Catalysts for the Extended Power generation of Microbial Fuel Cells. Ind. Eng. Chem. Res. 2014, 53, 16883–16893. [Google Scholar] [CrossRef]
- Qiao, Y.; Bao, S.; Li, C.M.; Cui, X.; Lu, Z.; Guo, J. Nanostructured Polyaniline/Titanium Dioxide Composite Anode for Microbial Fuel Cells. ACS Nano 2008, 2, 113–119. [Google Scholar] [CrossRef]
- Du, P.; Liu, H.C.; Yi, C.; Wang, K.; Gong, X. Polyaniline-Modified Oriented Graphene Hydrogel Film as the Free-Standing Electrode for Flexible Solid-State Supercapacitors. ACS Appl. Mater. Inter. 2015, 7, 23932–23940. [Google Scholar] [CrossRef] [PubMed]
- Ayán-Varela, M.; Villar-Rodil, S.; Paredes, J.I.; Munuera, J.M.; Pagán, A.; Lozano-Pérez, A.A.; Cenis, J.L.; Martínez-Alonso, A.; Tascón, J.M.D. Investigating the Dispersion Behavior in Solvents, Biocompatibility, and Use as Support for Highly Efficient Metal Catalysts of Exfoliated Graphitic Carbon Nitride. ACS Appl. Mater. Inter. 2015, 7, 24032–24045. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Lee, C.; Seo, Y.D.; Cho, S.; Kim, J.; Lee, G.; Kim, Y.K.; Jang, J. Fabrication of Various Conducting Polymers Using Graphene Oxide as a Chemical Oxidant. Chem. Mater. 2015, 27, 6238–6248. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Cheng, C.; Liu, X.; Jiang, H.; Wang, X. Highly Sensitive Electrochemical Biosensor for Evaluation of Oxidative Stress Based on the Nanointerface of Graphene Nanocomposites Blended with Gold, Fe3O4, and Platinum Nanoparticles. ACS Appl. Mater. Inter. 2015, 7, 18441–18449. [Google Scholar] [CrossRef]
- Seenivasan, R.; Chang, W.; Gunasekaran, S. Highly Sensitive Detection and Removal of Lead Ions in Water Using Cysteine-Functionalized Graphene Oxide/Polypyrrole Nanocomposite Film Electrode. ACS Appl. Mater. Inter. 2015, 7, 15935–15943. [Google Scholar] [CrossRef]
- Lv, Z.; Chen, Y.; Wei, H.; Li, F.; Hu, Y.; Wei, C.; Feng, C. One-Step Electrosynthesis of Polypyrrole/Graphene Oxide Composites for Microbial Fuel Cell Application. Electrochim. Acta 2013, 111, 366–373. [Google Scholar] [CrossRef]
- Yong, Y.-C.; Dong, X.-C.; Chan-Park, M.B.; Song, H.; Chen, P. Macroporous and Monolithic Anode Based on Polyaniline Hybridized Three-Dimensional Graphene for High-Performance Microbial Fuel Cells. ACS Nano 2012, 6, 2394–2400. [Google Scholar] [CrossRef]
- Kopecek, J. Swell Gels. Nature 2002, 417, 388–391. [Google Scholar] [CrossRef]
- Green, R.A.; Baek, S.; Poole-Warren, L.A.; Martens, P.J. Conducting Polymer-Hydrogels for Medical Electrode Applications. Sci. Technol. Adv. Mater. 2010, 11, 14107. [Google Scholar] [CrossRef]
- Mano, N.; Yoo, J.E.; Tarver, J.; Loo, Y.; Heller, A. An Electron-Conducting Cross-Linked Polyaniline-Based Redox Hydrogel, Formed in One Step at pH 7.2, Wires Glucose Oxidase. J. Am. Chem. Soc. 2007, 129, 7006–7007. [Google Scholar] [CrossRef]
- Heller, A. Electron-Conducting Redox Hydrogels: Design, Characteristics and Synthesis. Curr. Opin. Chem. Biol. 2006, 10, 664–672. [Google Scholar]
- Liu, X.-W.; Huang, Y.-X.; Sun, X.-F.; Sheng, G.-P.; Zhao, F.; Wang, S.-G.; Yu, H.-Q. Conductive Carbon Nanotube Hydrogel as a Bioanode for Enhanced Microbial Electrocatalysis. ACS Appl. Mater. Interfaces. 2014, 6, 8158–8164. [Google Scholar] [CrossRef]
- Mashkour, M.; Rahimnejad, M.; Mashkour, M. Bacterial Cellulose-Polyaniline Nano-Biocomposite: A Porous Media Hydrogel Bioanode Enhancing the Performance of Microbial Fuel Cell. J. Power Sources 2016, 325, 322–328. [Google Scholar] [CrossRef]
- Mashkour, M.; Rahimnejad, M.; Mashkour, M.; Bakeri, G.; Luque, R.; Oh, S. Application of Wet Nanostructured Bacterial Cellulose as a Novel Hydrogel Bioanode for Microbial Fuel Cells. ChemElectroChem 2017, 4, 648–654. [Google Scholar] [CrossRef]
- Qi, L.; Wu, J.; Chen, Y.; Wen, Q.; Xu, H.; Wang, Y. Shape-Controllable Binderless Self-Supporting Hydrogel Anode for Microbial Fuel Cells. Renew. Energ. 2020, 156, 1325–1335. [Google Scholar] [CrossRef]
- Yang, C.; Chen, C.; Pan, Y.; Li, S.; Wang, F.; Li, J.; Li, N.; Li, X.; Zhang, Y.; Li, D. Flexible Highly Specific Capacitance Aerogel Electrodes Based on Cellulose Nanofibers, Carbon Nanotubes and Polyaniline. Electrochim. Acta 2015, 182, 264–271. [Google Scholar] [CrossRef]
- Ma, L.; Liu, R.; Niu, H.; Xing, L.; Liu, L.; Huang, Y. Flexible and Freestanding Supercapacitor Electrodes Based on Nitrogen-Doped Carbon Networks/Graphene/Bacterial Cellulose with Ultrahigh Areal Capacitance. ACS Appl. Mater. Interfaces 2016, 8, 33608–33618. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, B.; Pan, L.; Yu, G. 3D Nanostructured Conductive Polymer Hydrogels for High-Performance Electrochemical Devices. Energy Environ. Sci. 2013, 6, 2856–2870. [Google Scholar] [CrossRef]
- Nakamura, R.; Ishii, K.; Hashimoto, K. Electronic Absorption Spectra and Redox Properties of C Type Cytochromes in Living Microbes. Angew. Chem. Int. Ed. 2009, 48, 1606–1608. [Google Scholar] [CrossRef]
- Zhang, C.; Liang, P.; Jiang, Y.; Huang, X. Enhanced Power Generation of Microbial Fuel Cell Using Manganese Dioxide-Coated Anode in Flow-Through Mode. J. Power Sources 2015, 273, 580–583. [Google Scholar] [CrossRef]
- Lv, Z.; Xie, D.; Li, F.; Hu, Y.; Wei, C.; Feng, C. Microbial Fuel Cell as a Biocapacitor by Using Pseudo-Capacitive Anode Materials. J. Power Sources 2014, 246, 642–649. [Google Scholar] [CrossRef]
- Wang, Y.; Li, B.; Zeng, L.; Cui, D.; Xiang, X.; Li, W. Polyaniline/Mesoporous Tungsten Trioxide Composite as Anode Electrocatalyst for High-Performance Microbial Fuel Cells. Biosens. Bioelectron. 2013, 41, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.-F.; Du, L.; Guo, P.-B.; Zhu, B.; Luong, J.H. Controlled Modification of Carbon Nanotubes and Polyaniline on Macroporous Graphite Felt for High-Performance Microbial Fuel Cell Anode. J. Power Sources 2015, 283, 46–53. [Google Scholar] [CrossRef]
- Tang, X.; Li, H.; Du, Z.; Wang, W.; Ng, H.Y. Conductive Polypyrrole Hydrogels and Carbon Nanotubes Composite as an Anode for Microbial Fuel Cells. RSC Adv. 2015, 5, 50968–50974. [Google Scholar] [CrossRef]
- Deeke, A.; Sleutels, T.H.J.A.; Hamelers, H.V.M.; Buisman, C.J.N. Capacitive Bioanodes Enable Renewable Energy Storage in Microbial Fuel Cells. Environ. Sci. Technol. 2012, 46, 3554–3560. [Google Scholar] [CrossRef]
- Deeke, A.; Sleutels, T.H.; Heijne, A.; Hamelers, H.V.; Buisman, C.J. Influence of the Thickness of the Capacitive Layer on the Performance of Bioanodes in Microbial Fuel Cells. J. Power Sources 2013, 243, 611–616. [Google Scholar] [CrossRef]
- Tang, J.; Yuan, Y.; Liu, T.; Zhou, S. High-Capacity Carbon-Coated Titanium Dioxide Core–Shell Nanoparticles Modified Three Dimensional Anodes for Improved Energy Output in Microbial Fuel Cells. J. Power Sources 2015, 274, 170–176. [Google Scholar] [CrossRef]
- Liang, P.; Zhang, C.; Jiang, Y.; Bian, Y.; Zhang, H.; Sun, X.; Yang, X.; Zhang, X.; Huang, X. Performance Enhancement of Microbial Fuel Cell by Applying Transient-State Regulation. Appl. Energy 2017, 185, 582. [Google Scholar] [CrossRef]
Electrodes | Parameters | C5 min/D30 min | C30 min/D60 min | C60 min/D90 min |
---|---|---|---|---|
ih (A/m2) | 0.98 | 2.29 | 2.45 | |
CF | is (A/m2) | 0.46 | 0.55 | 0.58 |
Qs (C/m2) | 87.07 | 308.94 | 423.05 | |
Qm (C/m2) | 887.47 | 2255.94 | 3520.25 | |
PANI-SA-GO/CB | ih (A/m2) | 12.99 | 21.18 | 33.03 |
is (A/m2) | 5.07 | 5.11 | 5.12 | |
Qs (C/m2) | 868.56 | 3397.96 | 6378.41 | |
Qm (C/m2) | 9694.53 | 21,487.71 | 33,756.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yang, H.; Wang, J.; Dong, J.; Duan, Y. Self-Supporting Conductive Polyaniline–Sodium Alginate–Graphene Oxide/Carbon Brush Hydrogel as Anode Material for Enhanced Energy in Microbial Fuel Cells. Coatings 2023, 13, 790. https://doi.org/10.3390/coatings13040790
Wang Y, Yang H, Wang J, Dong J, Duan Y. Self-Supporting Conductive Polyaniline–Sodium Alginate–Graphene Oxide/Carbon Brush Hydrogel as Anode Material for Enhanced Energy in Microbial Fuel Cells. Coatings. 2023; 13(4):790. https://doi.org/10.3390/coatings13040790
Chicago/Turabian StyleWang, Yuyang, Huan Yang, Jing Wang, Jing Dong, and Ying Duan. 2023. "Self-Supporting Conductive Polyaniline–Sodium Alginate–Graphene Oxide/Carbon Brush Hydrogel as Anode Material for Enhanced Energy in Microbial Fuel Cells" Coatings 13, no. 4: 790. https://doi.org/10.3390/coatings13040790
APA StyleWang, Y., Yang, H., Wang, J., Dong, J., & Duan, Y. (2023). Self-Supporting Conductive Polyaniline–Sodium Alginate–Graphene Oxide/Carbon Brush Hydrogel as Anode Material for Enhanced Energy in Microbial Fuel Cells. Coatings, 13(4), 790. https://doi.org/10.3390/coatings13040790