Improvement of Piezoelectricity of (Bi0.5Na0.5)0.94Ba0.06TiO3 Ceramics Modified by a Combination of Porosity and Sm3+ Doping
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Phase Structures and Morphologies of the Porous BNBT6-xSm Ceramics
3.2. Dielectric Properties of the Porous BNBT6-xSm Ceramics
3.3. Piezoelectric and Ferroelectric Properties of the Porous BNBT6-xSm Ceramics
3.4. Piezoelectric Resonance Characteristics of the Porous BNBT6-xSm Ceramics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martinez, T.; Pillonnet, G.; Loyau, V.; Vasic, D.; Costa, F. A transverse traveling wave piezoelectric transformer. Smart Mater. Struct. 2019, 28, 16. [Google Scholar] [CrossRef]
- Ran, H.P.; Du, H.L.; Ma, C.Y.; Zhao, Y.Y.; Feng, D.N.; Xu, H. Effects of A/B-Site Co-Doping on Microstructure and Dielectric Thermal Stability of AgNbO3 Ceramics. Sci. Adv. Mater. 2021, 13, 741–747. [Google Scholar] [CrossRef]
- Du, H.L.; Ma, C.Y.; Ma, W.X.; Wang, H.T. Microstructure evolution and dielectric properties of Ce-doped SrBi4Ti4O15 ceramics synthesized via glycine-nitrate process. Process. Appl. Ceram. 2018, 12, 303–312. [Google Scholar] [CrossRef]
- Anastasia, K.; Marina, D.; Nellya, P.; Liana, P.; Alexandr, F. Preparation and dielectric properties of thermo-vaporous barium titanate ceramics. Mater. Technol. 2015, 3, 447–451. [Google Scholar] [CrossRef]
- Rodel, J.; Webber, K.G.; Dittmer, R.; Jo, W.; Kimura, M.; Damjanovic, D. Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 2015, 35, 1659–1681. [Google Scholar] [CrossRef]
- Feng, D.N.; Du, H.L.; Ran, H.P.; Lu, T.; Xia, S.Y.; Xu, L.; Wang, Z.X.; Ma, C.Y. Antiferroelectric stability and energy storage properties of Co-doped AgNbO3 ceramics. J. Solid State Chem. 2022, 310, 7. [Google Scholar] [CrossRef]
- Ma, C.Y.; Du, H.L.; Liu, J.; Kang, L.; Du, X.; Xi, X.Y.; Ran, H.P. High-temperature stability of dielectric and energy-storage properties of weakly-coupled relaxor (1 − x)BaTiO3-xBi(Y1/3Ti1/2)O3 ceramics. Ceram. Int. 2021, 47, 25029–25036. [Google Scholar] [CrossRef]
- Dittmer, R.; Jo, W.; Rdel, J.; Kalinin, S.; Balke, N. Nanoscale Insight Into Lead-Free BNT-BT-xKNN. Adv. Funct. Mater. 2012, 22, 4208–4215. [Google Scholar] [CrossRef]
- Zhang, S.T.; Kounga, A.B.; Aulbach, E.; Ehrenberg, H.; Rdel, J. Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system. Appl. Phys. Lett. 2007, 91, 112906. [Google Scholar] [CrossRef]
- Zhang, H.Z.; Zhu, M.K.; Hou, Y.D.; Wang, R.Z.; Yan, H.; Liu, L.Y. Structural Modulation of Na0.5Bi0.5TiO3 in Hydrothermal Synthesis. Int. J. Appl. Ceram. Technol. 2016, 13, 569–578. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, W.; Xia, G.; Wang, L.; Wang, K. Self-Powered Electronic Skin for Remote Human–Machine Synchronization. ACS Appl. Electron. Mater. 2023, 5, 498–508. [Google Scholar] [CrossRef]
- Xu, C.; Lin, D.; Kwok, K.W. Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3-BaTiO3 lead-free piezoelectric ceramics. Solid State Sci. 2008, 10, 934–940. [Google Scholar] [CrossRef]
- Liu, G.; Button, T.W.; Zhang, D. Lamellar BaTiO3 and its composites fabricated by the freeze casting technique. J. Eur. Ceram. Soc. 2014, 34, 4083–4088. [Google Scholar] [CrossRef]
- Polley, C.; Distler, T.; Detsch, R.; Lund, H.; Springer, A.; Boccaccini, A.R.; Seitz, H. 3D Printing of Piezoelectric Barium Titanate-Hydroxyapatite Scaffolds with Interconnected Porosity for Bone Tissue Engineering. Materials 2020, 13, 1773. [Google Scholar] [CrossRef]
- Park, K.; Kim, Y.S.; Jo, S.; Lee, Y.W. Polarization-Interference-Based Fiber Vibration Sensor Incorporating Polarization-Diversity Loop Structure. IEEE Sens. J. 2016, 16, 1949–1955. [Google Scholar] [CrossRef]
- Takenaka, T.; Maruyama, K.; Sakata, K. (Bi1/2Na1/2)TiO3-BaTiO3 System for Lead-Free Piezoelectric Ceramics. Jpn. J. Appl. Phys. 1991, 30, 2236–2239. [Google Scholar] [CrossRef]
- He, Z.; Shi, S.; Pan, Z.; Tang, L.; Zhao, J.; Shen, Y.; Hu, D.; Chen, Y.; Li, P.; Liu, J.; et al. Low Electric Field induced High Energy Storage Capability of the Free-lead Relaxor Ferroelectric 0.94Bi0.5Na0.5TiO3-0.06BaTiO3-based Ceramics. Ceram. Int. 2021, 47, 11611–11617. [Google Scholar]
- Acosta, M.; Novak, N.; Rojas, V.; Patel, S.; Vaish, R.; Koruza, J.; Rossetti, G.A.; Rodel, J. BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. Appl. Phys. Rev. 2017, 4, 53. [Google Scholar] [CrossRef]
- Giannakoudakis, D.A.; Barczak, M.; Pearsall, F.; O’Brien, S.; Bandosz, T.J. Composite porous carbon textile with deposited barium titanate nanospheres as wearable protection medium against toxic vapors. Chem. Eng. J. 2020, 384, 9. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Li, D.; Cui, X.; Wang, L.; Li, L.; Wang, K. Electrochemical Impedance Spectroscopy: A New Chapter in the Fast and Accurate Estimation of the State of Health for Lithium-Ion Batteries. Energies 2023, 16, 1599. [Google Scholar] [CrossRef]
- Liu, W.; Cao, Y.; Wang, J.H.; Wang, Y.Z.; Xi, X.Q.; Yang, J.L. Piezoelectric properties of 3-1 type porous PMN-PZT ceramics doped with strodium. Mater. Sci. Eng. B 2021, 263, 5. [Google Scholar] [CrossRef]
- Xu, T.T.; Wang, C.A. Control of pore size and wall thickness of 3-1 type porous PZT ceramics during freeze-casting process. Mater. Des. 2016, 91, 242–247. [Google Scholar] [CrossRef]
- Yan, M.Y.; Xiao, Z.D.; Ye, J.J.; Yuan, X.; Li, Z.H.; Bowen, C.; Zhang, Y.; Zhang, D. Porous ferroelectric materials for energy technologies: Current status and future perspectives. Energy Environ. Sci. 2021, 14, 6158–6190. [Google Scholar] [CrossRef]
- Liu, H.; Lin, X.J.; Zhang, S.; Huan, Y.; Huang, S.F.; Cheng, X. Enhanced performance of piezoelectric composite nanogenerator based on gradient porous PZT ceramic structure for energy harvesting. J. Mater. Chem. A 2020, 8, 19631–19640. [Google Scholar] [CrossRef]
- Yap, E.W.; Glaum, J.; Oddershede, J.; Daniels, J.E. Effect of porosity on the ferroelectric and piezoelectric properties of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 piezoelectric ceramics. Scr. Mater. 2018, 145, 122–125. [Google Scholar] [CrossRef]
- Wu, L.; Shi, X.; Du, H.L.; An, Q.L.; Li, Z.; Xu, H.; Ran, H.P. Ce-doped LaCoO3 film as a promising gas sensor for ethanol. AIP Adv. 2021, 11, 8. [Google Scholar] [CrossRef]
- Fan, P.Y.; Liu, K.; Ma, W.G.; Tan, H.; Zhang, Q.; Zhang, L.; Zhou, C.R.; Salamon, D.; Zhang, S.T.; Zhang, Y.J.; et al. Progress and perspective of high strain NBT-based lead-free piezoceramics and multilayer actuators. J. Mater. 2021, 7, 508–544. [Google Scholar] [CrossRef]
- Hao, J.G.; Xu, Z.J.; Chu, R.Q.; Li, W.; Fu, P.; Du, J.; Li, G.R. Large electrostrictive effect and strong photoluminescence in rare-earth modified lead-free (Bi0.5Na0.5)TiO3-based piezoelectric ceramics. Scr. Mater. 2016, 122, 10–13. [Google Scholar] [CrossRef]
- Kong, Y.X.; Zhao, H.Y.; Li, L.T.; Long, Y.; Hao, J.G. Effects of oxide additives on the electrical properties of sodium bismuth titanate-based lead-free ceramics. Mater. Res. Bull. 2020, 122, 5. [Google Scholar] [CrossRef]
- Fu, P.; Xu, Z.; Chu, R.; Li, W.; Zang, G.; Hao, J. Piezoelectric, ferroelectric and dielectric properties of Sm2O3-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics. Mater. Chem. Phys. 2010, 124, 1065–1070. [Google Scholar] [CrossRef]
- Ma, X.; Yin, J.T.; Zhou, Q.L.; Xue, L.H.; Yan, Y.W. Effect of Eu doping on structure and electrical properties of lead-free (Bi0.5Na0.5)(0.94)Ba0.06TiO3 ceramics. Ceram. Int. 2014, 40, 7007–7013. [Google Scholar] [CrossRef]
- Yao, Z.; Liu, H.; Liu, Y.; Wu, Z.; Shen, Z.; Liu, Y.; Cao, M. Structure and dielectric behavior of Nd-doped BaTiO3 perovskites. Mater. Chem. Phys. 2008, 109, 475–481. [Google Scholar] [CrossRef]
- Bian, S.S.; Yue, Z.X.; Zhang, J.; Li, L.T. Enhancement of dielectric properties and energy storage performance in 3Y-TZP ceramics with BaTiO3 additives. Int. J. Appl. Ceram. Technol. 2020, 17, 1362–1370. [Google Scholar] [CrossRef]
- Li, H. Some effects of different additives on dielectric and piezoelectric properties of (Bi1/2Na1/2)TiO3-BaTiO3 morphotropic-phase-boundary composition. Mater. Lett. 2004, 58, 1194–1198. [Google Scholar] [CrossRef]
- Lukacs, V.A.; Stanculescu, R.; Curecheriu, L.; Ciomaga, C.E.; Horchidan, N.; Cioclea, C.; Mitoseriu, L. Structural and functional properties of BaTiO3 porous ceramics produced by using pollen as sacrificial template. Ceram. Int. 2020, 46, 523–530. [Google Scholar] [CrossRef]
- Yuan, Q.B.; Li, G.; Yao, F.Z.; Cheng, S.D.; Wang, Y.F.; Ma, R.; Mi, S.B.; Gu, M.; Wang, K.; Li, J.F.; et al. Simultaneously achieved temperature-insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics. Nano Energy 2018, 52, 203–210. [Google Scholar] [CrossRef]
- Arshad, M.; Du, H.L.; Javed, M.S.; Maqsood, A.; Ashraf, I.; Hussain, S.; Ma, W.L.; Ran, H.P. Fabrication, structure, and frequency-dependent electrical and dielectric properties of Sr-doped BaTiO3 ceramics. Ceram. Int. 2020, 46, 2238–2246. [Google Scholar] [CrossRef]
- Kang, W.; Zheng, Z.; Li, Y.; Zhao, R.; Dun, W.; Wang, Y. Effect of doping Gd2O3 on dielectric and piezoelectric properties of BaZr0.1Ti0.9O3 ceramics by sol-gel method. J. Mater. Sci. 2019, 30, 2743–2749. [Google Scholar] [CrossRef]
- Choudhury, S.; Li, Y.L.; Chen, L.Q.; Jia, Q.X. Strain Effect on Coercive Field of Epitaxial Barium Titanate Thin Films. Appl. Phys. Lett. 2008, 92, 142907. [Google Scholar] [CrossRef]
- Wada, T.; Toyoike, K.; Imanaka, Y.; Matsuo, Y. Dielectric and Piezoelectric Properties of (A0.5Bi0.5)TiO3–ANbO3(A=Na, K) Systems. Jpn. J. Appl. Phys. 2001, 40, 5703. [Google Scholar] [CrossRef]
- Jaiban, P.; Namsar, O.; Jiansirisomboon, S.; Watcharapasorn, A.; Yimnirun, R. Electrical Properties of La-Doped Ba0.7Ca0.3TiO3 Lead-Free Ceramics. Ferroelectrics 2015, 487, 86–93. [Google Scholar] [CrossRef]
Samples | kp | σ | η1 | (pN/m2) | k31 | −d31 (pC/N) |
---|---|---|---|---|---|---|
x = 0 | 0.168 | 0.26 | 2.02 | 7.58 | 0.102 | 20.60 |
x = 0.01 | 0.213 | 0.31 | 2.05 | 8.85 | 0.125 | 30.88 |
x = 0.02 | 0.170 | 0.27 | 2.03 | 8.20 | 0.102 | 21.83 |
x = 0.03 | 0.139 | 0.25 | 2.01 | 7.73 | 0.085 | 17.21 |
x = 0.04 | 0.1379 | 0.24 | 2.01 | 7.20 | 0.084 | 16.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, S.; Du, H.; Li, Z.; Zhao, F.; Li, Q.; Hu, Y.; Kang, L. Improvement of Piezoelectricity of (Bi0.5Na0.5)0.94Ba0.06TiO3 Ceramics Modified by a Combination of Porosity and Sm3+ Doping. Coatings 2023, 13, 805. https://doi.org/10.3390/coatings13040805
Xia S, Du H, Li Z, Zhao F, Li Q, Hu Y, Kang L. Improvement of Piezoelectricity of (Bi0.5Na0.5)0.94Ba0.06TiO3 Ceramics Modified by a Combination of Porosity and Sm3+ Doping. Coatings. 2023; 13(4):805. https://doi.org/10.3390/coatings13040805
Chicago/Turabian StyleXia, Siyu, Huiling Du, Zhuo Li, Fan Zhao, Qianqian Li, Yuxuan Hu, and Le Kang. 2023. "Improvement of Piezoelectricity of (Bi0.5Na0.5)0.94Ba0.06TiO3 Ceramics Modified by a Combination of Porosity and Sm3+ Doping" Coatings 13, no. 4: 805. https://doi.org/10.3390/coatings13040805
APA StyleXia, S., Du, H., Li, Z., Zhao, F., Li, Q., Hu, Y., & Kang, L. (2023). Improvement of Piezoelectricity of (Bi0.5Na0.5)0.94Ba0.06TiO3 Ceramics Modified by a Combination of Porosity and Sm3+ Doping. Coatings, 13(4), 805. https://doi.org/10.3390/coatings13040805