Wind Tunnel Tests of Surface Icing Distribution on Aluminum Alloy and Carbon Fiber-Reinforced Polymer Blades for Wind Turbines
Abstract
:1. Introduction
2. Experiment
2.1. Experimental Blade
2.2. Experimental System and Procedure
2.3. Experimental Scheme
3. Evaluation Method
4. Results and Discussion
4.1. Distribution of Icing on the Blade Surface
4.2. Effect of Icing Duration on Icing Distribution
4.3. Effect of Temperature on Icing Distribution
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GWEC: Global World Report-2021.
- Li, Y.; Shi, L.; Guo, W.-F.; Tagawa, K.; Zhao, B. Numerical simulation of icing effect on aerodynamic characteristics of a wind turbine blade. Therm. Sci. 2021, 25, 4643–4650. [Google Scholar] [CrossRef]
- Hu, L.; Zhu, X.; Hu, C.; Chen, J.; Du, Z. Wind turbines ice distribution and load response under icing conditions. Renew. Energy 2017, 113, 608–619. [Google Scholar] [CrossRef]
- Yan, L.; Ce, S.; Yu, J. Effect of liquid water content on blade icing shape of HAWT by numerical simulation. Therm. Sci. 2019, 23, 1637–1645. [Google Scholar]
- Shu, L.; Li, H.; Hu, Q.; Jiang, X.; Qiu, G.; McClure, G.; Yang, H. Study of ice accretion feature and power characteristics of wind turbines at natural icing environment. Cold Reg. Sci. Technol. 2018, 147, 45–54. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Sun, C.; Yi, X.; Guo, W.; Zhou, Z.; Feng, F. Icing distribution of rotating blade of horizontal axis wind turbine based on Quasi-3D numerical simulation. Therm. Sci. 2018, 22, 681–691. [Google Scholar] [CrossRef]
- Gao, L.; Hong, J. Wind turbine performance in natural icing environments: A field characterization. Cold Reg. Sci. Technol. 2021, 181, 103193. [Google Scholar] [CrossRef]
- Gao, L.; Hu, H. Wind turbine icing characteristics and icing-induced power losses to utility-scale wind turbines. Proc. Natl. Acad. Sci. USA 2021, 118, e2111461118. [Google Scholar] [CrossRef] [PubMed]
- Lamraoui, F.; Fortin, G.; Benoit, R.; Perron, J.; Masson, C. Atmospheric icing impact on wind turbine production. Cold Reg. Sci. Technol. 2014, 100, 36–49. [Google Scholar] [CrossRef]
- Guo, W.; Shen, H.; Li, Y.; Feng, F.; Tagawa, K. Wind tunnel tests of the rime icing characteristics of a straight-bladed vertical axis wind turbine. Renew. Energy 2021, 179, 116–132. [Google Scholar] [CrossRef]
- Gao, L.; Liu, Y.; Zhou, W.; Hu, H. An experimental study on the aerodynamic performance degradation of a wind turbine blade model induced by ice accretion process. Renew. Energy 2018, 133, 663–675. [Google Scholar] [CrossRef]
- Jin, Y.; Virk, S. Experimental study of ice accretion on S826 & S832 wind turbine blade profiles. Cold Reg. Sci. Technol. 2020, 169, 102913.1–102913.8. [Google Scholar]
- Mishnaevsky, L., Jr.; Branner, K.; Petersen, H.N.; Beauson, J.; McGugan, M.; Sørensen, B.F. Materials for wind turbine blades: An overview. Materials 2017, 10, 1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, L.; Feng, F.; Guo, W.; Li, Y. Research and Development of a Small-Scale Icing Wind Tunnel Test System for Blade Airfoil Icing Characteristics. Int. J. Rotating Mach. 2021, 2021, 5598859. [Google Scholar] [CrossRef]
- ISO-12494; Atmospheric Icing of Structures. 2017. Available online: https://www.iso.org/obp/ui/#iso:std:iso:12494:ed-2:v1:en (accessed on 30 March 2023).
Material | Chemical Composition (%) | Coefficient of Thermal Expansion (10−6/K) | Thermal Conductivity W/(mK) | Tensile Modulus (GPa) | |
---|---|---|---|---|---|
Al 6061 | Cu: 0.15~0.4 Mn: 0.15 Mg: 0.8~1.2 Zn: 0.25 Cr: 0.04~0.35 | Ti: 0.15 Si: 0.4~0.8 Fe: ≤0.7 Al: remains | 23.6 | 167 | 10 |
CFRP | C > 93 | −0.41 | 10.5 | 140 |
Wind Speed U (m/s) | Temperature T (°C) | Liquid Water Content LWC (g/m3) | Medium Volume Diameter MVD (μm) |
---|---|---|---|
0~20 | −20~0 | 0.1~5 | 20~100 |
Blade Material | Wind Speed U (m/s) | Temperature T (°C) | Acquisition Interval t1 (min) | Icing Duration t2 (min) |
---|---|---|---|---|
Al CFRP | 10 10 10 | −5 −10 −15 | 2 2 2 | 2 4 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.; Lin, X.; Wang, C.; Wu, T.; Meng, Z.; Cai, A.; Shen, H.; Li, Y.; Feng, F. Wind Tunnel Tests of Surface Icing Distribution on Aluminum Alloy and Carbon Fiber-Reinforced Polymer Blades for Wind Turbines. Coatings 2023, 13, 810. https://doi.org/10.3390/coatings13050810
Lin W, Lin X, Wang C, Wu T, Meng Z, Cai A, Shen H, Li Y, Feng F. Wind Tunnel Tests of Surface Icing Distribution on Aluminum Alloy and Carbon Fiber-Reinforced Polymer Blades for Wind Turbines. Coatings. 2023; 13(5):810. https://doi.org/10.3390/coatings13050810
Chicago/Turabian StyleLin, Weirong, Xuefeng Lin, Chuanxi Wang, Tong Wu, Zhe Meng, Anmin Cai, He Shen, Yan Li, and Fang Feng. 2023. "Wind Tunnel Tests of Surface Icing Distribution on Aluminum Alloy and Carbon Fiber-Reinforced Polymer Blades for Wind Turbines" Coatings 13, no. 5: 810. https://doi.org/10.3390/coatings13050810
APA StyleLin, W., Lin, X., Wang, C., Wu, T., Meng, Z., Cai, A., Shen, H., Li, Y., & Feng, F. (2023). Wind Tunnel Tests of Surface Icing Distribution on Aluminum Alloy and Carbon Fiber-Reinforced Polymer Blades for Wind Turbines. Coatings, 13(5), 810. https://doi.org/10.3390/coatings13050810