Mechanical Properties and Toughening Mechanisms of Promising Zr-Y-Ta-O Composite Ceramics
Abstract
:1. Introduction
2. Material and Methods
3. Results and Discussion
3.1. Microstructure Characterization
3.2. Hardness and Fracture Toughness
3.3. Mechanism of Toughening
3.3.1. Effects of the Residual Stress
3.3.2. Effect of Interface Binding
3.3.3. Analysis of Crack Propagation Mechanism
3.3.4. Toughening Mechanism of Ferroelastic Domain of YTaO4
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, Z.C.; Liu, B.; Wang, L.; Cui, Y.H.; Wang, Y.W.; Ma, Y.D.; Sun, W.W.; Yang, Y. Research progress of failure mechanism of thermal barrier coatings at high temperature via finite element method. Coatings 2020, 10, 732. [Google Scholar] [CrossRef]
- Yuan, B.; Wang, W.; Ye, D.; Zhang, Z.; Fang, H.; Yang, T.; Wang, Y.; Zhong, S. Nondestructive Evaluation of Thermal Barrier Coatings Thickness Using Terahertz Technique Combined with PCA–GA–ELM Algorithm. Coatings 2022, 12, 390. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, L.; Zhu, W. Thermal Barrier Coatings: Failure Theory and Evaluation Technology; Springer Nature: Berlin, Germany, 2022. [Google Scholar]
- Parchovianský, M.; Parchovianská, I.; Hanzel, O.; Netriová, Z.; Pakseresht, A. Phase Evaluation, Mechanical Properties and Thermal Behavior of Hot-Pressed LC-YSZ Composites for TBC Applications. Materials 2022, 15, 2839. [Google Scholar] [CrossRef]
- Parchovianská, I.; Parchovianský, M.; Nowicka, A.; Prnová, A.; Švančárek, P.; Pakseresht, A. Effect of Sintering Temperature on Phase Evolution, Microstructure, and Mechanical Properties of La2Ce2O7/40 wt.% YSZ Composite Ceramics. J. Mater. Res. Technol. 2023, 24, 4573–4586. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, P.; Han, Y.; Pan, W.; Wan, C. Tailoring thermal and mechanical properties of rare earth niobates by coupling entropy and composite engineering. J. Eur. Ceram. Soc. 2023, 43, 1141–1146. [Google Scholar] [CrossRef]
- Han, Y.; Zong, P.A.; Huang, M.; Yang, Z.; Feng, Y.; Pan, W.; Zhang, P.; Wan, C. In-situ synthesis of gadolinium niobate quasi-binary composites with balanced mechanical and thermal properties for thermal barrier coatings. J. Adv. Ceram. 2022, 11, 1445–1456. [Google Scholar] [CrossRef]
- Macauley, C.A.; Fernandez, A.N.; Van Sluytman, J.S. Phase equilibria in the ZrO2-YO1.5-TaO2.5 system at 1250 °C. J. Eur. Ceram. Soc. 2018, 38, 4523–4532. [Google Scholar] [CrossRef]
- Macauley, C.A.; Fernandez, A.N.; Levi, C.G. Phase equilibria in the ZrO2-YO1.5-TaO2.5 system at 1500 °C. J. Eur. Ceram. Soc. 2017, 37, 4888–4901. [Google Scholar] [CrossRef]
- Limarga, A.M.; Shian, S.; Leckie, R.M. Thermal conductivity of single-and multi-phase compositions in the ZrO2-Y2O3-Ta2O5 system. J. Eur. Ceram. Soc. 2014, 34, 3085–3094. [Google Scholar] [CrossRef]
- Guo, X.; Wang, Z. Effect of niobia on the defect structure of yttria-stabilized zirconia. J. Eur. Ceram. Soc. 1998, 18, 237–240. [Google Scholar] [CrossRef]
- Heinze, S.G. Phase Equilibria and Toughness of ZrO2-(Y/Yb)O1.5-TaO2.5 Thermal Barrier Coatings; University of California: Santa Barbara, CA, USA, 2018. [Google Scholar]
- Han, M.; Tang, X.; Yin, H. Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs. J. Power Sources 2007, 165, 757–763. [Google Scholar] [CrossRef]
- Fünfschilling, S.; Fett, T.; Hoffmann, M.J. Mechanisms of toughening in silicon nitrides: The roles of crack bridging and microstructure. Acta Mater. 2011, 59, 3978–3989. [Google Scholar] [CrossRef]
- Ferraro, C.; Meille, S.; Réthoré, J. Strong and tough metal/ceramic micro-laminates. Acta Mater. 2018, 144, 202–215. [Google Scholar] [CrossRef]
- Bartolomé, J.F.; Gutiérrez-González, C.F.; Pecharroman, C. Synergistic toughening mechanism in 3Y–TZP/Nb composites. Acta Mater. 2007, 55, 5924–5933. [Google Scholar] [CrossRef]
- Kumar, R.S. Crack-growth resistance behavior of mode-I delamination in ceramic matrix composites. Acta Mater. 2017, 131, 511–522. [Google Scholar] [CrossRef]
- Stefan, G.H.; Jason, S.V.S.; Carlos, G.L. Microstructure evolution and physical properties of ZrO2-(Y+Yb)O1.5-TaO2.5 thermal barrier coatings. In Surface and Coatings Technology; Elsevier: Amsterdam, Netherlands, 2020; Volume 389, p. 125648. ISSN 0257-8972. [Google Scholar]
- Raghavan, S.; Wang, H.; Dinwiddie, R.B.; Porter, W.D.; Vaβen, R.; Stöver, D.; Mayo, M.J. Ta2O5/Nb2O5 and Y2O3 co-doped zirconias for thermal barrier coatings. J. Am. Ceram. Soc. 2004, 87, 431–437. [Google Scholar] [CrossRef]
- Kulyk, V.; Duriagina, Z.; Kostryzhev, A.; Vasyliv, B.; Vavrukh, V.; Marenych, O. The effect of yttria content on microstructure, strength, and fracture behavior of yttria-stabilized zirconia. Materials 2022, 15, 5212. [Google Scholar] [CrossRef]
- Kulyk, V.; Duriagina, Z.; Vasyliv, B.; Vavrukh, V.; Kovbasiuk, T.; Lyutyy, P.; Vira, V. The effect of sintering temperature on the phase composition, microstructure, and mechanical properties of yttria-stabilized zirconia. Materials 2022, 15, 2707. [Google Scholar] [CrossRef]
- Evans, A.G.; Charles, E.A. Fracture toughness determinations by indentation. J. Am. Ceram. Soc. 1976, 59, 371–372. [Google Scholar] [CrossRef]
- Asmani, M.; Kermel, C.; Leriche, A.; Ourak, M. Influence of porosity on Young’s modulus and Poisson’s ratio in alumina ceramics. J. Eur. Ceram. Soc. 2001, 21, 1081–1086. [Google Scholar] [CrossRef]
- Wan, C.L.; Qu, Z.X.; Du, A.B.; Pan, W. Influence of B site substituent Ti on the structure and thermophysical properties of A2B2O7-type pyrochlore Gd2Zr2O7. Acta Mater. 2009, 57, 4782–4789. [Google Scholar] [CrossRef]
- Standard, A. E112: Standard test methods for determining average grain size. J. West Conshocken 1996, 112, 4–20. [Google Scholar]
- Wang, C.M.; Guo, L.; Ye, F.X. LaPO4 as a toughening agent for rare earth zirconate ceramics. Mater. Des. 2016, 111, 389–393. [Google Scholar] [CrossRef]
- Yang, J.; Wan, C.; Zhao, M.; Shahid, M.; Pan, W. Effective blocking of radiative thermal conductivity in La2Zr2O7/LaPO4 composites for high temperature thermal insulation applications. J. Eur. Ceram. Soc. 2016, 36, 3809–3814. [Google Scholar] [CrossRef]
- Ren, X.R.; Guo, S.C.; Zhao, M.; Pan, W. Thermal conductivity and mechanical properties of YSZ/LaPO4 composites. J. Mater. Sci. 2014, 49, 2243–2251. [Google Scholar] [CrossRef]
- Du, A.B.; Pan, W.; Ahmad, K.; Shi, S.L.; Qu, Z.X.; Wan, C.L. Enhanced mechanical properties of machinable LaPO4/Al2O3 composites by spark plasma sintering. Int. J. Appl. Ceram. Technol. 2009, 6, 236–242. [Google Scholar] [CrossRef]
- Zhou, H.M.; Guo, Y.J.; Li, J.; Yi, D.Q.; Xiao, L.R. Microstructure and mechanical properties of 8YSZ ceramics by liquid-phase sintering with CuO-TiO2 addition. J. Cent. South Univ. 2012, 19, 1196–1201. [Google Scholar] [CrossRef]
- Mercer, C.; Williams, J.R.; Clarke, D.R.; Evans, A.G. On a ferroelastic mechanism governing the toughness of metastable tetragonal-prime (t′) yttria-stabilized zirconia. Proc. R. Soc. A Math. Phys. Eng. Sci. 2007, 463, 1393–1408. [Google Scholar] [CrossRef]
- Steinberg, L.; Naraparaju, R.; Heckert, M.; Mikulla, C.; Schulz, U.; Leyens, C. Erosion behavior of EB-PVD 7YSZ coatings under corrosion/erosion regime: Effect of TBC microstructure and the CMAS chemistry. J. Eur. Ceram. Soc. 2018, 38, 5101–5112. [Google Scholar] [CrossRef]
- Taya, M.; Hayashi, S.; Kobayashi, A.S.; Yoon, H.S. Toughening of a particulate reinforced ceramic-matrix composites by thermal residual stress. J. Am. Ceram. Soc. 1990, 73, 1382–1391. [Google Scholar] [CrossRef]
- Zhou, Y.; Gan, M.; Yu, W.; Chong, X.; Feng, J. First-principles study of thermophysical properties of polymorphous YTaO4 ceramics. J. Am. Ceram. Soc. 2021, 104, 6467–6480. [Google Scholar] [CrossRef]
- Chen, L.; Song, P.; Feng, J. Influence of ZrO2 alloying effect on the thermophysical properties of fluorite-type Eu3TaO7 ceramics. Scr. Mater. 2018, 152, 117–121. [Google Scholar] [CrossRef]
- Wang, D.Z.; Hu, Q.W.; Zeng, X.Y. Residual stress and cracking behaviors of Cr13Ni5Si2 based composite coatings prepared by laser-induction hybrid cladding. Surf. Coat. Technol. 2015, 274, 51–59. [Google Scholar] [CrossRef]
- Chung, D.H. The Voigt-Reuss-Hill (VRH) approximation and the elastic moduli of polycrystalline ZnO, TiO2 (Rutile), and -Al2O3. J. Appl. Phys. 1968, 39, 2777–2782. [Google Scholar] [CrossRef]
- Shen, Z.; Liu, Z.; Mu, R.; He, L.; Liu, G.; Huang, Z. LaGdZrO/YSZ thermal barrier coatings by EB-PVD: Microstructure, thermal properties and failure mechanism. Chem. Eng. J. Adv. 2021, 5, 100073. [Google Scholar] [CrossRef]
- Cao, Y.N.; Li, C.; Ma, Y.; Luo, H.Y.; Yang, Y.H.; Guo, H.B. Mechanical properties and thermal conductivities of 3YSZ-toughened fully stabilized HfO2 ceramics. Ceram. Int. 2019, 45, 12851–12859. [Google Scholar] [CrossRef]
- Shian, S.; Sarin, P.; Gurak, M.; Baram, M.; Kriven, W.M.; Clarke, D.R. The tetragonal–monoclinic, ferroelastic transformation in yttrium tantalate and effect of zirconia alloying. Acta Mater. 2014, 69, 196–202. [Google Scholar] [CrossRef]
- Luo, C.; Li, C.; Cao, K.; Li, J.; Luo, J.; Zhang, Q.; Zhou, Q.; Zhang, F.; Gu, L.; Yang, L.; et al. Ferroelastic domain identification and toughening mechanism for yttrium tantalate–zirconium oxide. J. Mater. Sci. Technol. 2022, 127, 78–88. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, Q.; Shi, X.; Li, D.; Yang, Y.; Li, C.; Feng, J. Microstructural evolution and thermal-physical properties of YTaO4 coating after high-temperature exposure. Surf. Coat. Technol. 2023, 456, 129222. [Google Scholar] [CrossRef]
- Feng, J.; Shian, S.; Xiao, B.; Clarke, D.R. First-principles calculations of the high-temperature phase transformation in yttrium tantalate. Phys. Rev. B 2014, 90, 094102. [Google Scholar] [CrossRef]
- Arlt, G. Twinning in ferroelectric and ferroelastic ceramics: Stress relief. J. Mater. Sci. 1990, 25, 2655–2666. [Google Scholar] [CrossRef]
- Korolev, P.V.; Savchenko, N.L.; Kul’kov, S.N. Texture formation on the friction surface in transformation-toughened ceramics. Tech. Phys. Lett. 2004, 30, 12–14. [Google Scholar] [CrossRef]
Sample | Density ρ (g·cm−3) |
---|---|
YT1 | 5.09 |
YT2 | 5.93 |
YT3 | 6.22 |
YT4 | 6.68 |
YT5 | 6.95 |
Sample | VL/m·s−1 | VT/m·s−1 | E/GPa | B/GPa | G/GPa | ʋ | HV/GPa |
---|---|---|---|---|---|---|---|
YT1 | 6095.24 | 3413.33 | 150.81 | 110.03 | 59.3027 | 0.2716 | 5.10 |
YT2 | 6175.44 | 3450.98 | 179.80 | 131.98 | 70.6219 | 0.2730 | 8.31 |
YT3 | 5803.92 | 3067.36 | 152.89 | 131.49 | 58.5221 | 0.3062 | 7.87 |
YT4 | 5333.33 | 2580.65 | 119.86 | 130.69 | 44.4872 | 0.3471 | 5.83 |
Phase | E (GPa) | ν | A (K−1) |
---|---|---|---|
Fluorite | 210 | 0.30 | 9.6 × 10−6 |
M-YTaO4 | 177 | 0.35 | 10.7 × 10−6 |
Sample | Young’s Modulus E (GPa) | |
---|---|---|
Calculated Values | Measured Values | |
YT1 | 203.0 | 150.8 |
YT2 | 196.8 | 179.8 |
YT3 | 190.2 | 152.9 |
YT4 | 183.6 | 119.9 |
YT5 | 177.0 | 78.3 [*] |
Sample | M-YTaO4 | Fluorite | ||||
---|---|---|---|---|---|---|
a (Å) | b (Å) | c (Å) | vol (Å3) | abc (Å) | vol (Å3) | |
YT1 | 5.326 | 10.932 | 5.05 | 292.65 | 5.2168 | 141.98 |
YT2 | 5.3189 | 10.9038 | 5.0666 | 292.59 | 5.2098 | 141.41 |
YT3 | 5.3324 | 10.9317 | 5.0423 | 292.59 | 5.2106 | 141.46 |
YT4 | 5.3334 | 10.9337 | 5.0389 | 292.5 | 5.2099 | 141.42 |
YT5 | 5.3252 | 10.9313 | 5.0538 | 292.83 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, X.; Zhang, F.; Zhu, W.; Pi, Z. Mechanical Properties and Toughening Mechanisms of Promising Zr-Y-Ta-O Composite Ceramics. Coatings 2023, 13, 855. https://doi.org/10.3390/coatings13050855
Fu X, Zhang F, Zhu W, Pi Z. Mechanical Properties and Toughening Mechanisms of Promising Zr-Y-Ta-O Composite Ceramics. Coatings. 2023; 13(5):855. https://doi.org/10.3390/coatings13050855
Chicago/Turabian StyleFu, Xiaoteng, Fan Zhang, Wang Zhu, and Zhipeng Pi. 2023. "Mechanical Properties and Toughening Mechanisms of Promising Zr-Y-Ta-O Composite Ceramics" Coatings 13, no. 5: 855. https://doi.org/10.3390/coatings13050855
APA StyleFu, X., Zhang, F., Zhu, W., & Pi, Z. (2023). Mechanical Properties and Toughening Mechanisms of Promising Zr-Y-Ta-O Composite Ceramics. Coatings, 13(5), 855. https://doi.org/10.3390/coatings13050855