Superhydrophobic Wood Surfaces: Recent Developments and Future Perspectives
Abstract
:1. Introduction
2. Preparation Methods of SHWSs
2.1. Immersion
2.2. Spray-Coating
2.3. Hydrothermal Synthesis
2.4. Dip-Coating
2.5. Deposition
2.6. Sol-Gel Process
2.7. Other Methods
3. Applications of SHWSs
3.1. Anti-Fungi and Anti-Bacteria
3.2. Oil/Water Separation
3.3. Fire Resistance
3.4. Anti-UV Irradiation
3.5. EMI Shielding
3.6. Photocatalytic Performance
3.7. Anti-Icing
3.8. Other Applications
4. Conclusions
- (1)
- Multiple above preparation strategies are recommended to be combined to prepare SHWSs. The selection of preparation methods is mainly based on the experimental conditions and real practical applications. Actually, each preparation strategy usually has its own advantages and disadvantages, and sometimes an individual method is not enough to achieve SHSs on wood substrates.
- (2)
- The decoration of nanomaterials on wood substrates for preparing SHWSs needs to consider real practical applications. The SHWSs can be endowed with many properties, such as anti-aging, thermal stability, anti-fungi/anti-bacteria, fire resistance and electromagnetic interference (EMI) shielding. However, when used in different environmental conditions, one particular property as well as surface superhydrophobicity is mainly concerned. Thus, the selection of suitable functional nanomaterials for the preparation of SHWSs is crucial to meet the needs of special indoor and outdoor applications.
- (3)
- The longevity of SHWSs usually determines real practical applications in the long term. The surface chemistry sustainability and the mechanical durability of SHWSs are two critical factors, which are also the challenges of SHSs. For example, an adhesive layer can be introduced to enhance the mechanical durability of SHWSs.
5. Challenges and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sun, M.; Song, K. Low temperature hydrothermal fabrication of tungsten trioxide on the surface of wood with photochromic and superhydrophobic properties. BioResources 2018, 13, 1075–1087. [Google Scholar] [CrossRef]
- Gao, R.; Huang, Y.; Gan, W.; Xiao, S.; Gao, Y.; Fang, B.; Zhang, X.; Lyu, B.; Huang, R.; Li, J.; et al. Superhydrophobic elastomer with leaf-spring microstructure made from natural wood without any modification chemicals. Chem. Eng. J. 2022, 442, 136338. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, W.; Frey, M.; Vidiella del Blanco, M.; Schubert, M.; Adobes-Vidal, M.; Cabane, E. Liquid-like SiO2-g-PDMS coatings on wood surfaces with underwater durability, antifouling, antismudge, and self-healing properties. Adv. Sustain. Syst. 2019, 3, 1800070. [Google Scholar] [CrossRef]
- Tuominen, M.; Teisala, H.; Haapanen, J.; Mäkelä, J.M.; Honkanen, M.; Vippola, M.; Bardage, S.; Wålinder, M.E.P.; Swerin, A. Superamphiphobic overhang structured coating on a biobased material. Appl. Surf. Sci. 2016, 389, 135–143. [Google Scholar] [CrossRef]
- Kong, L.; Tu, K.; Guan, H.; Wang, X. Growth of high-density ZnO nanorods on wood with enhanced photostability, flame retardancy and water repellency. Appl. Surf. Sci. 2017, 407, 479–484. [Google Scholar] [CrossRef]
- Jia, S.; Liu, M.; Wu, Y.; Luo, S.; Qing, Y.; Chen, H. Facile and scalable preparation of highly wear-resistance superhydrophobic surface on wood substrates using silica nanoparticles modified by VTES. Appl. Surf. Sci. 2016, 386, 115–124. [Google Scholar] [CrossRef]
- Pori, P.; Vilčnik, A.; Petrič, M.; Sever Škapin, A.; Mihelčič, M.; Šurca Vuk, A.; Novak, U.; Orel, B. Structural studies of TiO2/wood coatings prepared by hydrothermal deposition of rutile particles from TiCl4 aqueous solutions on spruce (Picea abies) wood. Appl. Surf. Sci. 2016, 372, 125–138. [Google Scholar] [CrossRef]
- Šprdlík, V.; Kotradyová, V.; Tiňo, R. Superhydrophobic coating of european oak (Quercus robur), european Larch (Larix decidua), and scots pine (Pinus sylvestris) wood surfaces. BioResources 2017, 12, 3289–3302. [Google Scholar] [CrossRef]
- Kaewsaneha, C.; Roeurn, B.; Apiboon, C.; Opaprakasit, M.; Sreearunothai, P.; Opaprakasit, P. Preparation of water-based alkyl ketene dimer (AKD) nanoparticles and their use in superhydrophobic treatments of value-added teakwood products. ACS Omega 2022, 7, 27400–27409. [Google Scholar] [CrossRef]
- Lin, W.; Huang, Y.; Li, J.; Liu, Z.; Yang, W.; Li, R.; Chen, H.; Zhang, X. Preparation of highly hydrophobic and anti-fouling wood using poly(methylhydrogen)siloxane. Cellulose 2018, 25, 7341–7353. [Google Scholar] [CrossRef]
- Ou, J.; Zhao, G.; Wang, F.; Li, W.; Lei, S.; Fang, X.; Siddiqui, A.R.; Xia, Y.; Amirfazli, A. Durable superhydrophobic wood via one-step immersion in composite silane solution. ACS Omega 2021, 6, 7266–7274. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Cao, M.; Olonisakin, K.; Li, R.; Zhang, X.; Yang, W. Superhydrophobic materials with good oil/water separation and self-cleaning property. Cellulose 2021, 28, 10425–10439. [Google Scholar] [CrossRef]
- Cao, H.; Guo, X.; Zhou, Y.; Yan, Y.; Sun, W. Fabrication of durable hydrophobic/superhydrophobic wood using an alkyl ketene dimer by a simple and feasible method. ACS Omega 2022, 7, 17921–17928. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.-T.; Chang, B.-S.; Lin, J.-Y. Improvement of water and oil repellency on wood substrates by using fluorinated silica nanocoating. Appl. Surf. Sci. 2011, 257, 7997–8002. [Google Scholar] [CrossRef]
- Lozhechnikova, A.; Bellanger, H.; Michen, B.; Burgert, I.; Österberg, M. Surfactant-free carnauba wax dispersion and its use for layer-by-layer assembled protective surface coatings on wood. Appl. Surf. Sci. 2017, 396, 1273–1281. [Google Scholar] [CrossRef]
- Yao, Y.; Gellerich, A.; Zauner, M.; Wang, X.; Zhang, K. Differential anti-fungal effects from hydrophobic and superhydrophobic wood based on cellulose and glycerol stearoyl esters. Cellulose 2018, 25, 1329–1338. [Google Scholar] [CrossRef]
- Guo, B.; Liu, Y.; Zhang, Q.; Wang, F.; Wang, Q.; Liu, Y.; Li, J.; Yu, H. Efficient flame-retardant and smoke-suppression properties of Mg–Al-layered double-hydroxide nanostructures on wood substrate. ACS Appl. Mater. Interfaces 2017, 9, 23039–23047. [Google Scholar] [CrossRef]
- Yue, D.; Feng, Q.; Huang, X.; Zhang, X.; Chen, H. In situ fabrication of a superhydrophobic ORMOSIL coating on wood by an ammonia–HMDS vapor treatment. Coatings 2019, 9, 556. [Google Scholar] [CrossRef]
- Duan, X.; Liu, S.; Huang, E.; Shen, X.; Wang, Z.; Li, S.; Jin, C. Superhydrophobic and antibacterial wood enabled by polydopamine-assisted decoration of copper nanoparticles. Colloids Surf. A 2020, 602, 125145. [Google Scholar] [CrossRef]
- Liu, M.; Qing, Y.; Wu, Y.; Liang, J.; Luo, S. Facile fabrication of superhydrophobic surfaces on wood substrates via a one-step hydrothermal process. Appl. Surf. Sci. 2015, 330, 332–338. [Google Scholar] [CrossRef]
- Lu, P.; Yun, H.; Zhang, W.; Tu, D.; Hu, C.; Cherdchim, B. A facile method of superhydrophobic coating on rubberwood to improve its anti-mildew performance. BioResources 2019, 14, 7111–7121. [Google Scholar] [CrossRef]
- Gan, W.; Gao, L.; Zhang, W.; Li, J.; Zhan, X. Fabrication of microwave absorbing CoFe2O4 coatings with robust superhydrophobicity on natural wood surfaces. Ceram. Int. 2016, 42, 13199–13206. [Google Scholar] [CrossRef]
- Yang, H.; Wang, J.; Zhao, P.; Mu, H.; Qi, D. UV-assisted multiscale superhydrophobic wood resisting surface contamination and failure. ACS Omega 2021, 6, 26732–26740. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Wu, H.; Shi, Z.; Gao, X.; Sun, Y.; Liu, X. Mussel-inspired durable TiO2/PDA-based superhydrophobic paper with excellent self-cleaning, high chemical stability, and efficient oil/water separation properties. Langmuir 2022, 38, 6086–6098. [Google Scholar] [CrossRef] [PubMed]
- Latthe, S.S.; Kodag, V.S.; Sutar, R.S.; Bhosale, A.K.; Nagappan, S.; Ha, C.-S.; Sadasivuni, K.K.; Kulal, S.R.; Liu, S.; Xing, R. Sawdust-based superhydrophobic pellets for efficient oil-water separation. Mater. Chem. Phys. 2020, 243, 122634. [Google Scholar] [CrossRef]
- He, Z.; Zhang, Z.; He, J. CuO/Cu based superhydrophobic and self-cleaning surfaces. Scripta Mater. 2016, 118, 60–64. [Google Scholar] [CrossRef]
- Liu, X.; He, H.; Zhang, T.C.; Ouyang, L.; Zhang, Y.-X.; Yuan, S. Superhydrophobic and self-healing dual-function coatings based on mercaptabenzimidazole inhibitor-loaded magnesium silicate nanotubes for corrosion protection of AZ31B magnesium alloys. Chem. Eng. J. 2021, 404, 127106. [Google Scholar] [CrossRef]
- Tang, W.; Jian, Y.; Shao, M.; Cheng, Y.; Liu, J.; Liu, Y.; Hess, D.W.; Wan, H.; Xie, L. A novel two-step strategy to construct multifunctional superhydrophobic wood by liquid-vapor phase deposition of methyltrimethoxysilane for improving moisture resistance, anti-corrosion and mechanical strength. Colloids Surf. A 2023, 666, 131314. [Google Scholar] [CrossRef]
- Gao, S.; Huang, J.; Li, S.; Liu, H.; Li, F.; Li, Y.; Chen, G.; Lai, Y. Facile construction of robust fluorine-free superhydrophobic TiO2@fabrics with excellent anti-fouling, water-oil separation and UV-protective properties. Mater. Des. 2017, 128, 1–8. [Google Scholar] [CrossRef]
- He, Z.; Xie, H.; Jamil, M.I.; Li, T.; Zhang, Q. Electro-/photo-thermal promoted anti-icing materials: A new strategy combined with passive anti-icing and active de-icing. Adv. Mater. Interfaces 2022, 9, 2200275. [Google Scholar] [CrossRef]
- He, Z.; Jamil, M.I.; Li, T.; Zhang, Q. Enhanced surface icephobicity on an elastic substrate. Langmuir 2022, 38, 18–35. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Guo, Z.; Ma, S.; He, Z. Recent advances in superhydrophobic papers for oil/water separation: A mini-review. ACS Omega 2022, 7, 43330–43336. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; He, J.; Zhang, Z. Selective growth of metallic nanostructures on microstructured copper substrate in solution. CrystEngComm 2015, 17, 7262–7269. [Google Scholar] [CrossRef]
- Zeng, Q.; Zhou, H.; Huang, J.; Guo, Z. Review on the recent development of durable superhydrophobic materials for practical applications. Nanoscale 2021, 13, 11734–11764. [Google Scholar] [CrossRef]
- Jing, X.; Guo, Z. Biomimetic super durable and stable surfaces with superhydrophobicity. J. Mater. Chem. A 2018, 6, 16731–16768. [Google Scholar] [CrossRef]
- Kocaefe, D.; Huang, X.; Kocaefe, Y. Dimensional stabilization of wood. Curr. For. Rep. 2015, 1, 151–161. [Google Scholar] [CrossRef]
- Nikolic, M.; Lawther, J.M.; Sanadi, A.R. Use of nanofillers in wood coatings: A scientific review. J. Coat. Technol. Res. 2015, 12, 445–461. [Google Scholar] [CrossRef]
- Liu, F.; Wang, C. Research progress and preparation methods of biomimetic functional superhydrophobic wood surfaces. Sci. Technol. Rev. 2016, 34, 120–126. [Google Scholar]
- Blanchet, P.; Pepin, S. Trends in chemical wood surface improvements and modifications: A review of the last five years. Coatings 2021, 11, 1514. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, G.; Tong, Q.; Yang, W.; Hao, W. Fluorine-free superhydrophobic coatings from polydimethylsiloxane for sustainable chemical engineering: Preparation methods and applications. Chem. Eng. J. 2021, 426, 130829. [Google Scholar] [CrossRef]
- Saji, V.S. Wax-based artificial superhydrophobic surfaces and coatings. Colloids Surf. A 2020, 602, 125132. [Google Scholar] [CrossRef]
- Liu, M.; Wu, Y.; Qing, Y.; Tian, C.; Jia, S.; Luo, S.; Li, X. Progress in the research of functional modification on bionic fabrication of superhydrophobic wood. J. Funct. Mater. 2015, 46, 14012–14018. [Google Scholar]
- Li, X.; Gao, L.; Wang, M.; Lv, D.; He, P.; Xie, Y.; Zhan, X.; Li, J.; Lin, Z. Recent development and emerging applications of robust biomimetic superhydrophobic wood. J. Mater. Chem. A 2023, 11, 6772–6795. [Google Scholar] [CrossRef]
- Ramesh, M.; Rajeshkumar, L.; Sasikala, G.; Balaji, D.; Saravanakumar, A.; Bhuvaneswari, V.; Bhoopathi, R. A critical review on wood-based polymer composites: Processing, properties, and prospects. Polymers 2022, 14, 589. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Niu, X. Recent advances in superhydrophobic surfaces and applications on wood. Polymers 2023, 15, 1682. [Google Scholar] [CrossRef]
- He, Z.; Zhuo, Y.; Zhang, Z.; He, J. Design of icephobic surfaces by lowering ice adhesion strength: A mini review. Coatings 2021, 11, 1343. [Google Scholar] [CrossRef]
- El-Naggar, M.E.; Ullah, S.; Wageh, S.; Abu-Saied, M.A.; Khattab, T.A.; Alhashmialameer, D.; Abou Taleb, M.; Matter, E.A. Preparation of epoxy resin/rare earth doped aluminate nanocomposite toward photoluminescent and superhydrophobic transparent woods. J. Rare Earths 2023, 41, 397–405. [Google Scholar] [CrossRef]
- Xing, Y.; Xue, Y.; Song, J.; Sun, Y.; Huang, L.; Liu, X.; Sun, J. Superhydrophobic coatings on wood substrate for self-cleaning and EMI shielding. Appl. Surf. Sci. 2018, 436, 865–872. [Google Scholar] [CrossRef]
- Huang, W.; Li, H.; Zheng, L.; Lai, X.; Guan, H.; Wei, Y.; Feng, H.; Zeng, X. Superhydrophobic and high-performance wood-based piezoresistive pressure sensors for detecting human motions. Chem. Eng. J. 2021, 426, 130837. [Google Scholar] [CrossRef]
- Cai, P.; Bai, N.; Xu, L.; Tan, C.; Li, Q. Fabrication of superhydrophobic wood surface with enhanced environmental adaptability through a solution-immersion process. Surf. Coat. Technol. 2015, 277, 262–269. [Google Scholar] [CrossRef]
- Liu, C.; Wang, S.; Shi, J.; Wang, C. Fabrication of superhydrophobic wood surfaces via a solution-immersion process. Appl. Surf. Sci. 2011, 258, 761–765. [Google Scholar] [CrossRef]
- Yue, D.; Lin, S.; Cao, M.; Lin, W.; Zhang, X. Fabrication of transparent and durable superhydrophobic polysiloxane/SiO2 coating on the wood surface. Cellulose 2021, 28, 3745–3758. [Google Scholar] [CrossRef]
- Pandit, S.K.; Tudu, B.K.; Mishra, I.M.; Kumar, A. Development of stain resistant, superhydrophobic and self-cleaning coating on wood surface. Prog. Org. Coat. 2020, 139, 105453. [Google Scholar] [CrossRef]
- Kang, F.; Yi, Z.; Zhao, B.; Qin, Z. Surface physical structure and durability of superhydrophobic wood surface with epoxy resin. BioResources 2021, 16, 3235–3254. [Google Scholar] [CrossRef]
- Xia, S.; Cheng, R.; Zhan, K.; Lu, Q.; Jiang, H.; Yi, T.; Morrell, J.J.; Zhang, L.; Du, G.; Gao, W. Superhydrophobic STA@PF@Cu2O modified wood with photocatalytic degradation properties for efficiency oil/water separation. J. Environ. Chem. Eng. 2021, 9, 106857. [Google Scholar] [CrossRef]
- Yang, J.; Li, H.; Yi, Z.; Liao, M.; Qin, Z. Stable superhydrophobic wood surface constracting by KH580 and nano-Al2O3 on polydopamine coating with two process methods. Colloids Surf. A 2022, 637, 128219. [Google Scholar] [CrossRef]
- Gao, Z.; Zhai, X.; Wang, C. Facile transformation of superhydrophobicity to hydrophilicity by silica/poly(ɛ-caprolactone) composite film. Appl. Surf. Sci. 2015, 359, 209–214. [Google Scholar] [CrossRef]
- Jia, S.; Deng, S.; Luo, S.; Qing, Y.; Yan, N.; Wu, Y. Texturing commercial epoxy with hierarchical and porous structure for robust superhydrophobic coatings. Appl. Surf. Sci. 2019, 466, 84–91. [Google Scholar] [CrossRef]
- Wu, Y.; Jia, S.; Qing, Y.; Luo, S.; Liu, M. A versatile and efficient method to fabricate durable superhydrophobic surfaces on wood, lignocellulosic fiber, glass, and metal substrates. J. Mater. Chem. A 2016, 4, 14111–14121. [Google Scholar] [CrossRef]
- Chu, Z.; Seeger, S. Robust superhydrophobic wood obtained by spraying silicone nanoparticles. RSC Adv. 2015, 5, 21999–22004. [Google Scholar] [CrossRef]
- Li, Y.-T.; Chen, H.; Deng, R.; Wu, M.-B.; Yang, H.-C.; Darling, S.B. Sandwich-structured photothermal wood for durable moisture harvesting and pumping. ACS Appl. Mater. Interfaces 2021, 13, 33713–33721. [Google Scholar] [CrossRef] [PubMed]
- Arminger, B.; Gindl-Altmutter, W.; Hansmann, C. Efficient recovery of superhydrophobic wax surfaces on solid wood. Eur. J. Wood Wood Prod. 2022, 80, 345–353. [Google Scholar] [CrossRef]
- Zhang, Z.; Ren, C.; Sun, Y.; Miao, Y.; Deng, L.; Wang, Z.; Cao, Y.; Zhang, W.; Huang, J. Construction of CNC@SiO2@PL based superhydrophobic wood with excellent abrasion resistance based on nanoindentation analysis and good UV resistance. Polymers 2023, 15, 933. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wang, S.; Lyu, S.; Fu, F. Preparation of a robust cellulose nanocrystal superhydrophobic coating for self-cleaning and oil-water separation only by spraying. Ind. Crops Prod. 2018, 122, 438–447. [Google Scholar] [CrossRef]
- Xue, F.; Shi, X.; Bai, W.; Li, J.e.; Li, Y.; Zhu, S.; Liu, Y.; Feng, L. Enhanced durability and versatile superhydrophobic coatings via facile one-step spraying technique. Colloids Surf. A 2022, 640, 128411. [Google Scholar] [CrossRef]
- Li, X.; Li, B.; Li, Y.; Sun, J. Nonfluorinated, transparent, and spontaneous self-healing superhydrophobic coatings enabled by supramolecular polymers. Chem. Eng. J. 2021, 404, 126504. [Google Scholar] [CrossRef]
- Kong, L.; Kong, X.; Ji, Z.; Wang, X.; Zhang, X. Large-scale fabrication of a robust superhydrophobic thermal energy storage sprayable coating based on polymer nanotubes. ACS Appl. Mater. Interfaces 2020, 12, 49694–49704. [Google Scholar] [CrossRef]
- Arminger, B.; Gindl-Altmutter, W.; Keckes, J.; Hansmann, C. Facile preparation of superhydrophobic wood surfaces via spraying of aqueous alkyl ketene dimer dispersions. RSC Adv. 2019, 9, 24357–24367. [Google Scholar] [CrossRef]
- Zhan, K.; Xia, S.; Lu, Q.; Cheng, R.; Jiang, H.; Yi, T.; Morrell, J.; Yang, L.; Xie, L.; Lei, H.; et al. Superhydrophobic wood surface fabricated by Cu2O nano-particles and stearic acid: Its acid/alkali and wear resistance. Holzforschung 2021, 75, 917–931. [Google Scholar] [CrossRef]
- Tu, K.; Wang, X.; Kong, L.; Guan, H. Facile preparation of mechanically durable, self-healing and multifunctional superhydrophobic surfaces on solid wood. Mater. Des. 2018, 140, 30–36. [Google Scholar] [CrossRef]
- Che, W.; Zhou, L.; Zhou, Q.; Xie, Y.; Wang, Y. Flexible Janus wood membrane with asymmetric wettability for high-efficient switchable oil/water emulsion separation. J. Colloid Interface Sci. 2023, 629, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Lyu, S.; Chen, Z.; Wang, S.; Fu, F. A facile method for fabricating robust cellulose nanocrystal/SiO2 superhydrophobic coatings. J. Colloid Interface Sci. 2019, 536, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Zuo, S.; Song, B.; Mao, H.; Huang, Z.; Wu, Y.; Cai, L.; Ge, S.; Lian, H.; Xia, C. Hollow mesoporous microspheres coating for super-hydrophobicity wood with high thermostability and abrasion performance. Polymers 2020, 12, 2856. [Google Scholar] [CrossRef] [PubMed]
- Tuong, V.M.; Huyen, N.V.; Kien, N.T.; Dien, N.V. Durable epoxy@ZnO coating for improvement of hydrophobicity and color stability of wood. Polymers 2019, 11, 1388. [Google Scholar] [CrossRef] [PubMed]
- Shang, Q.; Chen, J.; Liu, C.; Hu, Y.; Hu, L.; Yang, X.; Zhou, Y. Facile fabrication of environmentally friendly bio-based superhydrophobic surfaces via UV-polymerization for self-cleaning and high efficient oil/water separation. Prog. Org. Coat. 2019, 137, 105346. [Google Scholar] [CrossRef]
- Huang, J.; Lyu, S.; Fu, F.; Chang, H.; Wang, S. Preparation of superhydrophobic coating with excellent abrasion resistance and durability using nanofibrillated cellulose. RSC Adv. 2016, 6, 106194–106200. [Google Scholar] [CrossRef]
- Li, M.; Huang, W.; Ren, C.; Wu, Q.; Wang, S.; Huang, J. Preparation of lignin nanospheres based superhydrophobic surfaces with good robustness and long UV resistance. RSC Adv. 2022, 12, 11517–11525. [Google Scholar] [CrossRef]
- Gao, L.; Gan, W.; Xiao, S.; Zhan, X.; Li, J. A robust superhydrophobic antibacterial Ag–TiO2 composite film immobilized on wood substrate for photodegradation of phenol under visible-light illumination. Ceram. Int. 2016, 42, 2170–2179. [Google Scholar] [CrossRef]
- Wang, H.; Yao, Q.; Wang, C.; Fan, B.; Sun, Q.; Jin, C.; Xiong, Y.; Chen, Y. A simple, one-step hydrothermal approach to durable and robust superparamagnetic, superhydrophobic and electromagnetic wave-absorbing wood. Sci. Rep. 2016, 6, 35549. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, K.; Dong, Y.; Zhang, W.; Zhang, S.; Li, J. Bulk superhydrophobility of wood via in-situ deposition of ZnO rods in wood structure. Surf. Coat. Technol. 2020, 383, 125240. [Google Scholar] [CrossRef]
- Sun, Q.F.; Lu, Y.; Li, J.; Cao, J. Self-assembly of a superhydrophobic ZnO nanorod arrays film on wood surface using a hydrothermal method. Key Eng. Mater. 2014, 609–610, 468–471. [Google Scholar] [CrossRef]
- Sun, Q.; Lu, Y.; Liu, Y. Growth of hydrophobic TiO2 on wood surface using a hydrothermal method. J. Mater. Sci. 2011, 46, 7706–7712. [Google Scholar] [CrossRef]
- Gao, L.; Lu, Y.; Cao, J.; Li, J.; Sun, Q. Reversible photocontrol of wood-surface wettability between superhydrophilicity and superhydrophobicity based on a TiO2 film. J. Wood Chem. Technol. 2015, 35, 365–373. [Google Scholar] [CrossRef]
- Gao, L.; Lu, Y.; Zhan, X.; Li, J.; Sun, Q. A robust, anti-acid, and high-temperature–humidity-resistant superhydrophobic surface of wood based on a modified TiO2 film by fluoroalkyl silane. Surf. Coat. Technol. 2015, 262, 33–39. [Google Scholar] [CrossRef]
- Hui, B.; Li, G.; Li, J.; Via, B.K. Hydrothermal deposition and photoresponsive properties of WO3 thin films on wood surfaces using ethanol as an assistant agent. J. Taiwan Inst. Chem. E 2016, 64, 336–342. [Google Scholar] [CrossRef]
- Hui, B.; Wu, D.; Huang, Q.; Cai, L.; Li, G.; Li, J.; Zhao, G. Photoresponsive and wetting performances of sheet-like nanostructures of tungsten trioxide thin films grown on wood surfaces. RSC Adv. 2015, 5, 73566–73574. [Google Scholar] [CrossRef]
- Lu, Q.; Cheng, R.; Jiang, H.; Xia, S.; Zhan, K.; Yi, T.; Morrell, J.J.; Yang, L.; Wan, H.; Du, G.; et al. Superhydrophobic wood fabricated by epoxy/Cu2(OH)3Cl NPs/stearic acid with performance of desirable self-cleaning, anti-mold, dimensional stability, mechanical and chemical durability. Colloids Surf. A 2022, 647, 129162. [Google Scholar] [CrossRef]
- Wang, S.; Wang, C.; Liu, C.; Zhang, M.; Ma, H.; Li, J. Fabrication of superhydrophobic spherical-like α-FeOOH films on the wood surface by a hydrothermal method. Colloids Surf. A 2012, 403, 29–34. [Google Scholar] [CrossRef]
- Gao, L.; Xiao, S.; Gan, W.; Zhan, X.; Li, J. Durable superamphiphobic wood surfaces from Cu2O film modified with fluorinated alkyl silane. RSC Adv. 2015, 5, 98203–98208. [Google Scholar] [CrossRef]
- Qing, Y.; Liu, M.; Wu, Y.; Jia, S.; Wang, S.; Li, X. Investigation on stability and moisture absorption of superhydrophobic wood under alternating humidity and temperature conditions. Results Phys. 2017, 7, 1705–1711. [Google Scholar] [CrossRef]
- Chang, H.; Tu, K.; Wang, X.; Liu, J. Fabrication of mechanically durable superhydrophobic wood surfaces using polydimethylsiloxane and silica nanoparticles. RSC Adv. 2015, 5, 30647–30653. [Google Scholar] [CrossRef]
- Shah, S.M.; Zulfiqar, U.; Hussain, S.Z.; Ahmad, I.; Habib, R.; Hussain, I.; Subhani, T. A durable superhydrophobic coating for the protection of wood materials. Mater. Lett. 2017, 203, 17–20. [Google Scholar] [CrossRef]
- Lu, Y.; Xiao, S.; Gao, R.; Li, J.; Sun, Q. Improved weathering performance and wettability of wood protected by CeO2 coating deposited onto the surface. Holzforschung 2014, 68, 345–351. [Google Scholar] [CrossRef]
- Tu, K.; Kong, L.; Wang, X.; Liu, J. Semitransparent, durable superhydrophobic polydimethylsiloxane/SiO2 nanocomposite coatings on varnished wood. Holzforschung 2016, 70, 1039–1045. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Z.; Chen, X.; Zou, W.; Jiang, X.; Sun, D.; Yu, M. Color fastness enhancement of dyed wood by Si-sol@PDMS based superhydrophobic coating. Colloids Surf. A 2022, 651, 129701. [Google Scholar] [CrossRef]
- Yang, R.; Liang, Y.; Hong, S.; Zuo, S.; Wu, Y.; Shi, J.; Cai, L.; Li, J.; Mao, H.; Ge, S.; et al. Novel low-temperature chemical vapor deposition of hydrothermal delignified wood for hydrophobic property. Polymers 2020, 12, 1757. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, H.; Huang, W.; Lai, X.; Zeng, X. Facile fabrication of superhydrophobic wood aerogel by vapor deposition method for oil-water separation. Surf. Interfaces 2023, 37, 102746. [Google Scholar] [CrossRef]
- Yin, H.; Sedighi Moghaddam, M.; Tuominen, M.; Dėdinaitė, A.; Wålinder, M.; Swerin, A. Wettability performance and physicochemical properties of UV exposed superhydrophobized birch wood. Appl. Surf. Sci. 2022, 584, 152528. [Google Scholar] [CrossRef]
- Xie, L.; Tang, Z.; Jiang, L.; Breedveld, V.; Hess, D.W. Creation of superhydrophobic wood surfaces by plasma etching and thin-film deposition. Surf. Coat. Technol. 2015, 281, 125–132. [Google Scholar] [CrossRef]
- Seo, K.; Kim, M.; Kim, D.H. Candle-based process for creating a stable superhydrophobic surface. Carbon 2014, 68, 583–596. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, F.; Feng, Q.; Zheng, J.; Chen, C.; Chen, H.; Yang, W. Preparation of SiO2 nanoparticles with adjustable size for fabrication of SiO2/PMHS ORMOSIL superhydrophobic surface on cellulose-based substrates. Prog. Org. Coat. 2020, 138, 105384. [Google Scholar] [CrossRef]
- Tan, X.; Zang, D.; Qi, H.; Liu, F.; Cao, G.; Ho, S.-H. Fabrication of green superhydrophobic/superoleophilic wood flour for efficient oil separation from water. Processes 2019, 7, 414. [Google Scholar] [CrossRef]
- Bao, W.; Zhang, M.; Jia, Z.; Jiao, Y.; Cai, L.; Liang, D.; Li, J. Cu thin films on wood surface for robust superhydrophobicity by magnetron sputtering treatment with perfluorocarboxylic acid. Eur. J. Wood Wood Prod. 2019, 77, 115–123. [Google Scholar] [CrossRef]
- Xing, T.; Dong, C.; Wang, X.; Hu, X.; Liu, C.; Lv, H. Biodegradable, superhydrophobic walnut wood membrane for the separation of oil/water mixtures. Front. Chem. Sci. Eng. 2022, 16, 1377–1386. [Google Scholar] [CrossRef]
- Chang, H.; Tu, K.; Wang, X.; Liu, J. Facile preparation of stable superhydrophobic coatings on wood surfaces using silica-polymer nanocomposites. BioResources 2015, 10, 2585–2596. [Google Scholar] [CrossRef]
- Wang, S.; Liu, C.; Liu, G.; Zhang, M.; Li, J.; Wang, C. Fabrication of superhydrophobic wood surface by a sol–gel process. Appl. Surf. Sci. 2011, 258, 806–810. [Google Scholar] [CrossRef]
- Li, Y.; Xiong, Z.; Zhang, M.; He, Y.; Yang, Y.; Liao, Y.; Hu, J.; Wang, M.; Wu, G. Development of highly durable superhydrophobic and UV-resistant wood by E-beam radiation curing. Cellulose 2021, 28, 11579–11593. [Google Scholar] [CrossRef]
- Tsvetkova, I.N.; Krasil’nikova, L.N.; Khoroshavina, Y.V.; Galushko, A.S.; Frantsuzova Yu, V.; Kychkin, A.K.; Shilova, O.A. Sol-gel preparation of protective and decorative coatings on wood. J. Sol-Gel Sci. Technol. 2019, 92, 474–483. [Google Scholar] [CrossRef]
- Wang, X.; Chai, Y.; Liu, J. Formation of highly hydrophobic wood surfaces using silica nanoparticles modified with long-chain alkylsilane. Holzforschung 2013, 67, 667–672. [Google Scholar] [CrossRef]
- Xia, M.; Yang, T.; Chen, S.; Yuan, G. Fabrication of superhydrophobic Eucalyptus wood surface with self-cleaning performance in air and oil environment and high durability. Colloid Interfac. Sci. 2020, 36, 100264. [Google Scholar] [CrossRef]
- Shupe, T.; Piao, C.; Lucas, C. The termiticidal properties of superhydrophobic wood surfaces treated with ZnO nanorods. Eur. J. Wood Wood Prod. 2012, 70, 531–535. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Z.; Dong, Y.; Zhang, S.; Li, J. Coordination-driven controlled assembly of polyphenol-metal green coating on wood micro-grooved surfaces: A novel approach to stable superhydrophobicity. Polymers 2017, 9, 347. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Hu, Y. The superhydrophobicity of LbL assembly of SiO2/wood composite materials and the formation mechanism. J. Funct. Mater. 2016, 47, 7109–7113. [Google Scholar]
- Lu, X.; Hu, Y. Layer-by-layer deposition of TiO2 nanoparticles in the wood surface and its superhydrophobic performance. BioResources 2016, 11, 4605–4620. [Google Scholar] [CrossRef]
- David, M.E.; Ion, R.-M.; Andrei, R.; Grigorescu, R.; Iancu, L.; Filipescu, M. Superhydrophobic coatings based on cellulose acetate for pinewood preservation. J. Sci. Arts 2020, 1, 171–182. [Google Scholar]
- Wu, Y.; Jia, S.; Wang, S.; Qing, Y.; Yan, N.; Wang, Q.; Meng, T. A facile and novel emulsion for efficient and convenient fabrication of durable superhydrophobic materials. Chem. Eng. J. 2017, 328, 186–196. [Google Scholar] [CrossRef]
- Liu, F.; Wang, S.; Zhang, M.; Ma, M.; Wang, C.; Li, J. Improvement of mechanical robustness of the superhydrophobic wood surface by coating PVA/SiO2 composite polymer. Appl. Surf. Sci. 2013, 280, 686–692. [Google Scholar] [CrossRef]
- Yu, N.; Xiao, X.; Ye, Z.; Pan, G. Facile preparation of durable superhydrophobic coating with self-cleaning property. Surf. Coat. Technol. 2018, 347, 199–208. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, Z.; Lu, S.; Zhang, M.; Liu, K.; Xiao, H.; Huang, L.; Chen, L.; Wu, H.; Ni, Y. Superhydrophobic wood grafted by poly(2-(perfluorooctyl)ethyl methacrylate) via ATRP with self-cleaning, abrasion resistance and anti-mold properties. Holzforschung 2020, 74, 799–809. [Google Scholar] [CrossRef]
- Wang, K.; Dong, Y.; Yan, Y.; Qi, C.; Zhang, S.; Li, J. Preparation of mechanical abrasion and corrosion resistant bulk highly hydrophobic material based on 3-D wood template. RSC Adv. 2016, 6, 98248–98256. [Google Scholar] [CrossRef]
- Shen, Y.; Wu, Y.; Shen, Z.; Chen, H. Fabrication of self-healing superhydrophobic surfaces from water-soluble polymer suspensions free of inorganic particles through polymer thermal reconstruction. Coatings 2018, 8, 144. [Google Scholar] [CrossRef]
- Wang, J.; Lu, Y.; Chu, Q.; Ma, C.; Cai, L.; Shen, Z.; Chen, H. Facile construction of superhydrophobic surfaces by coating fluoroalkylsilane/silica composite on a modified hierarchical structure of wood. Polymers 2020, 12, 813. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Shen, Y.; Tian, H.; Yang, Y.; Feng, H.; Li, J. Facile fabrication of superhydrophobic wood slice for effective water-in-oil emulsion separation. Sep. Purif. Technol. 2019, 210, 402–408. [Google Scholar] [CrossRef]
- Yang, M.; Chen, X.; Lin, H.; Han, C.; Zhang, S. A simple fabrication of superhydrophobic wood surface by natural rosin based compound via impregnation at room temperature. Eur. J. Wood Wood Prod. 2018, 76, 1417–1425. [Google Scholar] [CrossRef]
- Liu, Z.; Cao, J. Fabrication of superhydrophobic wood surface with a silica/silicone oil complex emulsion. Wood Res. 2018, 63, 353–364. [Google Scholar]
- Kolyaganova, O.; Klimov, V.V.; Bryuzgin, E.V.; Le, M.D.; Kharlamov, V.O.; Bryuzgina, E.B.; Navrotsky, A.V.; Novakov, I.A. Modification of wood with copolymers based on glycidyl methacrylate and alkyl methacrylates for imparting superhydrophobic properties. J. Appl. Polym. Sci. 2022, 139, 51636. [Google Scholar] [CrossRef]
- Lu, Q.; Jiang, H.; Cheng, R.; Xia, S.; Zhan, K.; Yi, T.; Morrell, J.J.; Yang, L.; Du, G.; Gao, W. Preparation of superhydrophobic wood surfaces via in-situ synthesis of Cu2(OH)3Cl nano-flowers and impregnating PF&STA to improve chemical and mechanical durability. Ind. Crops Prod. 2021, 172, 113952. [Google Scholar]
- Cai, Y.; Yu, Y.; Wu, J.; Wang, K.; Dong, Y.; Qu, J.; Hu, J.; Zhang, L.; Fu, Q.; Li, J.; et al. Durable, flexible, and super-hydrophobic wood membrane with nanopore by molecular cross-linking for efficient separation of stabilized water/oil emulsions. EcoMat 2022, 4, e12255. [Google Scholar] [CrossRef]
- Jia, S.; Chen, H.; Luo, S.; Qing, Y.; Deng, S.; Yan, N.; Wu, Y. One-step approach to prepare superhydrophobic wood with enhanced mechanical and chemical durability: Driving of alkali. Appl. Surf. Sci. 2018, 455, 115–122. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, H.; Yao, Q.; Fan, B.; Wang, C.; Xiong, Y.; Jin, C.; Sun, Q. Biomimetic taro leaf-like films decorated on wood surfaces using soft lithography for superparamagnetic and superhydrophobic performance. J. Mater. Sci. 2017, 52, 7428–7438. [Google Scholar] [CrossRef]
- Yang, Y.; He, H.; Li, Y.; Qiu, J. Using nanoimprint lithography to create robust, buoyant, superhydrophobic PVB/SiO2 coatings on wood surfaces inspired by red roses petal. Sci. Rep. 2019, 9, 9961. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Shen, H.; Qiu, J. Fabrication of biomimetic robust self-cleaning superhydrophobic wood with canna-leaf-like micro/nanostructure through morph-genetic method improved water-, UV-, and corrosion resistance properties. J. Mol. Struct. 2020, 1219, 128616. [Google Scholar] [CrossRef]
- Jia, S.; Lu, X.; Luo, S.; Qing, Y.; Yan, N.; Wu, Y. Efficiently texturing hierarchical epoxy layer for smart superhydrophobic surfaces with excellent durability and exceptional stability exposed to fire. Chem. Eng. J. 2018, 348, 212–223. [Google Scholar] [CrossRef]
- Zhao, Y.; Qu, D.; Yu, T.; Xie, X.; He, C.; Ge, D.; Yang, L. Frost-resistant high-performance wood via synergetic building of omni-surface hydrophobicity. Chem. Eng. J. 2020, 385, 123860. [Google Scholar] [CrossRef]
- Wang, K.; Liu, X.; Tan, Y.; Zhang, W.; Zhang, S.; Li, J. Two-dimensional membrane and three-dimensional bulk aerogel materials via top-down wood nanotechnology for multibehavioral and reusable oil/water separation. Chem. Eng. J. 2019, 371, 769–780. [Google Scholar] [CrossRef]
- Jian, Y.; Lu, S.; Tang, W.; Shao, M.; San, F.; Wan, H.; Xie, L. Preparation of superhydrophobic coatings with alkyltrichlorosilanes for Pinus kesiya wood. J. Wood Chem. Technol. 2022, 42, 409–418. [Google Scholar] [CrossRef]
- El-Naggar, M.E.; Aldalbahi, A.; Khattab, T.A.; Hossain, M. Facile production of smart superhydrophobic nanocomposite for wood coating towards long-lasting glow-in-the-dark photoluminescence. Luminescence 2021, 36, 2004–2013. [Google Scholar] [CrossRef]
- Yang, R.; Cao, Q.; Liang, Y.; Hong, S.; Xia, C.; Wu, Y.; Li, J.; Cai, L.; Sonne, C.; Le, Q.V.; et al. High capacity oil absorbent wood prepared through eco-friendly deep eutectic solvent delignification. Chem. Eng. J. 2020, 401, 126150. [Google Scholar] [CrossRef]
- Jia, S.; Lu, Y.; Luo, S.; Qing, Y.; Wu, Y.; Parkin, I.P. Thermally-induced all-damage-healable superhydrophobic surface with photocatalytic performance from hierarchical BiOCl. Chem. Eng. J. 2019, 366, 439–448. [Google Scholar] [CrossRef]
- Si, Y.; Guo, Z. Superhydrophobic nanocoatings: From materials to fabrications and to applications. Nanoscale 2015, 7, 5922–5946. [Google Scholar] [CrossRef]
- Zhu, R.; Liu, M.; Hou, Y.; Zhang, L.; Li, M.; Wang, D.; Fu, S. One-pot preparation of fluorine-free magnetic superhydrophobic particles for controllable liquid marbles and robust multifunctional coatings. ACS Appl. Mater. Interfaces 2020, 12, 17004–17017. [Google Scholar] [CrossRef]
- Tang, X.; Huang, W.; Xie, Y.; Xiao, Z.; Wang, H.; Liang, D.; Li, J.; Wang, Y. Superhydrophobic hierarchical structures from self-assembly of cellulose-based nanoparticles. ACS Sustain. Chem. Eng. 2021, 9, 14101–14111. [Google Scholar] [CrossRef]
- Zhang, K.; Xu, F.; Gao, Y. Superhydrophobic and oleophobic dual-function coating with durablity and self-healing property based on a waterborne solution. Appl. Mater. Today 2021, 22, 100970. [Google Scholar] [CrossRef]
- Yu, X.; Liu, X.; Shi, X.; Zhang, Z.; Wang, H.; Feng, L. SiO2 nanoparticle-based superhydrophobic spray and multi-functional surfaces by a facile and scalable method. Ceram. Int. 2019, 45, 15741–15744. [Google Scholar] [CrossRef]
- Latthe, S.S.; Sutar, R.S.; Kodag, V.S.; Bhosale, A.K.; Kumar, A.M.; Kumar Sadasivuni, K.; Xing, R.; Liu, S. Self-cleaning superhydrophobic coatings: Potential industrial applications. Prog. Org. Coat. 2019, 128, 52–58. [Google Scholar] [CrossRef]
- Ghasemlou, M.; Daver, F.; Ivanova, E.P.; Adhikari, B. Bio-inspired sustainable and durable superhydrophobic materials: From nature to market. J. Mater. Chem. A 2019, 7, 16643–16670. [Google Scholar] [CrossRef]
- Yang, H.; Wang, S.; Wang, X.; Chao, W.; Wang, N.; Ding, X.; Liu, F.; Yu, Q.; Yang, T.; Yang, Z.; et al. Wood-based composite phase change materials with self-cleaning superhydrophobic surface for thermal energy storage. Appl. Energy 2020, 261, 114481. [Google Scholar] [CrossRef]
- Ntelia, E.; Karapanagiotis, I. Superhydrophobic Paraloid B72. Prog. Org. Coat. 2020, 139, 105224. [Google Scholar] [CrossRef]
- Moghaddam, M.S.; Heydari, G.; Tuominen, M.; Fielden, M.; Haapanen, J.; Mäkelä, J.M.; Wålinder, M.E.P.; Claesson, P.M.; Swerin, A. Hydrophobisation of wood surfaces by combining liquid flame spray (LFS) and plasma treatment: Dynamic wetting properties. Holzforschung 2016, 70, 527–537. [Google Scholar] [CrossRef]
- Huang, J.; Lyu, S.; Fu, F.; Wu, Y.; Wang, S. Green preparation of a cellulose nanocrystals/polyvinyl alcohol composite superhydrophobic coating. RSC Adv. 2017, 7, 20152–20159. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, Z.; Zhang, H.; Fu, S. Superhydrophobic light-driven actuator based on self-densified wood film with a sandwich-like structure. Compos. Sci. Technol. 2022, 220, 109278. [Google Scholar] [CrossRef]
- Jnido, G.; Ohms, G.; Viöl, W. One-step deposition of polyester/TiO2 coatings by atmospheric pressure plasma jet on wood surfaces for UV and moisture protection. Coatings 2020, 10, 184. [Google Scholar] [CrossRef]
- Zhan, K.; Lu, Q.; Xia, S.; Guo, C.; Zhao, S.; Gao, W.; Yang, L.; Morrell, J.J.; Yi, T.; Xie, L.; et al. A cost effective strategy to fabricate STA@PF@Cu2O hierarchical structure on wood surface: Aimed at superhydrophobic modification. Wood Sci. Technol. 2021, 55, 565–583. [Google Scholar] [CrossRef]
- Fu, Y.; Yu, H.; Sun, Q.; Li, G.; Liu, Y. Testing of the superhydrophobicity of a zinc oxide nanorod array coating on wood surface prepared by hydrothermal treatment. Holzforschung 2012, 66, 739–744. [Google Scholar] [CrossRef]
- Wang, S.; Liu, C.; Du, H.; Ma, H.; Xie, C.; Wang, C. An alkaline hydrothermal method to synthesize superhydrophobic wood. Adv. Mater. Res. 2011, 295–297, 1680–1683. [Google Scholar]
- Gan, W.; Gao, L.; Sun, Q.; Jin, C.; Lu, Y.; Li, J. Multifunctional wood materials with magnetic, superhydrophobic and anti-ultraviolet properties. Appl. Surf. Sci. 2015, 332, 565–572. [Google Scholar] [CrossRef]
- Wang, C.; Piao, C.; Lucas, C. Synthesis and characterization of superhydrophobic wood surfaces. J. Appl. Polym. Sci. 2011, 119, 1667–1672. [Google Scholar] [CrossRef]
- Ding, Z.; Lin, W.; Yang, W.; Chen, H.; Zhang, X. A silicone resin coating with water-repellency and anti-fouling properties for wood protection. Polymers 2022, 14, 3062. [Google Scholar] [CrossRef]
- Tu, K.; Wang, X.; Kong, L.; Chang, H.; Liu, J. Fabrication of robust, damage-tolerant superhydrophobic coatings on naturally micro-grooved wood surfaces. RSC Adv. 2016, 6, 701–707. [Google Scholar] [CrossRef]
- Janesch, J.; Arminger, B.; Gindl-Altmutter, W.; Hansmann, C. Superhydrophobic coatings on wood made of plant oil and natural wax. Prog. Org. Coat. 2020, 148, 105891. [Google Scholar] [CrossRef]
- Łukawski, D.; Lekawa-Raus, A.; Lisiecki, F.; Koziol, K.; Dudkowiak, A. Towards the development of superhydrophobic carbon nanomaterial coatings on wood. Prog. Org. Coat. 2018, 125, 23–31. [Google Scholar] [CrossRef]
- Chen, Z.; Su, X.; Wu, W.; Chen, S.; Zhang, X.; Wu, Y.; Xie, H.; Li, K. Superhydrophobic PDMS@TiO2 wood for photocatalytic degradation and rapid oil-water separation. Surf. Coat. Technol. 2022, 434, 128182. [Google Scholar] [CrossRef]
- Han, X.; Wang, Z.; Zhang, Q.; Pu, J. A simple and efficient method to fabricate superhydrophobic wood with enhanced mechanical durability. Forest 2019, 10, 750. [Google Scholar] [CrossRef]
- Guo, H.; Fuchs, P.; Casdorff, K.; Michen, B.; Chanana, M.; Hagendorfer, H.; Romanyuk, Y.E.; Burgert, I. Bio-inspired superhydrophobic and omniphobic wood surfaces. Adv. Mater. Interfaces 2017, 4, 1600289. [Google Scholar] [CrossRef]
- Yao, Q.; Wang, C.; Fan, B.; Wang, H.; Sun, Q.; Jin, C.; Zhang, H. One-step solvothermal deposition of ZnO nanorod arrays on a wood surface for robust superamphiphobic performance and superior ultraviolet resistance. Sci. Rep. 2016, 6, 35505. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Dong, Y.; Zhang, W.; Zhang, S.; Li, J. Preparation of stable superhydrophobic coatings on wood substrate surfaces via mussel-inspired polydopamine and electroless deposition methods. Polymers 2017, 9, 218. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Jia, S.; Deng, X.; Qing, Y.; Luo, S.; Wu, Y. New insight into island-like structure driven from hydroxyl groups for high-performance superhydrophobic surfaces. Chem. Eng. J. 2021, 416, 129078. [Google Scholar] [CrossRef]
- Gao, L.; Lu, Y.; Li, J.; Sun, Q. Superhydrophobic conductive wood with oil repellency obtained by coating with silver nanoparticles modified by fluoroalkyl silane. Holzforschung 2015, 70, 63–68. [Google Scholar] [CrossRef]
- Wang, N.; Wang, Q.; Xu, S.; Qu, L.; Shi, Z. Robust superhydrophobic wood surfaces with mechanical durability. Colloids Surf. A 2021, 608, 125624. [Google Scholar] [CrossRef]
- Mirvakili, M.N.; Hatzikiriakos, S.G.; Englezos, P. Superhydrophobic lignocellulosic wood fiber/mineral networks. ACS Appl. Mater. Interfaces 2013, 5, 9057–9066. [Google Scholar] [CrossRef]
- Wu, X.; Yang, F.; Gan, J.; Zhao, W.; Wu, Y. A flower-like waterborne coating with self-cleaning, self-repairing properties for superhydrophobic applications. J. Mater. Res. Technol. 2021, 14, 1820–1829. [Google Scholar] [CrossRef]
- Liu, F.; Gao, Z.; Zang, D.; Wang, C.; Li, J. Mechanical stability of superhydrophobic epoxy/silica coating for better water resistance of wood. Holzforschung 2015, 69, 367–374. [Google Scholar] [CrossRef]
- Wang, K.; Dong, Y.; Yan, Y.; Zhang, S.; Li, J. Mussel-inspired chemistry for preparation of superhydrophobic surfaces on porous substrates. RSC Adv. 2017, 7, 29149–29158. [Google Scholar] [CrossRef]
- Budunoglu, H.; Yildirim, A.; Guler, M.O.; Bayindir, M. Highly transparent, flexible, and thermally stable superhydrophobic ORMOSIL aerogel thin films. ACS Appl. Mater. Interfaces 2011, 3, 539–545. [Google Scholar] [CrossRef]
- Celia, E.; Darmanin, T.; Taffin de Givenchy, E.; Amigoni, S.; Guittard, F. Recent advances in designing superhydrophobic surfaces. J. Colloid Interface Sci. 2013, 402, 1–18. [Google Scholar] [CrossRef]
- Wang, X.; Liu, S.; Chang, H.; Liu, J. Sol-gel deposition of TiO2 nanocoatings on wood surfaces with enhanced hydrophobicity and photostability. Wood Fiber Sci. 2014, 46, 109–117. [Google Scholar]
- Cao, M.; Tang, M.; Lin, W.; Ding, Z.; Cai, S.; Chen, H.; Zhang, X. Facile fabrication of fluorine-free, anti-icing, and multifunctional superhydrophobic surface on wood substrates. Polymers 2022, 14, 1953. [Google Scholar] [CrossRef]
- Lin, W.; Zhang, X.; Cai, Q.; Yang, W.; Chen, H. Dehydrogenation-driven assembly of transparent and durable superhydrophobic ORMOSIL coatings on cellulose-based substrates. Cellulose 2020, 27, 7805–7821. [Google Scholar] [CrossRef]
- Ma, T.; Li, L.; Mei, C.; Wang, Q.; Guo, C. Construction of sustainable, fireproof and superhydrophobic wood template for efficient oil/water separation. J. Mater. Sci. 2021, 56, 5624–5636. [Google Scholar] [CrossRef]
- Du, X.; Li, J.S.; Li, L.X.; Levkin, P.A. Porous poly(2-octyl cyanoacrylate): A facile one-step preparation of superhydrophobic coatings on different substrates. J. Mater. Chem. A 2013, 1, 1026–1029. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, M.; Xu, Y.; Wang, S.; Liu, F.; Ma, M.; Zang, D.; Gao, Z. One-step synthesis of unique silica particles for the fabrication of bionic and stably superhydrophobic coatings on wood surface. Adv. Powder Technol. 2014, 25, 530–535. [Google Scholar] [CrossRef]
- Gao, Z.; Ma, M.; Zhai, X.; Zhang, M.; Zang, D.; Wang, C. Improvement of chemical stability and durability of superhydrophobic wood surface via a film of TiO2 coated CaCO3 micro-/nano-composite particles. RSC Adv. 2015, 5, 63978–63984. [Google Scholar] [CrossRef]
- Wang, K.; Dong, Y.; Yan, Y.; Zhang, W.; Qi, C.; Han, C.; Li, J.; Zhang, S. Highly hydrophobic and self-cleaning bulk wood prepared by grafting long-chain alkyl onto wood cell walls. Wood Sci. Technol. 2017, 51, 395–411. [Google Scholar] [CrossRef]
- Wang, S.; Shi, J.; Liu, C.; Xie, C.; Wang, C. Fabrication of a superhydrophobic surface on a wood substrate. Appl. Surf. Sci. 2011, 257, 9362–9365. [Google Scholar] [CrossRef]
- Yang, Y.; Shan, L.; Shen, H.; Qiu, J. Manufacturing of robust superhydrophobic wood surfaces based on PEG–functionalized SiO2/PVA/PAA/fluoropolymer hybrid transparent coating. Prog. Org. Coat. 2021, 154, 106186. [Google Scholar] [CrossRef]
- Yi, Z.; Zhao, B.; Liao, M.; Qin, Z. Fabrication of superhydrophobic wood surface by etching polydopamine coating with sodium hydroxide. Coatings 2020, 10, 847. [Google Scholar] [CrossRef]
- Younis, S.A.; El-Sayed, M.; Moustafa, Y.M. Modeling and optimization of oil adsorption from wastewater using an amorphous carbon thin film fabricated from wood sawdust waste modified with palmitic acid. Environ. Process. 2017, 4, 147–168. [Google Scholar] [CrossRef]
- Zhu, Z.; Fu, S.; Lucia, L.A. A fiber-aligned thermal-managed wood-based superhydrophobic aerogel for efficient oil recovery. ACS Sustain. Chem. Eng. 2019, 7, 16428–16439. [Google Scholar] [CrossRef]
- Li, Y.; Chen, C.; Song, J.; Yang, C.; Kuang, Y.; Vellore, A.; Hitz, E.; Zhu, M.; Jiang, F.; Yao, Y.; et al. Strong and superhydrophobic wood with aligned cellulose nanofibers as a waterproof structural material. Chin. J. Chem. 2020, 38, 823–829. [Google Scholar] [CrossRef]
- Kavalenka, M.N.; Hopf, A.; Schneider, M.; Worgull, M.; Hölscher, H. Wood-based microhaired superhydrophobic and underwater superoleophobic surfaces for oil/water separation. RSC Adv. 2014, 4, 31079–31083. [Google Scholar] [CrossRef]
- Raphael, W.; Martel, T.; Landry, V.; Tavares, J.R. Surface engineering of wood substrates to impart barrier properties: A photochemical approach. Wood Sci. Technol. 2018, 52, 193–207. [Google Scholar] [CrossRef]
- Manoudis, P.N.; Karapanagiotis, I.; Tsakalof, A.; Zuburtikudis, I.; Panayiotou, C. Superhydrophobic composite films produced on various substrates. Langmuir 2008, 24, 11225–11232. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Yang, F.; Gan, J.; Kong, Z.; Wu, Y. A superhydrophobic, antibacterial, and durable surface of poplar wood. Nanomaterials 2021, 11, 1885. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhou, A.G.; Sun, B.R.; Chen, K.S.; Yu, H.-Z. Functional and versatile superhydrophobic coatings via stoichiometric silanization. Nat. Commun. 2021, 12, 982. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Moghaddam, M.S.; Tuominen, M.; Eriksson, M.; Järn, M.; Dėdinaitė, A.; Wålinder, M.; Swerin, A. Superamphiphobic plastrons on wood and their effects on liquid repellence. Mater. Des. 2020, 195, 108974. [Google Scholar] [CrossRef]
- Feng, J.; Chen, J.; Chen, M.; Su, X.; Shi, Q. Effects of biocide treatments on durability of wood and bamboo/high density polyethylene composites against algal and fungal decay. J. Appl. Polym. Sci. 2017, 134, 45148. [Google Scholar] [CrossRef]
- Schultz, T.P.; Nicholas, D.D.; Preston, A.F. A brief review of the past, present and future of wood preservation. Pest Manag. Sci. 2007, 63, 784–788. [Google Scholar] [CrossRef]
- He, Z.; Wu, H.; Shi, Z.; Kong, Z.; Ma, S.; Sun, Y.; Liu, X. Facile preparation of robust superhydrophobic/superoleophilic TiO2 decorated polyvinyl alcohol sponge for efficient oil/water separation. ACS Omega 2022, 7, 7084–7095. [Google Scholar] [CrossRef]
- He, Z.; Wu, H.; Shi, Z.; Duan, X.; Ma, S.; Chen, J.; Kong, Z.; Chen, A.; Sun, Y.; Liu, X. Mussel-inspired durable superhydrophobic/superoleophilic MOF-PU sponge with high chemical stability, efficient oil/water separation and excellent anti-icing properties. Colloids Surf. A 2022, 648, 129142. [Google Scholar] [CrossRef]
- Fan, J.-B.; Song, Y.; Wang, S.; Meng, J.; Yang, G.; Guo, X.; Feng, L.; Jiang, L. Directly coating hydrogel on filter paper for effective oil–water separation in highly acidic, alkaline, and salty environment. Adv. Funct. Mater. 2015, 25, 5368–5375. [Google Scholar] [CrossRef]
- Liu, M.; Hou, Y.; Li, J.; Guo, Z. Stable superwetting meshes for on-demand separation of immiscible oil/water mixtures and emulsions. Langmuir 2017, 33, 3702–3710. [Google Scholar] [CrossRef] [PubMed]
- Daksa Ejeta, D.; Wang, C.-F.; Kuo, S.-W.; Chen, J.-K.; Tsai, H.-C.; Hung, W.-S.; Hu, C.-C.; Lai, J.-Y. Preparation of superhydrophobic and superoleophilic cotton-based material for extremely high flux water-in-oil emulsion separation. Chem. Eng. J. 2020, 402, 126289. [Google Scholar] [CrossRef]
- Zhao, M.; Tao, Y.; Wang, J.; He, Y. Facile preparation of superhydrophobic porous wood for continuous oil-water separation. J. Water Process Eng. 2020, 36, 101279. [Google Scholar] [CrossRef]
- Wu, J.; Cui, Z.; Yu, Y.; Han, H.; Tian, D.; Hu, J.; Qu, J.; Cai, Y.; Luo, J.; Li, J. A 3D smart wood membrane with high flux and efficiency for separation of stabilized oil/water emulsions. J. Hazard. Mater. 2023, 441, 129900. [Google Scholar] [CrossRef]
- Cheng, R.; Yang, Y.; Liu, Q.; Wang, L.; Xia, S.; Lu, Q.; Jiang, H.; Zhan, K.; Morrell, J.J.; Wan, H.; et al. In-situ growth strategy to fabricate superhydrophobic wood by Na3(Cu2(CO3)3OH)∙4H2O for oil/water separation. Colloids Surf. A 2023, 656, 130338. [Google Scholar] [CrossRef]
- Góral, Z.; Mastalska-Popławska, J.; Izak, P.; Rutkowski, P.; Gnyla, J.; Majka, T.M.; Pielichowski, K. Impact of melamine and its derivatives on the properties of poly(vinyl acetate)-based composite wood adhesive. Eur. J. Wood Wood Prod. 2021, 79, 177–188. [Google Scholar] [CrossRef]
- He, Z.; Xie, H.; Wu, H.; Chen, J.; Ma, S.; Duan, X.; Chen, A.; Kong, Z. Recent advances in MXene/polyaniline-based composites for electrochemical devices and electromagnetic interference shielding applications. ACS Omega 2021, 6, 22468–22477. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Z.; Sun, D.; Zou, W.; Yu, M.; Yao, L. Thermally induced response self-healing superhydrophobic wood with self-cleaning and photocatalytic performance. Cellulose 2022, 29, 9407–9420. [Google Scholar] [CrossRef]
- He, Z.; Zhuo, Y.; Wang, F.; He, J.; Zhang, Z. Design and preparation of icephobic PDMS-based coatings by introducing an aqueous lubricating layer and macro-crack initiators at the ice-substrate interface. Prog. Org. Coat. 2020, 147, 105737. [Google Scholar] [CrossRef]
- He, Z.; Xiao, S.; Gao, H.; He, J.; Zhang, Z. Multiscale crack initiator promoted super-low ice adhesion surfaces. Soft Matter. 2017, 13, 6562–6568. [Google Scholar] [CrossRef]
- He, Z.; Zhuo, Y.; He, J.; Zhang, Z. Design and preparation of sandwich-like PDMS sponges with super-low ice adhesion. Soft Matter. 2018, 14, 4846–4851. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.H.; Zheng, S.L.; Bellido-Aguilar, D.A.; Silberschmidt, V.V.; Chen, Z. Transparent icephobic coatings using bio-based epoxy resin. Mater. Des. 2018, 140, 516–523. [Google Scholar] [CrossRef]
Methods | Types of Wood | Decorated Materials | Modifying Materials | Experimental Conditions | WCA (°) | Ref. |
---|---|---|---|---|---|---|
Immersion | Basswood | - | HDTMS, MTMS | Immersed for 6 h, dried at 120 °C for 30 min | 162.9 ± 2 | [11] |
Poplar wood | Cu | FAS-17 | Pretreated by DA, Immersed at 30 °C for 2 h | 155.7 | [19] | |
Basswood | Aluminate | - | Immersed at 70 °C, dried for one week at room temperature | 163.6 | [47] | |
Pine lumber | Cu | FAS | Immersed in NaOH at 70 °C for 10 min | 160 | [48] | |
Balsa wood | rGO | PDMS | Immersed in GO solution, then reduced to rGO@wood | 152 | [49] | |
Ash wood | - | APTES | Immersed at 60 °C for 5 h | 161 | [50] | |
Poplar wood | - | PMS | Immersed at room temperature (RT) for 18 h | 153 | [51] | |
Wood blocks | SiO2 | PDMS, PMHS | Immersed for 10 min, dried at 100 °C | 164.4 | [52] | |
Dalbergia sissoo wood | TiO2 | PFOTS | Immersed in a mixture solution for 15 s | 165 ± 8 | [53] | |
Pinus sylvestris wood | SiO2 | OTS | Pretreated with EP, immersed for 10 min | 155.4 | [54] | |
Balsa wood | Cu2O | STA | Immsersed at RT for 1 h | 153 | [55] | |
Pinus sylvestris var. mongolica | Al2O3 | OTS | Pretreated with DA, immersed for 20 h | 152.9 | [56] | |
Poplar wood | SiO2 | PCL10,000 | Immersed for 24 h | 156 ± 1 | [57] | |
Wood substrate | SiO2 | F13-TMS | Immersed for 1.5 h | 156 | [58] | |
Wood substrate | SiO2, TiO2 | VTES | Immersed at 100 °C for 1.5 h | 153.2 ± 2.3 | [59] | |
Spray-coating | Pine wood | SiO2 | Zonyl 8740 | Oven-dried at 105 °C for 12 h | 168.3 | [14] |
Birch wood | SiO2 | PDMS | 0.3 MPa at a distance of 10 cm | 170 | [60] | |
Balsa wood | Soot | PDMS | Sprayed for 3 s | 160 | [61] | |
European beech wood | AKD wax | Oven-dried at 45 °C for 10 min | 160 | [62] | ||
Beech wood | CNC@SiO2@PL rod | PDMS | Dried at 150 °C for 2 h | 157.4 | [63] | |
Wood substrate | CNC | FOTS | Dried at RT for 15 min | 163 | [64] | |
Wood substrate | SiO2 | HDTMS | Sprayed for 2 s under pressure of 42 psi | 151.8 | [65] | |
Wood substrate | SiO2 | N-Boroxine-PDMS | 0.24 MPa at a distance of 12 cm | 160.9 | [66] | |
Wood substrate | PDVB NTs, SiO2 | PFS | 0.3–0.4 MPa at a distance of 10–15 cm | 157.7 | [67] | |
European beech wood | AKD wax | Using a 0.15 mm nozzle | 166 | [68] | ||
Masson’s pine, pecan wood | Cu2O | STA | Sprayed at a 30° angle and a distance of 60 cm | 155 | [69] | |
Wood blocks | TiO2 | PMC | Sprayed for 10 s, cured at 103 °C for 8 h | 152.2 ± 2.6 | [70] | |
Balsa wood | SiO2 | POTS | Sprayed for 6 s | 151.2 | [71] | |
Wood substrate | CNC/SiO2 | PFTS | Pretreated with adhesive, dried at RT | >159 | [72] | |
Chinese fir wood | PS/SiO2 | PDMS | Sprayed for 10 s, baked at 100 °C for 2 h | 150 | [73] | |
Styrax tonkinensis wood | ZnO | STA | 0.2 MPa at a distance of 10 cm | 154.1 | [74] | |
Wood substrate | SiO2 | DTMS | Sprayed at a distance of 20–25 cm | 162.3 ± 1.1 | [75] | |
Wood substrate | NCF | PFOCTS | 0.2–0.4 MPa at a distance of 45–60 cm | 161 | [76] | |
Pine wood | CNC | FOTS | 0.2–0.4 MPa at a distance of 30–60 cm | 162 | [77] | |
Hydrothermal synthesis | Polar wood | WO3 | SDS | 120 °C for 6 h | 152 | [1] |
Wood blocks | ZnO | STA | 90 °C for 6 h | 154 | [5] | |
Spruce wood | TiO2 | SDS | 75 or 90 °C for 1 h | >150 | [7] | |
Eucalyptus wood | TiO2 | VTES | 100 °C for 6 h | 153 | [20] | |
Poplar wood | Ag-TiO2 | FAS-17 | 90 °C for 5 h | 153.2 | [78] | |
Wood slices | MnFe2O4 | FAS-17 | 120 °C for 8 h | 156 ± 1 | [79] | |
Sapwood | ZnO | Palmitoyl chloride | 90 °C for 3 h | 155 | [80] | |
Wood substrate | ZnO | DTMS | 90 °C for 3 h | 156 | [81] | |
Polar wood | TiO2 | SDS | Reheated at 70 °C for 4 h | 154 | [82] | |
Poplar wood | TiO2 | OTS | 90 °C for 5 h | 152 | [83] | |
Poplar wood | TiO2 | Fluoroalkyl silane | 90 °C for 5 h | 152.9 | [84] | |
Birch veneer | WO3 | OTS | 90 °C for 12 h | 152 | [85] | |
Birch veneer | WO3 | OTS | 110 °C for 24 h | 150.1 | [86] | |
Pinus wood | Cu2(OH)3Cl NPs | STA | 70 °C for 10 min | 151 ± 3 | [87] | |
Poplar lumbers | α-FeOOH | OTS | 80 °C for 0.5, 1, 2, 4 h | 158 | [88] | |
Poplar sapwood | Cu2O | FAS-17 | 180 °C for 2 h | 153.8 | [89] | |
Poplar wood | Ti/Si | VTES | 100 °C for 6 h | 152.7 | [90] | |
Dip-coating | Spruce veneers | SiO2 | POTS | Dip-coated in sol, stirred for another 5 h | 151.8 | [3] |
Juvenile teakwood | AKD | - | Heating to form β-ketoester bond | 150 ± 2 | [9] | |
Chinese Cunninghamia lanceolata | SiO2 | PMHS | Dipped for 5 min, air-dried for 1 min | 154.1 ± 2.1 | [12] | |
Cathay poplar wood | CoFe2O4 | FAS | Dipped for 3 min, air-dried for 20 min | 158 | [22] | |
Chinese fir wood | SiO2 | PDMS | Dipped for 10 min, dried at 103 °C for 1 h | 152 | [91] | |
Wood substrate | Al2O3 | PDMS | Dipped for 30 s, dried at 50 °C for 20 min | 154 | [92] | |
Poplar wood | CeO2 | OTS | Dipped for 20 min, dried at 80 °C for 1 h | 152 | [93] | |
Chinese white pine | SiO2 | PDMS, FAS | Dipped for 5 min, dried at 103 °C for 15 min | >150 | [94] | |
Poplar sapwood | Si-sol | PDMS | Evacuated to −0.09 MPa, dried at 103 °C for 3 h | 151.6 | [95] | |
Deposition | Poplar wood | - | PDMS | CVD, hydrolysis reaction | 157.3 | [96] |
Balsa wood | - | MTMS | Vapor deposition | 151.8 | [97] | |
Birch veneers | Silicone nanofilaments | TCOS | CVD for 3 h | 156 | [98] | |
Golden chinkapin wood | - | PFE | Plasma deposition at a working pressure of 1.0 Torr | 161.2 ± 1.5 | [99] | |
Wood substrate | Candle soot | Paraffin wax | Evaporation and deposition | 162 | [100] | |
Chinese Cunninghamia lanceolata | SiO2 | PMHS | Deposition of 75 nm SiO2 NPs | 158.2 | [101] | |
Larch species wood | ZnO | Octadecanoic acid | Maintained at 70 °C for 5 h | 156 | [102] | |
Radiata pine | Cu | Perfluorocarboxylic acid | Magnetron sputtering | 154 | [103] | |
Sol-gel | Walnut wood | - | PDMS | Immersed for 12 h | 162.4 | [104] |
Chinese fir wood | Silica | HDTMS | Dipped for 30 min to deposit silica | 152 | [105] | |
Poplar lumbers | SiO2 | POTS | Maintained at RT for 6 h | 164 | [106] | |
Poplar sapwood | TiO2 | PDMS | In-situ deposition, EB radiation curing | 165.7 | [107] | |
Pine blocks | Silica | Aerosil R-972 | Placed for 10 min, dried in air for 24 h | 152 | [108] | |
Chinese fir wood | Silica | HDTMS | Immersed for 30 min, dried at 80 °C for 10 h | 150 | [109] | |
Eucalyptus wood | SiO2 | PFDS | Stirred at 50 °C for 4 h, dried at 70 °C for 10 h | 159 | [110] | |
Assembly | Norway spruce | ZnO | Carnauba wax | Layer-by-layer | 155 | [15] |
Southern pine sapwood | ZnO | STA | Self-assembly | >150 | [111] | |
Poplar wood | TA–FeIII | Octadecanethiol | Multistep assembly | 156 | [112] | |
Populus ussuriensis Kom. | SiO2 | POTS | Layer-by-layer | 161 | [113] | |
Poplar wood | TiO2 | POTS | Layer-by-layer | 161 | [114] | |
Brushing | European beech | - | GSE | Dried for 5 min, repeated 5 times | 159 ± 2 | [16] |
Pinewood | ZnO, TiO2 | Acetic acid | Brushed for 3 layers, dried at 100 °C for 24 h | >150 | [115] | |
Chinese fir wood | SiO2, TiO2 | PTES | Curd at RT | 152 | [116] | |
Drop-coating | Poplar lumbers | PS/silica | OTS | 1 mL cm2, dried at RT | 153 ± 1 | [117] |
Wooden sheet | TiO2 | H-PDMS | Kept at RT for 30 min, cured at 120 °C for 10 h | 155.5 ± 1 | [118] | |
Poplar lumbers | SiO2 | OTS | Oven-dried at RT for 12 h | 159 | [117] | |
Grafting | Chinese fir wood | - | PFOEMA | ATRP | 156 | [119] |
Radiata pine | - | Stearoyl chloride | The ester linkage | 152 | [120] | |
Casting | Chinese fir wood | Polymer latex | - | Drop-casting, dried at 30 °C | 152 | [121] |
Chinese fir wood | Nano fumed silica | Acetic acid | Heating at 120 °C for 2 h | 160 | [122] | |
Impregnation | Pine wood | Cu(OH)2 | Dodecanethiol | Dried in an oven | 154 | [123] |
Poplar specimens | TiO2 | Maleic rosin | Dried in an oven at 180 °C for 4 h | 157 | [124] | |
Poplar sapwood | Silica | Silicone oil | At a vacuum of 0.01 MPa for 1 h, a subsequent pressure of 0.5 MPa for 1 h | 154.8 | [125] | |
Pinewood | Copolymers | - | Impregnated for 2 h, heated at 140 °C for 2 h | >150 | [126] | |
Masson’s pine wood | Cu2(OH)3Cl | PF and STA | Impregnated at RT for 4 h, immersed at RT for 2 h | 163 | [127] | |
Solvent-based methods | Balsa wood | PVDB | - | A solvothermal method, heated at 100 °C for 24 h | 160 | [128] |
Chinese fir wood | SiO2 | VTES | Alkali-driven method | 156.6 | [129] | |
Template methods | Populus ussuriensis Kom. | Fe3O4 | PDMS | Soft lithography | 152 ± 2 | [130] |
Populus ussuriensis Kom. | PVB/SiO2 | OTS | Nanoimprint lithography | 160 | [131] | |
Ash wood | PVB/SiO2 | OTS | Replication | 155 | [132] |
Modifying Materials | Adsorbed Materials | Adsorption Capacity (g∙g−1) | Separation Efficiency (%) | Permeation Flux (L∙m−2∙h−1) | Cycles (Times) | Ref. |
---|---|---|---|---|---|---|
Acetic acid/NaClO2 | Toluene | 14.25 | 94 | 32.8 | 100 | [2] |
Polystyrene | Hexane | - | >98 | - | 36 | [25] |
PDMS | Trichloromethane | 20 | 99.5 | 2.25 × 104 | 10 | [135] |
TEOS/PDMS | Dichloromethane | - | 98.5 | 1.3 × 103 | 3 | [104] |
NaClO2 | Dichloromethane | 37 | 88.6 | - | 10 | [138] |
STA/PF/Cu2O | Dichloromethane | 3.2 | 94 | - | 30 | [55] |
POTS/SiO2 | Emulsions | - | >99 | 710 | 10 | [71] |
PDMS/TiO2 | Silicone oil | 2.7 | 93.4 | 6111 | 20 | [162] |
ZnO/octadecanoic acid | Engine oil | 20.81 | >98 | - | 10 | [102] |
APTES/SiO2 | Chloroform | - | 97.5 | - | - | [179] |
PDVB | Toluene emulsions | - | 99.98 | 8829.4 | 20 | [128] |
MTMS | Olive oil | 23.1 | - | - | 10 | [188] |
Cu(OH)2 | Emulsions | - | >98 | 11 | 6 | [123] |
PSP | Emulsions | - | >99 | 4392 | 12 | [204] |
Na3(Cu2(CO3)3OH)∙4H2O | Dichloromethane | 5 | 90 | - | 11 | [205] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Wang, M.; He, Z. Superhydrophobic Wood Surfaces: Recent Developments and Future Perspectives. Coatings 2023, 13, 877. https://doi.org/10.3390/coatings13050877
Gao X, Wang M, He Z. Superhydrophobic Wood Surfaces: Recent Developments and Future Perspectives. Coatings. 2023; 13(5):877. https://doi.org/10.3390/coatings13050877
Chicago/Turabian StyleGao, Xianming, Mingkun Wang, and Zhiwei He. 2023. "Superhydrophobic Wood Surfaces: Recent Developments and Future Perspectives" Coatings 13, no. 5: 877. https://doi.org/10.3390/coatings13050877
APA StyleGao, X., Wang, M., & He, Z. (2023). Superhydrophobic Wood Surfaces: Recent Developments and Future Perspectives. Coatings, 13(5), 877. https://doi.org/10.3390/coatings13050877