Achieving Ultralow-Density, High-Purity Au Foam Hohlraum with Hierarchical Porous Structure
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of Au Foam Hohlraum
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wittstock, A.; Zielasek, V.; Biener, J.; Friend, C.M.; Baumer, M. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 2010, 327, 319–322. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Kim, Y.-J.; Erlebacher, J. Nanoporous gold leaf: “Ancient technology”. Adv. Mater. 2004, 16, 1897–1900. [Google Scholar] [CrossRef]
- Nyce, G.W.; Hayes, J.R.; Hamza, A.V.; Satcher, J.H., Jr. Synthesis and characterization of hierarchical porous gold materials. Chem. Mater. 2007, 19, 344–346. [Google Scholar] [CrossRef]
- Sun, F.; Yu, J.C. Photochemical preparation of two-dimensional gold spherical pore and hollow sphere arrays on a solution surface. Angew. Chem. Int. Ed. 2007, 46, 773–777. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Ma, R.; Li, Z.; Guo, S.; Luo, J.; Yang, M.; Liu, Q.; Thomas, T.; Wang, J. Hierarchical N-doped porous carbons for Zn-Air batteries and supercapacitors. Nano-Micro Lett. 2020, 12, 20. [Google Scholar] [CrossRef]
- Wang, J.; He, Z.; Tan, X.; Wang, T.; Liu, L.; He, X.; Liu, X.D.; Zhang, L.; Du, K. High-performance 2.6 V aqueous symmetric supercapacitor based on porous boron doped diamond via regrowth of diamond nanoparticles. Carbon 2020, 160, 71–79. [Google Scholar] [CrossRef]
- Huang, J.; He, Z.; He, X.; Liu, Y.; Wang, T.; Chen, G.; Tang, C.; Jia, R.; Liu, L.; Zhang, L.; et al. Island-like nanoporous gold: Smaller island generates stronger surface-enhanced Raman scattering. ACS Appl. Mater. Interfaces 2017, 9, 28902–28910. [Google Scholar] [CrossRef]
- Tappan, B.C.; Steiner, S.A., III; Luther, E.P. Nanoporous metal foams. Angew. Chem. Int. Ed. 2010, 49, 4544–4565. [Google Scholar] [CrossRef]
- Liu, Z.; Searson, P.C. Single nanoporous gold nanowire sensors. J. Phys. Chem. B 2006, 110, 4318–4322. [Google Scholar] [CrossRef]
- Chandra, D.; Jena, B.K.; Raj, C.R.; Bhaumik, A. Functionalized mesoporous cross-linked polymer as efficient host for loading gold nanoparticles and its electrocatalytic behavior for reduction of H2O2. Chem. Mater. 2007, 19, 6290–6296. [Google Scholar] [CrossRef]
- Sondhi, P.; Stine, K.J. Methods to generate structurally hierarchical architectures in nanoporous coinage metals. Coatings 2021, 11, 1440. [Google Scholar] [CrossRef]
- Raj, D.; Scaglione, F.; Fiore, G.; Rizzi, P. Cost-effective nanoporous gold obtained by dealloying metastable precursor, Au33Fe67, reveals excellent methanol electro-oxidation performance. Coatings 2022, 12, 831. [Google Scholar] [CrossRef]
- Yadav, R.; Amoli, V.; Singh, J.; Tripathi, M.K.; Bhanja, P.; Bhaumik, A.; Sinha, A.K. Plasmonic gold deposited on mesoporous TixSi1-xO2 with isolated silica in lattice: An excellent photocatalyst for photocatalytic conversion of CO2 into methanol under visible light irradiation. J. CO2 Util. 2018, 27, 11–21. [Google Scholar] [CrossRef]
- Sasidharan, M.; Anandhakumar, S.; Bhanja, P.; Bhaumik, A. Highly efficient Au hollow nanosphere catalyzed chemo-selective oxidation of alcohols. J. Mol. Catal. A Chem. 2016, 411, 87–94. [Google Scholar] [CrossRef]
- Shangguan, Q.; Chen, Z.; Yang, H.; Cheng, S.; Yang, W.; Yi, Z.; Wu, X.; Wang, S.; Yi, Y.; Wu, P. Design of ultra-narrow band Graphene refractive index sensor. Sensors 2022, 22, 6483. [Google Scholar] [CrossRef] [PubMed]
- Craxton, R.S.; Aanderson, K.S.; Boehly, T.R.; Goncharov, V.N.; Harding, D.R.; Knauer, J.P.; McCrory, R.L.; McKenty, P.W.; Meyerhofer, D.D.; Myatt, J.F.; et al. Direct-drive inertial confinement fusion: A review. Phys. Plasmas 2015, 22, 110501. [Google Scholar] [CrossRef]
- Doppner, T.; Callahan, D.A.; Hurricane, O.A.; Hinkel, D.E.; Ma, T.; Park, H.-S.; Hopkins, L.F.B.; Casey, D.T.; Celliers, P.; Dewald, E.L.; et al. Demonstration of high performance in layered Deuterium-Tritium capsule implosions in uranium hohlraums at the National Ignition Facility. Phys. Rev. Lett. 2015, 115, 055001. [Google Scholar] [CrossRef]
- Chakera, J.A.; Arora, V.; Sailaja, S.; Kumbhare, S.R.; Naik, P.A.; Gupta, P.D.; Godwal, B.K. Dependence of soft X-ray conversion on atomic composition in laser produced plasma of gold–copper mix-Z targets. Appl. Phys. Lett. 2003, 83, 27–29. [Google Scholar] [CrossRef]
- Rosen, M.D.; Hammer, J.H. Analytic expressions for optimal inertial-confinement-fusion hohlraum wall density and wall loss. Phys. Rev. E 2005, 72, 056403. [Google Scholar] [CrossRef]
- Young, P.E.; Rosen, M.D.; Hammer, J.H.; Hsing, W.S.; Glendinning, S.G.; Turner, R.E.; Kirkwood, R.; Schein, J.; Sorce, C.; Satcher, J.H.; et al. Demonstration of the density dependence of X-ray flux in a laser-driven hohlraum. Phys. Rev. Lett. 2008, 101, 035001. [Google Scholar] [CrossRef]
- Schein, J.; Jones, O.; Rosen, M.; Dewald, E.; Glenzer, S.; Gunther, J.; Hammel, B.; Landen, O.; Suter, L.; Wallace, R. Demonstration of enhanced radiation drive in hohlraums made from a mixture of high-Z wall materials. Phys. Rev. Lett. 2007, 98, 175003. [Google Scholar] [CrossRef]
- Ye, Z.; Wu, P.; Wang, H.; Jiang, S.; Huang, M.; Lei, D.; Wu, F. Multimode tunable terahertz absorber based on a quarter graphene disk structure. Results Phys. 2023, 48, 106420. [Google Scholar] [CrossRef]
- Wilkens, H.L.; Nikroo, A.; Wall, D.R.; Wall, J.R. Developing depleted uranium and gold cocktail hohlraums for the National Ignition Facility. Phys. Plasmas 2007, 14, 056310. [Google Scholar] [CrossRef]
- Li, W.; Ma, J.; Zhang, H.; Cheng, S.; Yang, W.; Yi, Z.; Yang, H.; Zhang, J.; Wu, X.; Wu, P. Tunable broadband absorber based on a layered resonant structure with a Dirac semimetal. Phys. Chem. Chem. Phys. 2023, 25, 8489–8496. [Google Scholar] [CrossRef]
- Ron, R.; Haleva, E.; Salomon, A. Nanoporous metallic networks: Fabrication, optical properties, and applications. Adv. Mater. 2018, 30, 1706755. [Google Scholar] [CrossRef] [PubMed]
- Biener, J.; Nyce, G.W.; Hodge, A.M.; Biener, M.M.; Hamza, A.V.; Maier, S.A. Nanoporous plasmonic metamaterials. Adv. Mater. 2008, 20, 1211–1217. [Google Scholar] [CrossRef]
- Zhang, J.; Li, C.M. Nanoporous metals: Fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems. Chem. Soc. Rev. 2012, 41, 7016–7031. [Google Scholar] [CrossRef]
- Zhang, K.; Tan, X.; Wu, W.; Tang, Y. Template synthesis of low-density gold foams: Density, microstructure and compressive strength. Mater. Res. Bull. 2013, 48, 3499–3504. [Google Scholar] [CrossRef]
- Erlebacher, J.; Aziz, M.J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001, 410, 450–453. [Google Scholar] [CrossRef]
- McCue, I.; Benn, E.; Gaskey, B.; Erlebacher, J. Dealloying and dealloyed materials. Annu. Rev. Mater. Res. 2016, 46, 263–286. [Google Scholar] [CrossRef]
- Zhang, K.; Tan, X.; Zhang, J.; Wu, W.; Tang, Y. Template-dealloying synthesis of ultralow density Au foams with bimodal porous structure. RSC Adv. 2014, 4, 7196–7201. [Google Scholar] [CrossRef]
- Gittins, D.I.; Caruso, F. Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media. Angew. Chem. Int. Ed. 2010, 40, 3001–3004. [Google Scholar] [CrossRef]
- Coaty, C.; Zhou, H.; Liu, H.; Liu, P. A scalable synthesis pathway to nanoporous metal structures. ACS Nano 2018, 12, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Niu, G.; Li, K.; Luo, J.; Wu, W.; Tang, Y. Preparation of monolithic foamed gold by a template deposit-dealloying method. Rare Met. Mater. Eng. 2013, 42, 162–165. [Google Scholar]
- Tan, X.; Niu, G.; Li, K.; Luo, J.; Han, S.; Ma, Y.; Li, J.; Tang, Y. Preparation of monolithic foamed Au/Ag alloy with hollow microspheres. High Power Laser Part. Beams 2012, 24, 353–356. [Google Scholar]
- Dong, Y.; Shang, W.; Yang, J.; Zhang, L.; Zhang, W.; Li, Z.; Guo, L.; Zhan, X.; Du, H.; Deng, B.; et al. The impact of low-Z impurities on X-ray conversion efficiency from laser-produced plasmas of low-density gold foam targets. Phys. Plasmas 2013, 20, 123305. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, Y.; Lin, Z.; Li, H.; Jing, L.; Yuan, Z.; Yang, Z.; Tan, X.; Kuang, L.; Zhang, W.; et al. Demonstration of enhancement of X-ray flux with foam gold compared to solid gold. Nucl. Fusion 2016, 56, 036006. [Google Scholar] [CrossRef]
- Shang, W.; Zhang, W.; Dong, Y.; Huang, C.; Zhu, T.; Song, T.; Yang, J. Experimental study of X-ray emission properties of laser produced plasmas with Au and Au foam layer targets. J. Alloys Compd. 2013, 578, 1–4. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, Y.; Jiang, S.; Yang, J.; Li, H.; Kuang, L.; Lin, Z.; Jing, L.; Li, L.; Deng, B.; et al. Reducing wall plasma expansion with gold foam irradiated by laser. Phys. Plasmas 2015, 22, 110703. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, Y.; Jing, L.; Lin, Z.; Tan, X.; Kuang, L.; Li, H.; Shang, W.; Zhang, W.; Li, Z.; et al. Experimental study on improving hohlraum wall reemission ratio by low density gold foam. Acta Phys. Sin.-CH ED 2016, 65, 015202. [Google Scholar] [CrossRef]
Test Method | Si | C | O | Ag | Au |
---|---|---|---|---|---|
EDS | ― | √ | √ | ― | √ |
ICP-MS | <50 ppm | ― | ― | <50 ppm | ― |
Carbon Analyzer | ― | 0.25 wt% | 0.38 wt% | ― | ― |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, X.; Wang, J.; Luo, J.; Niu, G.; Wang, C. Achieving Ultralow-Density, High-Purity Au Foam Hohlraum with Hierarchical Porous Structure. Coatings 2023, 13, 888. https://doi.org/10.3390/coatings13050888
Tan X, Wang J, Luo J, Niu G, Wang C. Achieving Ultralow-Density, High-Purity Au Foam Hohlraum with Hierarchical Porous Structure. Coatings. 2023; 13(5):888. https://doi.org/10.3390/coatings13050888
Chicago/Turabian StyleTan, Xiulan, Jian Wang, Jiangshan Luo, Gao Niu, and Chaoyang Wang. 2023. "Achieving Ultralow-Density, High-Purity Au Foam Hohlraum with Hierarchical Porous Structure" Coatings 13, no. 5: 888. https://doi.org/10.3390/coatings13050888
APA StyleTan, X., Wang, J., Luo, J., Niu, G., & Wang, C. (2023). Achieving Ultralow-Density, High-Purity Au Foam Hohlraum with Hierarchical Porous Structure. Coatings, 13(5), 888. https://doi.org/10.3390/coatings13050888