Application of Dry Friction Contact in Vibration Reduction in Engineering—A Short Review
Author Contributions
Funding
Conflicts of Interest
References
- Den Hartog, J.P. Forced Vibration with Combined Coulomb and Viscous Friction. J. Appl. Mech. 1931, 53, 107–115. [Google Scholar] [CrossRef]
- Oden, J.T.; Pires, E.B. Nonlocal and Nonlinear Friction Laws and Variational Principles for Contact Problems in Elasticity. J. Appl. Mech. 1983, 50, 67–76. [Google Scholar] [CrossRef]
- He, B.; Ouyang, H.; He, S.; Ren, X.; Mei, Y. Dynamic Analysis of Integrally Shrouded Group Blades with Rubbing and Impact. Nonlinear Dyn. 2018, 92, 2159–2175. [Google Scholar] [CrossRef]
- Goodman, L.E.; Klummp, J.H. Analysis of Slip Damping with Reference to Turbine Blade Vibration. J. Appl. Mech. 1956, 23, 421–429. [Google Scholar] [CrossRef]
- Srinivasan, A.X.; Cassenti, B.N. A Nonlinear Theory of Dynamic Systems with Dry Friction Forces. J. Eng. Gas Turbines Power 1986, 108, 525–530. [Google Scholar] [CrossRef]
- Mindlin, R.D. Compliance of Elastic Bodies in Contact. J. Appl. Mech. 1949, 53, 107–115. [Google Scholar] [CrossRef]
- Iwan, W.D. On a Class of Models for the Yielding Behavior of Continuous and Composite Systems. J. Appl. Mech. 1967, 89, 612–617. [Google Scholar] [CrossRef]
- Menq, C.H.; Bielak, J.; Grifin, J.H. The Influence of Microslip on Vibratory Response, Part I: A New Microslip Model. J. Sound Vib. 1986, 107, 279–293. [Google Scholar] [CrossRef]
- Csaba, G. Forced Response Analysis in Time and Frequency Domains of a Tuned Bladed Disk with Friction Dampers. J. Sound Vib. 1998, 214, 395–412. [Google Scholar] [CrossRef]
- Petrov, E.P.; Ewins, D.J. Generic Friction Models for Time-Domain Vibration Analysis of Bladed Discs. In Proceedings of the ASME Turbo Expo 2003, Collocated with the 2003 International Joint Power Generation Conference, Atlanta, GA, USA, 16–19 June 2003. [Google Scholar]
- Liu, Y.; Shangguan, B.; Xu, Z. A Friction Contact Stiffness Model of Fractal Geometry in Forced Response Analysis of a Shrouded Blade. Nonlinear Dyn. 2012, 70, 2247–2257. [Google Scholar] [CrossRef]
- Griffin, J.H. Friction Damping of Resonant Stresses in Gas Turbine Engineering Airfoils. J. Eng. Power 1980, 102, 329–333. [Google Scholar] [CrossRef]
- Santhosh, B.; Narayanan, S.; Padmanabhan, C. Nonlinear Dynamics of Shrouded Turbine Blade System with Impact and Friction. Appl. Mech. Mater. 2015, 706, 81–92. [Google Scholar] [CrossRef]
- Cigeroglu, E.; Ozguven, H.N. Nonlinear Vibration Analysis of Bladed Disks with Dry Friction Dampers. J. Sound Vib. 2006, 295, 1028–1043. [Google Scholar] [CrossRef]
- Kumar, M.; Sarkar, A. Nonlinear Normal Modes of a Three Degrees-of-Freedom Cyclically Symmetric Piecewise Linear System. Nonlinear Dyn. 2022, 17, 101001. [Google Scholar] [CrossRef]
- Choi, S.T.; Chou, Y.T. Vibration analysis of elastically supported turbomachinery blades by the modified differential quadrature method. J. Sound Vib. 2001, 240, 937–953. [Google Scholar] [CrossRef]
- Schwingshackl, C.W.; Petrov, E.P.; Ewins, D.J. Effects of Contact Interface Parameters on Vibration of Turbine Bladed Disks with Underplatform Dampers. J. Eng. Gas Turbines Power 2012, 134, 032507. [Google Scholar] [CrossRef]
- Ma, H.; Xie, F.; Nai, H. Vibration characteristics analysis of rotating shrouded blades with impacts. J. Sound Vib. 2016, 378, 92–108. [Google Scholar] [CrossRef]
- Pesek, L.; Snabl, P.; Bula, V. Dry Friction Interblade Damping by 3D FEM Modelling of Bladed Disk: HPC Calculations Compared with Experiment. Shock Vib. 2021, 2021, 5554379. [Google Scholar]
- Alain, T.; Jean, J.B.; Marc, B. Dynamic Study of a Structure with Flexion-Torsion Coupling in the Presence of Dry Friction. Nonlinear Dyn. 1999, 18, 321–337. [Google Scholar]
- Wang, J.H.; Shieh, W.L. The Influence of a Variable Friction Coefficient on the Dynamic Behavior of a Blade with A Friction Damper. J. Sound Vib. 1991, 149, 137–145. [Google Scholar] [CrossRef]
- Li, C.; Li, T.; Qiao, R.; Wen, B. Study on the Damping Mechanism of the Shrouded Blade considering Contact Features. Shock Vib. 2019, 2019, 6594345. [Google Scholar] [CrossRef]
- Luo, Y.; Jiang, X.; Wang, Y. Modeling of Microslip Friction and Its Application in the Analysis of Underplatform Damper. Int. J. Aeronaut. 2018, 19, 388–398. [Google Scholar]
- Donmez, A.; Cigeroglu, E.; Ozgen, G.O. An Improved Quasi-Zero Stiffness Vibration Isolation System Utilizing Dry Friction Damping. Nonlinear Dyn. 2020, 101, 107–121. [Google Scholar] [CrossRef]
- Lau, S.L.; Cheung, Y.K. Amplitude incremental variational principle for nonlinear vibration of elastic systems. J. Appl. Mech. 1981, 48, 959–964. [Google Scholar] [CrossRef]
- Ren, Y.; Beards, C.F. A New Receptance-Based Perturbative Multi-Harmonic Balance Method for the Calculation of the Steady State Response of Non-Linear Systems. J. Sound Vib. 1994, 172, 593–604. [Google Scholar] [CrossRef]
- Hall, K.C.; Thomas, J.P.; Clark, W.S. Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique. AIAA J. 2002, 40, 879–886. [Google Scholar] [CrossRef]
- Laxalde, D.; Thouverez, F.; Sinou, J.J.; Lombard, J.P. Qualitative Analysis of Forced Response of Blisks with Friction Ring Dampers. Eur. J. Mech. A-Solid. 2007, 26, 676–687. [Google Scholar] [CrossRef]
- Quaegebeur, S.; Chouvion, B.; Thouverez, F. Nonlinear Dynamic Analysis of Three-dimensional Bladed-disks with Frictional Contact Interfaces Based on Cyclic Reduction Strategies. Int. J. Solids Struct. 2022, 236–237, 111277. [Google Scholar] [CrossRef]
- Herzog, A.; Krack, M.; Scheidt, L.P.-V.; Wallaschek, J. Comparison of Two Widely-Used Frequency-Time Domain Contact Models for the Vibration Simulation of Shrouded Turbine Blades. Am. Soc. Mech. Eng. 2014, 45776, V07BT33A018. [Google Scholar]
- Siewert, C.; Panning, L.; Wallaschek, J.; Richter, C. Multiharmonic Forced Response Analysis of a Turbine Blading Coupled by Nonlinear Contact Forces. J. Eng. Gas Turbines Power 2010, 132, 082501. [Google Scholar] [CrossRef]
- Al Sayed, B.; Chatelet, E.; Baguet, S.; Jacquet-Richardet, G. Dissipated Energy and Boundary Condition Effects Associated to Dry Friction on the Dynamics of Vibrating Structures. Mech. Mach. Theory. 2011, 46, 479–491. [Google Scholar] [CrossRef]
- He, S.; Jia, W.; Yang, Z.; He, B.; Zhao, J. Dynamics of a Turbine Blade with an Under-Platform Damper Considering the Bladed Disc’s Rotation. Appl. Sci. 2019, 9, 4181. [Google Scholar] [CrossRef]
- Li, D.; Botto, D.; Xu, C.; Liu, T.; Gola, M. A Micro-slip Friction Modeling Approach and Its Application in Underplatform Damper Kinematics. Int. J. Mech. Sci. 2019, 161–162, 105029. [Google Scholar] [CrossRef]
- Li, C.; Shen, Z.; Chen, Z.; She, H. A Study on The Vibration Dissipation Mechanism of The Rotating Blade with Dovetail Joint. J. Low Freq. Noise Vib. Act. Control 2021, 40, 1271–1292. [Google Scholar] [CrossRef]
- Hu, S.; She, H.; Yang, G.; Zang, C.; Li, C. The Influence of Interface Roughness on the Vibration Reduction Characteristics of an Under-Platform Damper. Appl. Sci. 2023, 13, 2128. [Google Scholar] [CrossRef]
- Xie, F.; Ma, H.; Cui, C.; Wen, B. Vibration Response Comparison of Twisted Shrouded Blades Using Different Impact Models. J. Sound Vib. 2017, 397, 171–191. [Google Scholar] [CrossRef]
- Nan, G.; Lou, J.; Song, C.; Tang, M. A New Approach for Solving Rub-Impact Dynamic Characteristics of Shrouded Blades Based on Macroslip Friction Model. Shock Vib. 2020, 2020, 8147143. [Google Scholar] [CrossRef]
- Guo, X.; Ni, K.; Ma, H.; Zeng, J.; Wang, Z.; Wen, B. Dynamic Response Analysis of Shrouded Blades Under Impact-Friction Considering the Influence of Passive Blade vibration. J. Sound Vib. 2021, 503, 116112. [Google Scholar] [CrossRef]
- Chu, S.; Cao, D.; Sun, S. Impact Vibration Characteristics of a Shrouded Blade with Asymmetric Gaps under Wake Flow Excitations. Nonlinear Dyn. 2013, 72, 539–554. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, S.; Zhang, W.; Li, Z. Application of Dry Friction Contact in Vibration Reduction in Engineering—A Short Review. Coatings 2023, 13, 910. https://doi.org/10.3390/coatings13050910
He S, Zhang W, Li Z. Application of Dry Friction Contact in Vibration Reduction in Engineering—A Short Review. Coatings. 2023; 13(5):910. https://doi.org/10.3390/coatings13050910
Chicago/Turabian StyleHe, Shangwen, Wenya Zhang, and Zilin Li. 2023. "Application of Dry Friction Contact in Vibration Reduction in Engineering—A Short Review" Coatings 13, no. 5: 910. https://doi.org/10.3390/coatings13050910
APA StyleHe, S., Zhang, W., & Li, Z. (2023). Application of Dry Friction Contact in Vibration Reduction in Engineering—A Short Review. Coatings, 13(5), 910. https://doi.org/10.3390/coatings13050910