In-Situ Piezoelectric Effect for Augmenting Performance of Self-Powered ZnO-Based Photodetector
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of ZnO Nanoparticles (ZnO NPs)
2.3. Preparation of ZnO NPs@PVDF Nanocomposite
2.4. Fabrication of the Photodetector
2.5. Analysis and Measurement
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kang, C.H.; Dursun, I.; Liu, G.; Sinatra, L.; Sun, X.; Kong, M.; Pan, J.; Maity, P.; Ooi, E.-N.; Ng, T.K. High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication. Light Sci. Appl. 2019, 8, 1–12. [Google Scholar]
- Ye, Q.; Zhang, X.; Yao, R.; Luo, D.; Liu, X.; Zou, W.; Guo, C.; Xu, Z.; Ning, H.; Peng, J. Research and progress of transparent, flexible tin oxide ultraviolet photodetector. Crystals 2021, 11, 1479. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, W.; Lin, R.; Huang, F. High-sensitive and fast response to 255 nm deep-UV light of CH3NH3PbX3 (X = Cl, Br, I) bulk crystals. Royal Soc. Open Sci. 2018, 5, 180905. [Google Scholar] [CrossRef] [PubMed]
- Sheng, X.; Yu, C.; Malyarchuk, V.; Lee, Y.H.; Kim, S.; Kim, T.; Shen, L.; Horng, C.; Lutz, J.; Giebink, N.C. Silicon-Based Visible-Blind Ultraviolet Detection and Imaging Using Down-Shifting Luminophores. Adv. Opt. Mater. 2014, 2, 314–319. [Google Scholar] [CrossRef]
- Nguyen, T.M.H.; Lee, S.K.; Kim, S.; Bark, C.W. Practical Demonstration of Deep-Ultraviolet Detection with Wearable and Self-Powered Halide Perovskite-Based Photodetector. ACS Appl. Mater. Interfaces 2021, 13, 57609–57618. [Google Scholar] [CrossRef]
- Sang, L.; Liao, M.; Sumiya, M. A comprehensive review of semiconductor ultraviolet photodetectors: From thin film to one-dimensional nanostructures. Sensors 2013, 13, 10482–10518. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, W. High performance self-powered CuZnS/GaN UV photodetectors with ultrahigh on/off ratio (3× 108). J. Mater. Chem. C 2021, 9, 4799–4807. [Google Scholar] [CrossRef]
- Nguyen, T.M.H.; Shin, S.G.; Choi, H.W.; Bark, C.W. Recent advances in self-powered and flexible UVC photodetectors. Exploration 2022, 2, 20210078. [Google Scholar] [CrossRef]
- Khokhra, R.; Bharti, B.; Lee, H.-N.; Kumar, R. Visible and UV photo-detection in ZnO nanostructured thin films via simple tuning of solution method. Sci. Rep. 2017, 7, 1–14. [Google Scholar]
- Kamarulzaman, N.; Kasim, M.F.; Rusdi, R. Band gap narrowing and widening of ZnO nanostructures and doped materials. Nanoscale Res. Lett. 2015, 10, 1–12. [Google Scholar] [CrossRef]
- Zhang, H.; Jia, Z. Application of porous silicon microcavity to enhance photoluminescence of ZnO/PS nanocomposites in UV light emission. Optik 2017, 130, 1183–1190. [Google Scholar] [CrossRef]
- Wang, H.-C.; Hong, Y.; Chen, Z.; Lao, C.; Lu, Y.; Yang, Z.; Zhu, Y.; Liu, X. ZnO UV photodetectors modified by Ag nanoparticles using all-inkjet-printing. Nanoscale Res. Lett. 2020, 15, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.; Roy, N.; Mandal, T.K. Growth of carbon dot-decorated ZnO nanorods on a graphite-coated paper substrate to fabricate a flexible and self-powered schottky diode for UV detection. ACS Appl. Mater. Interfaces 2020, 12, 33428–33438. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.S.; Sajad, B. Self-powered Vs. high speed ZnO-based photodetectors. Mater. Res. Bull. 2022, 155, 111950. [Google Scholar] [CrossRef]
- Liu, Y.; Song, Z.; Hu, M.; Chen, J.; Yuan, S.; Xu, L. Self-powered adjustable UV and NIR photodetectors based on one-step synthesized TeO2 doped ZnO composite nanorods/Si heterojunction. Sens. Actuator A Phys. 2021, 331, 113009. [Google Scholar] [CrossRef]
- Shen, T.L.; Chu, Y.W.; Liao, Y.K.; Lee, W.Y.; Kuo, H.C.; Lin, T.Y.; Chen, Y.F. Ultrahigh-performance self-powered flexible photodetector driven from photogating, piezo-phototronic, and ferroelectric effects. Adv. Opt. Mater. 2020, 8, 1901334. [Google Scholar] [CrossRef]
- Peng, Y.; Lu, J.; Wang, X.; Ma, W.; Que, M.; Chen, Q.; Li, F.; Liu, X.; Gao, W.; Pan, C. Self-powered high-performance flexible GaN/ZnO heterostructure UV photodetectors with piezo-phototronic effect enhanced photoresponse. Nano Energy 2022, 94, 106945. [Google Scholar] [CrossRef]
- Mahadeva, S.K.; Berring, J.; Walus, K.; Stoeber, B. Effect of poling time and grid voltage on phase transition and piezoelectricity of poly (vinyledene fluoride) thin films using corona poling. J. Phys. D Appl. Phys. 2013, 46, 285305. [Google Scholar] [CrossRef]
- Jin, Z.; Lei, D.; Wang, Y.; Wu, L.; Hu, N. Influences of poling temperature and elongation ratio on PVDF-HFP piezoelectric films. Nanotechnol. Rev. 2021, 10, 1009–1017. [Google Scholar] [CrossRef]
- Gregorio, R., Jr.; de Souza Nociti, N.C.P. Effect of PMMA addition on the solution crystallization of the alpha and beta phases of poly (vinylidene fluoride) (PVDF). J. Phys. D Appl. Phys. 1995, 28, 432. [Google Scholar] [CrossRef]
- Cai, X.; Lei, T.; Sun, D.; Lin, L. A critical analysis of the α, β and γ phases in poly (vinylidene fluoride) using FTIR. RSC Adv. 2017, 7, 15382–15389. [Google Scholar] [CrossRef]
- Mohammadi, B.; Yousefi, A.A.; Bellah, S.M. Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films. Polym. Test. 2007, 26, 42–50. [Google Scholar] [CrossRef]
- Devi, P.G.; Velu, A.S. Synthesis, structural and optical properties of pure ZnO and Co doped ZnO nanoparticles prepared by the co-precipitation method. J. Theor. Appl. Phys. 2016, 10, 233–240. [Google Scholar] [CrossRef]
- Lee, W.; Yeop, J.; Heo, J.; Yoon, Y.J.; Park, S.Y.; Jeong, J.; Shin, Y.S.; Kim, J.W.; An, N.G.; Kim, D.S. High colloidal stability ZnO nanoparticles independent on solvent polarity and their application in polymer solar cells. Sci. Rep. 2020, 10, 1–10. [Google Scholar]
- Sahai, A.; Goswami, N. Structural and optical investigations of oxygen defects in zinc oxide nanoparticles. N. AIP Conf. Proc. 2015, 1665, 050023. [Google Scholar]
- Zhou, Y.; Fuentes-Hernandez, C.; Shim, J.; Meyer, J.; Giordano, A.J.; Li, H.; Winget, P.; Papadopoulos, T.; Cheun, H.; Kim, J. A universal method to produce low–work function electrodes for organic electronics. Science 2012, 336, 327–332. [Google Scholar] [CrossRef]
- Tran, M.H.; Park, T.; Hur, J. Solution-processed ZnO: Graphene quantum dot/Poly-TPD heterojunction for high-performance UV photodetectors. Appl. Surf. Sci. 2021, 539, 148222. [Google Scholar] [CrossRef]
- Hwang, J.; Kim, E.-G.; Liu, J.; Bredas, J.-L.; Duggal, A.; Kahn, A. Photoelectron spectroscopic study of the electronic band structure of polyfluorene and fluorene-arylamine copolymers at interfaces. J. Phys. Chem. C 2007, 111, 1378–1384. [Google Scholar] [CrossRef]
- Zhang, W.; Bi, X.; Zhao, X.; Zhao, Z.; Zhu, J.; Dai, S.; Lu, Y.; Yang, S. Isopropanol-treated PEDOT: PSS as electron transport layer in polymer solar cells. Org. Electron. 2014, 15, 3445–3451. [Google Scholar] [CrossRef]
- Zeng, L.H.; Chen, Q.M.; Zhang, Z.X.; Wu, D.; Yuan, H.; Li, Y.Y.; Qarony, W.; Lau, S.P.; Luo, L.B.; Tsang, Y.H. Multilayered PdSe2/perovskite Schottky junction for fast, self-powered, polarization-sensitive, broadband photodetectors, and image sensor application. Adv. Sci. 2019, 6, 1901134. [Google Scholar] [CrossRef]
- Fang, H.; Hu, W. Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wang, F.; Zhang, P.; Wang, Y.; Chen, H.; Li, J.; Wu, J.; Chen, L.; Chen, Z.D.; Li, S. Low-temperature processed inorganic perovskites for flexible detectors with a broadband photoresponse. Nanoscale 2019, 11, 2871–2877. [Google Scholar] [CrossRef]
- Chen, H.; Yu, P.; Zhang, Z.; Teng, F.; Zheng, L.; Hu, K.; Fang, X. Ultrasensitive self-powered solar-blind deep-ultraviolet photodetector based on all-solid-state polyaniline/MgZnO bilayer. Small 2016, 12, 5809–5816. [Google Scholar] [CrossRef]
- Sun, Z.; Chang, H. Graphene and graphene-like two-dimensional materials in photodetection: Mechanisms and methodology. ACS Nano 2014, 8, 4133–4156. [Google Scholar]
- Mukhokosi, E.P.; Manohar, G.V.; Nagao, T.; Krupanidhi, S.B.; Nanda, K.K. Device architecture for visible and near-infrared photodetectors based on two-dimensional SnSe2 and MoS2: A review. Micromachines 2020, 11, 750. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, X.; Chen, J.; Li, S.; Yang, W.; Fang, X. Self-polarized BaTiO3 for greatly enhanced performance of ZnO UV photodetector by regulating the distribution of electron concentration. Adv. Funct. Mater. 2020, 30, 1907650. [Google Scholar] [CrossRef]
- Zhang, L.; Wan, P.; Xu, T.; Kan, C.; Jiang, M. Flexible ultraviolet photodetector based on single ZnO microwire/polyaniline heterojunctions. Opt. Express 2021, 29, 19202–19213. [Google Scholar] [CrossRef] [PubMed]
- Veerla, R.S.; Sahatiya, P.; Badhulika, S. Fabrication of a flexible UV photodetector and disposable photoresponsive uric acid sensor by direct writing of ZnO pencil on paper. J. Mater. Chem. C 2017, 5, 10231–10240. [Google Scholar] [CrossRef]
- Rasool, A.; Kumar, S.; Mamat, M.; Gopalakrishnan, C.; Amiruddin, R. Analysis on different detection mechanisms involved in ZnO-based photodetector and photodiodes. J. Mater. Sci. Mater. Electron. 2020, 31, 7100–7113. [Google Scholar] [CrossRef]
- Hanna, B.; Pillai, L.R.; Rajeev, K.; Surendran, K.; Unni, K. Visible-blind UV photodetectors using a polymer/ZnO nanocomposite thin film. Sens. Actuator A Phys. 2022, 338, 113495. [Google Scholar] [CrossRef]
- Lee, D.J.; Ryu, S.R.; Kumar, G.M.; Cho, H.D.; Kim, D.Y.; Ilanchezhiyan, P. Piezo-phototronic effect triggered flexible UV photodetectors based on ZnO nanosheets/GaN nanorods arrays. Appl. Surf. Sci. 2021, 558, 149896. [Google Scholar] [CrossRef]
- Veeralingam, S.; Yadav, P.; Badhulika, S. An Fe-doped ZnO/BiVO4 heterostructure-based large area, flexible, high-performance broadband photodetector with an ultrahigh quantum yield. Nanoscale 2020, 12, 9152–9161. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.; Jin, L.; Wu, Y.; Ji, X. High-performance, self-powered UV photodetector based on Au nanoparticles decorated ZnO/CuI heterostructure. J. Alloys Compd. 2021, 859, 158383. [Google Scholar] [CrossRef]
Photodetector | Device Structure | Structure/ Role of ZnO (Thickness) | Device Fabrication Technique | Bias (V) | D (Jones) | Rise/Fall Time | On/Off Ratio | Ref. |
---|---|---|---|---|---|---|---|---|
ITO/ZnO@PVDF/TFB/PEDOT:PSS | P–N | nanoparticles/ n-type layer (~30 nm) | spin-coating | 0 | 1.676 × 1011 | 45/46 ms | 3.58 × 103 | This work |
ITO/ZnO@PVDF/TFB/PEDOT:PSS (−10 V poled) | 0 | 4.994 × 1011 | 46/53 ms | 2.75 × 104 | This work | |||
In/BaTiO3-ZnO bilayer/In | M–S–M | nanoparticles/ active layer (78 nm) | spin-coating | 3 | 2.7 × 1011 | 0.11/5.8 ms | 1.43 × 104 | [36] |
In/ZnO MW@polyaniline/In | M–S–M | microwire/ active layer | CVD | −1 | 2 × 1011 | 0.44/0.42 s | [37] | |
Graphene/ZnO | Metal–Semiconductor | nanoparticles/ active layer | direct writing | 1 | 1.2 × 107 | 8.76/18.13 s | 1.729 × 103 | [38] |
Graphite/ZnO@carbon dots | Metal–Semiconductor | nanorods/ active layer | dip-coating | 0 | 4.27 × 108 | 2/32 s | 1.1 | [13] |
ITO/ZnO:GQD/Poly-TPD/Ag | P–N | nanoparticles/ n-type layer (100 nm) | spin-coating | −3 | 2.1 × 1011 | 0.37/0.78 s | 12 | [27] |
ITO/ZnO/PEDOT:PSS/Ag | P–N | textured grains/ n-type layer | spray pyrolysis | −3 | 1.27 × 1011 | 0.7/2.95 s | [39] | |
ITO/PMMA/5 wt % ZnO/Ag ITO/PS/5 wt % ZnO/Ag ITO/PVDF-TrFE/5 wt % ZnO/Ag | M–S–M | nanoparticles/ active layer (680 nm) | spin-coating | 2 | 1.02 × 1011 1.89 × 1012 2.27 × 1013 | 14.57/45.69 s 12.36/10.18 s 9.37/6.91 s | 2.5 × 102 2.2 × 103 1.43 × 104 | [40] |
P-Si/SiO2/ZnO/PVA/Ag | P–N | nanoparticles/ n-type layer | spin-coating | 0 | 4.6 × 1010 | 0.5/0.45 s | [14] | |
graphene@Au wire/ZnO/GaN/Si/CNT@Au wire | P–N | nanosheets/ n-type layer | hydride vapor phase epitaxy and hydrothermal process | 0 | 4.25 × 1010 | 0.1 s | [41] | |
ITO/Fe-doped ZnO/BiVO4 | N–N heterostructure | thin film/ n-type layer (200 nm) | spin-coating and drop casting | 0.1 | 3.66 × 109 | 0.17/0.17 s | [42] | |
InGa/Si/Te-doped ZnO@PMMA/Au | P–N | nanorods/ n-type layer | CVD | 0 | 1.1 × 1012 | <0.61/<0.61 s | 275 | [15] |
Si/SiO2/ZnO/CuI/Au/Ag | P–N heterostructure | thin film/ n-type layer (150 nm) | ALD and sputtering | 0 | 1.7 × 1010 | 0.41/0.08 s | 4250 | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.M.H.; Bark, C.W. In-Situ Piezoelectric Effect for Augmenting Performance of Self-Powered ZnO-Based Photodetector. Coatings 2023, 13, 921. https://doi.org/10.3390/coatings13050921
Nguyen TMH, Bark CW. In-Situ Piezoelectric Effect for Augmenting Performance of Self-Powered ZnO-Based Photodetector. Coatings. 2023; 13(5):921. https://doi.org/10.3390/coatings13050921
Chicago/Turabian StyleNguyen, Thi My Huyen, and Chung Wung Bark. 2023. "In-Situ Piezoelectric Effect for Augmenting Performance of Self-Powered ZnO-Based Photodetector" Coatings 13, no. 5: 921. https://doi.org/10.3390/coatings13050921
APA StyleNguyen, T. M. H., & Bark, C. W. (2023). In-Situ Piezoelectric Effect for Augmenting Performance of Self-Powered ZnO-Based Photodetector. Coatings, 13(5), 921. https://doi.org/10.3390/coatings13050921