The Electrodeposition of Derivatives of Pyrrole and Thiophene on Brass Alloy in the Presence of Dodecane-1-Sulfonic Acid Sodium Salt in Acidic Medium and Its Anti-Corrosive Properties
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods
2.2. Instruments
3. Results and Discussion
3.1. Electrochemical Synthesis of PNMPY-1-SSD/P2MT Coating on Brass
3.2. Electrochemical Characterization PNMPY-1SSD/P2MT Coating
3.3. FT-IR Examination
3.4. Electrochemical Analysis
3.4.1. Potentiodynamic Polarization Practice
3.4.2. Electrochemical Impedance Spectroscopy (EIS) Investigations
3.5. SEM Examination
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, L.; Gao, Z.; Sun, Q.; Chu, G.; Shi, H.; Xu, N.; Li, Z.; Hao, N.; Zhang, X.; Ma, F.; et al. Corrosion protection performance of a coating with 2-aminino-5-mercato-1,3,4-thiadizole-loaded hollow mesoporous silica on copper. Prog. Org. Coat. 2023, 175, 107331. [Google Scholar] [CrossRef]
- Liao, F.-Q.; Chen, Y.-C. Siloxane-based epoxy coatings through cationic photopolymerization for corrosion protection. Prog. Org. Coat. 2023, 174, 107235. [Google Scholar] [CrossRef]
- Ramezanzadeh, M.; Ramezanzadeh, B.; Mahdavian, M. Epoxy-zinc phosphate coating dual barrier/active corrosion prevention properties improvement via polyaniline modified lamellar kaolinite (Ka@PAni) hybrid-pigment. Prog. Org. Coat. 2022, 172, 107132. [Google Scholar] [CrossRef]
- Branzoi, F.; Branzoi, V. Enzymatic electrode obtained by immobilizing of urease into a nanocomposite film based on conducting polymers and different additives. Int. J. Polym. Mater. Polym. Biomater. 2014, 63, 549–556. [Google Scholar] [CrossRef]
- Gallegos-Melgar, A.; Serna, S.A.; Lázaro, I.; Gutiérrez-Castañeda, J.; Mercado-Lemus VArcos-Gutierrez, H.H.; Hernández-Hernández, M.; Porcayo-Calderón Jan Mayen, J.; Del Angel Monroy, M. Potentiodynamic Polarization Performance of a Novel Composite Coating System of Al2O3/Chitosan-Sodium Alginate, Applied on an Aluminum AA6063 Alloy for Protection in a Chloride Ions Environment. Coatings 2020, 10, 45. [Google Scholar] [CrossRef]
- Xie, J.; Lu, Z.; Zhou, K.; Li, C.; Ma, J.; Wang, B.; Xu, K.; Cui, H.; Liu, J. Researches on corrosion behaviors of carbon steel/copper alloy couple under organic coating in static and flowing seawater. Prog. Org. Coat. 2022, 166, 106793. [Google Scholar] [CrossRef]
- Fan, H.; Li, S.; Zhao, Z.; Wang, H.; Shi, Z.; Zhang, L. Inhibition of brass corrosion in sodium chloride solutions by self-assembled silane films. Corros. Sci. 2011, 53, 4273–4281. [Google Scholar] [CrossRef]
- Zhang, J. A Zhu Study on the synthesis of PANI/CNT nanocomposite and its anticorrosion mechanism in waterborne coatings. Prog. Org. Coat. 2021, 159, 106447. [Google Scholar] [CrossRef]
- Branzoi, F.; Băran, A. The inhibition effect of some organic compounds on corrosion of brass and carbon steel in aggressive medium. Int. J. Electrochem. Sci. 2019, 14, 2780–2803. [Google Scholar] [CrossRef]
- Liu, Z.; Fan, B.; Zhao, J.; Yang, B.; Zheng, X. Benzothiazole derivatives-based supramolecular assemblies as efficient corrosion inhibitors for copper in artificial seawater: Formation, interfacial release and protective mechanisms. Corros. Sci. 2023, 212, 110957. [Google Scholar] [CrossRef]
- Damej, M.; Chebabe, D.; Abbout, S.; Erramli, H.; Oubair, A.; Hajjaji, N. Corrosion inhibition of brass 60Cu–40Zn in 3% NaCl solution by 3-amino-1, 2, 4-triazole-5-thiol. Heliyon 2020, 6, e04026. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, S.; Gaikwad, A.; Patil, P. Poly(o-anisidine) coatings on brass: Synthesis, characterization and corrosion protection. Curr. Appl. Phys. 2009, 9, 206–218. [Google Scholar] [CrossRef]
- Fan, H.-Q.; Xia, D.-H.; Li, M.-C.; Li, Q. Self-assembled (3-mercaptopropyl)trimethoxylsilane film modified with La2O3 nanoparticles for brass corrosion protection in NaCl solution. J. Alloys Compd. 2017, 702, 60–67. [Google Scholar] [CrossRef]
- Patil, D.; Patil, P.P. Electrodeposition of poly(o-toluidine) on brass from aqueous salicylate solution and its corrosion protection performance. J. Appl. Polym. Sci. 2010, 118, 2084–2091. [Google Scholar] [CrossRef]
- Fouda, A.; El-Dossoki, F.; Shady, I.A. Adsorption and corrosion inhibition behavior of polyethylene glycol on α-brass alloy in nitric acid solution. Green Chem. Lett. Rev. 2018, 11, 67–77. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, C.; Cui, J.; Shen, S.; Qiu, H.; Li, J. Electrodeposition of polypyrrole coatings doped by benzenesulfonic acid-modified graphene oxide on metallic bipolar plates. Prog. Org. Coat. 2022, 170, 106995. [Google Scholar] [CrossRef]
- Yılmaz, S.M.; Atun, G. Corrosion protection efficiency of the electrochemically synthesized polypyrrole-azo dye composite coating on stainless steel. Prog. Org. Coat. 2022, 169, 106942. [Google Scholar] [CrossRef]
- Branzoi, F.; Băran, A.; Ludmila, A.; Alexandrescu, E. The inhibition action of some organic polymers on the corrosion carbon steel in acidic media. Chem. Pap. 2020, 74, 4315–4335. [Google Scholar] [CrossRef]
- Zhang, Y. Strengthening, Corrosion and Protection of High-Temperature Structural Materials. Coatings 2022, 12, 1136. [Google Scholar] [CrossRef]
- Zhai, Y.; Pan, K.; Zhang, E. Anti-Corrosive Coating of Carbon-Steel Assisted by Polymer-Camphor sulfonic Acid Embedded within Graphene. Coatings 2020, 10, 879. [Google Scholar] [CrossRef]
- Sinapi, F.; Deroubaix, S.; Pirlot, C.; Delhalle, J.; Mekhalif, Z. Electrochemical evaluation of the corrosion protection of bi-dimensional organic films self-assembled onto brass. Electrochim. Acta 2004, 49, 2987–2996. [Google Scholar] [CrossRef]
- Shinde, V.; Gaikwad, A.; Patil, P. Synthesis and characterization of corrosion protective poly(2,5-dimethylaniline) coatings on copper. Appl. Surf. Sci. 2006, 253, 1037–1045. [Google Scholar] [CrossRef]
- Davoodi, A.; Honarbakhsh, S.; Farzi, G.A. Evaluation of corrosion resistance of polypyrrole/functionalized multi-walled carbon nanotubes composite coatings on 60Cu–40Zn brass alloy. Prog. Org. Coat. 2015, 88, 106–115. [Google Scholar] [CrossRef]
- Özyılmaz, A.T.; Çolak, N.; Ozyilmaz, G.; Sangün, M.K. Protective properties of polyaniline and poly(aniline-co-o-anisidine) films electrosynthesized on brass. Prog. Org. Coat. 2007, 60, 24–32. [Google Scholar] [CrossRef]
- Bazzaoui, M.; Martins, J.; Bazzaoui, E.; Martins, L.; Machnikova, E. Sweet aqueous solution for electrochemical synthesis of polypyrrole part 1B: On copper and its alloys. Electrochimica Acta 2007, 52, 3568–3581. [Google Scholar] [CrossRef]
- González-Tejera, M.; García, M.; De La Blanca, E.S.; Redondo, M.; Raso, M.; Carrillo, I. Electrochemical synthesis of N-methyl and 3-methyl pyrrole perchlorate doped copolymer films. Thin Solid Films 2007, 515, 6805–6811. [Google Scholar] [CrossRef]
- Herrasti, P.; Patil, P. Corrosion protective poly (o-ethoxyaniline) coatings on copper. Electrochim. Acta 2007, 53, 927–933. [Google Scholar]
- Branzoi, F.; Brânzoi, V.; Musina, A. Fabrication and characterisation of conducting composite films based on conducting polymers and functionalised carbon nanotubes. Surf. Interface Anal. 2012, 44, 1076–1080. [Google Scholar] [CrossRef]
- Duran, B.; Bereket, G. Cyclic Voltammetric Synthesis of Poly(N-methyl pyrrole) on Copper and Effects of Polymerization Parameters on Corrosion Performance. Ind. Eng. Chem. Res. 2012, 51, 5246–5255. [Google Scholar] [CrossRef]
- Redondo, M.; de la Blanca, E.S.; García, M.; González-Tejera, M. Poly(N-methylpyrrole) electrodeposited on copper: Corrosion protection properties. Prog. Org. Coat. 2009, 65, 386–391. [Google Scholar] [CrossRef]
- Ren, S.; Barkey, D. Electrochemically Prepared Poly(3-methylthiophene) Films for Passivation of 430 Stainless Steel. J. Electrochem. Soc. 1992, 139, 1021–1026. [Google Scholar] [CrossRef]
- Branzoi, F.; Băran, A.; Petrescu, S. Evaluation of Corrosion Protection Performance of New Polymer Composite Coatings on Carbon Steel in Acid Medium by Electrodeposition Methods. Coatings 2021, 11, 903. [Google Scholar] [CrossRef]
- Çakmakcı, İ.; Duran, B.; Duran, M.; Bereket, G. Experimental and theoretical studies on protective properties of poly (pyrrole-co-N-methyl pyrrole) coatings on copper in chloride media. Corros. Sci. 2013, 69, 252–261. [Google Scholar] [CrossRef]
- He, C. Studies on Corrosion Behaviors of Q235 Steel Coated by the Polypyrrole Films Doped with different dopants. Int. J. Electrochem. Sci. 2020, 15, 2594–2603. [Google Scholar]
- Rui, M.; Zhu, A. The synthesis and corrosion protection mechanisms of PANI/CNT nanocomposite doped with organic phosphoric acid. Prog. Org. Coat. 2021, 153, 106134. [Google Scholar] [CrossRef]
- Martí, M.; Armelin, E.; Iribarren, J.I.; Alemán, C. Soluble polythiophenes as anticorrosive additives for marine epoxy paints. Mater. Corros. 2015, 66, 23–30. [Google Scholar] [CrossRef]
- Branzoi, F.; Pahom, Z.; Nechifor, G. Corrosion protection of new composite polymer coating for carbon steel in sulfuric acid medium by electrochemical methods. J. Adhes. Sci. Technol. 2018, 32, 2364–2380. [Google Scholar] [CrossRef]
- Fan, B.; Zhao, X.; Liu, Z.; Xiang, Y.; Zheng, X. Inter-component synergetic corrosion inhibition mechanism of Passiflora edulia Sims shell extract for mild steel in pickling solution: Experimental, DFT and reactive dynamics investigations. Sustain. Chem. Pharm. 2022, 29, 100821. [Google Scholar] [CrossRef]
- Pauline, S.A.; Sahila, S.; Gopalakrishnan, C.; Nanjundan, S.; Rajendran, N. Synthesis, characterization and corrosion protection property of terpolymers derived from poly(MAn-co-MMA) containing benzimidazole derivative as pendant group. Prog. Org. Coat. 2011, 72, 443–452. [Google Scholar] [CrossRef]
- Asan, G.; Asan, A.; Çelikkan, H. The effect of 2D-MoS2 doped polypyrrole coatings on brass corrosion. J. Mol. Struct. 2020, 1203, 127318. [Google Scholar] [CrossRef]
- Menkuer, M.; Ozkazanc, H. Anticorrosive polypyrrole/zirconium-oxide composite film prepared in oxalic acid and dodecylbenzene sulfonic acid mix electrolyte. Prog. Org. Coatings 2020, 147, 105815. [Google Scholar] [CrossRef]
- Pekmeza, N.Ö.; Cinkillia, K.; Zeybekba, B. The electrochemical copolymerization of pyrrole and bithiophene on stainless steel in the presence of SDS in aqueous medium and its anticorrosive performance. Prog. Org. Coat. 2014, 77, 1277–1287. [Google Scholar] [CrossRef]
- Gupta, D.K.; Neupane, S.; Singh, S.; Karki, N.; Yadav, A.P. The effect of electrolytes on the coating of polyaniline on mild steel by electrochemical methods and its corrosion behavior. Prog. Org. Coat. 2021, 152, 106127. [Google Scholar] [CrossRef]
The System PNMPY-1SSD/P2MT/Brass | Ecorr (mV) | icorr (mA/cm2) | Rp (Ωcm) | Rmpy | Pmm/year | Kg (g/m2h) | ba (mV/ decade) | −bc (mV/ decade) | E (%) | %P |
---|---|---|---|---|---|---|---|---|---|---|
Brass + 0.5 M H2SO4 | −73 | 0.185 | 55 | 84.88 | 2.15 | 2.09 | 78 | 130 | - | - |
PNMPY-1SSD/P2MT 1.1 V 3:5 molar ratio, t = 20 min | −56 | 0.030 | 399 | 13.76 | 0.35 | 0.34 | 56 | 126 | 81 | 0.078 |
PNMPY-1SSD/P2MT 1.1 V 5:3 molar ratio, t = 20 min | −55 | 0.002 | 6310 | 0.93 | 0.023 | 0.022 | 62 | 117 | 98 | 0.006 |
PNMPY-1SSD/P2MT 1.1 V 3:5 molar ratio, t = 30 min | −56 | 0.027 | 439 | 12.85 | 0.33 | 0.32 | 53 | 114 | 85 | 0.072 |
PNMPY-1SSD/P2MT 1.1 V 5:3 molar ratio, t = 30 min | −99 | 0.006 | 2520 | 2.75 | 0.07 | 0.06 | 73 | 113 | 96 | 0.008 |
PNMPY-1SSD/P2MT 1.2 V 3:5 molar ratio, t = 20 min | −86 | 0.034 | 369 | 19.2 | 0.46 | 0.47 | 62 | 121 | 81 | 0.084 |
PNMPY-1SSD/P2MT 1.2 V 5:3 molar ratio, t = 20 min | −49 | 0.028 | 393 | 12.84 | 0.32 | 0.31 | 51 | 102 | 85 | 0.06 |
PNMPY-1SSD/P2MT 1.2 V 3:5 molar ratio, t = 30 min | −75 | 0.015 | 818 | 6.88 | 0.17 | 0.16 | 54 | 119 | 92 | 0.053 |
PNMPY-1SSD/P2MT 1.2 V 5:3 molar ratio, t = 30 min | −90 | 0.013 | 983 | 5.96 | 0.15 | 0.14 | 52 | 120 | 93 | 0.037 |
PNMPY-1SSD/P2MT 1.4 V 3:5 molar ratio, t = 20 min | −86 | 0.033 | 359 | 19.2 | 0.46 | 0.47 | 62 | 123 | 81 | 0.091 |
PNMPY-1SSD/P2MT 1.4 V 5:3 molar ratio, t = 20 min | −111 | 0.006 | 2890 | 2.75 | 0.07 | 0.06 | 68 | 125 | 96 | 0.005 |
PNMPY-1SSD/P2MT 1.4 V 3:5 molar ratio, t = 30 min | −63 | 0.020 | 509 | 9.17 | 0.23 | 0.22 | 53 | 139 | 89 | 0.074 |
PNMPY-1SSD/P2MT 1.4 V 5:3 molar ratio, t = 30 min | −90 | 0.011 | 982 | 5.04 | 0.13 | 0.12 | 51 | 120 | 94 | 0.05 |
The System PNMPY-1SSD/P2MT/Brass | Ecorr (mV) | icorr (mA/cm2) | Rp (Ωcm) | Rmpy | Pmm/year | Kg (g/m2h) | ba (mV/ decade) | −bc (mV/ decade) | E (%) | %P |
---|---|---|---|---|---|---|---|---|---|---|
Brass + 0.5 M H2SO4 | −73 | 0.185 | 55 | 84.88 | 2.15 | 2.09 | 78 | 130 | - | |
PNMPY-1SSD/P2MT 1 mA/cm2 3:5 molar ratio, t = 20 min | −78 | 0.019 | 636 | 8.71 | 0.22 | 0.214 | 46 | 129 | 90 | 0.071 |
PNMPY-1SSD/P2MT 1 mA/cm2 5:3 molar ratio, t = 20 min | −78 | 0.017 | 647 | 7.8 | 0.19 | 0.18 | 46 | 99 | 91 | 0.068 |
PNMPY-1SSD/P2MT 1 mA/cm2 3:5 molar ratio, t = 30 min | −130 | 0.037 | 319 | 18.8 | 0.47 | 0.46 | 82 | 98 | 80 | 0.03 |
PNMPY-1SSD/P2MT 1 mA/cm2 5:3 molar ratio, t = 30 min | −98 | 0.034 | 350 | 17.8 | 0.45 | 0.43 | 49 | 130 | 82 | 0.062 |
PNMPY-1SSD/P2MT 0.5 mA/cm2 3:5 molar ratio, t = 20 min | −81 | 0.025 | 359 | 11.5 | 0.30 | 0.28 | 60 | 125 | 87 | 0.078 |
PNMPY-1SSD/P2MT 0.5 mA/cm2 5:3 molar ratio, t = 20 min | −51 | 0.018 | 543 | 8.25 | 0.21 | 0.20 | 48 | 87 | 90 | 0.052 |
PNMPY-1SSD/P2MT 0.5 mA/cm2 3:5 molar ratio, t = 30 min | −90 | 0.015 | 846 | 6.88 | 0.17 | 0.16 | 50 | 122 | 92 | 0.031 |
PNMPY-1SSD/P2MT 0.5 mA/cm2 5:3 molar ratio, t = 30 min | −100 | 0.013 | 878 | 5.96 | 0.15 | 0.14 | 62 | 114 | 93 | 0.026 |
PNMPY-1SSD/P2MT 3 mA/cm2 3:5 molar ratio, t = 20 min | −79 | 0.038 | 331 | 17.43 | 0.44 | 0.43 | 71 | 111 | 80 | 0.088 |
PNMPY-1SSD/P2MT 3 mA/cm2 5:3 molar ratio, t = 20 min | −49 | 0.037 | 351 | 16.97 | 0.43 | 0.42 | 57 | 121 | 80 | 0.053 |
The System PNMPY-1SSD/P2MT/Brass | Ecorr (mV) | icorr (mA/cm2) | Rp (Ωcm) | Rmpy | Pmm/year | Kg (g/m2h) | ba (mV/ decade) | −bc (mV/ decade) | E (%) |
---|---|---|---|---|---|---|---|---|---|
Brass + 0.5 M H2SO4 | −73 | 0.185 | 55 | 84.88 | 2.15 | 2.09 | 78 | 130 | - |
PNMPY-1SSD/P2MT 1.1 V 3:5 molar ratio, t = 20 min 0 h | −55 | 0.002 | 6310 | 0.93 | 0.023 | 0.022 | 62 | 117 | 98 |
PNMPY-1SSD/P2MT 1.1 V 3:5 molar ratio, t = 20 min 24 h | −161 | 0.0028 | 5020 | 1.28 | 0.032 | 0.031 | 62 | 111 | 98 |
PNMPY-1SSD/P2MT 1.1 V 3:5 molar ratio, t = 20 min 72 h | −164 | 0.0031 | 4434 | 1.42 | 0.036 | 0.035 | 64 | 96 | 98 |
PNMPY-1SSD/P2MT 1.1 V 3:5 molar ratio, t = 20 min 96 h | −160 | 0.0038 | 3600 | 1.74 | 0.044 | 0.043 | 66 | 99 | 98 |
PNMPY-1SSD/P2MT 1.1 V 3:5 molar ratio, t = 20 min 144 h | −144 | 0.005 | 2333 | 2.29 | 0.058 | 0.056 | 68 | 94 | 97 |
PNMPY-1SSD/P2MT 1.4 V 5:3 molar ratio, t = 30 min 0 h | −90 | 0.011 | 982 | 5.04 | 0.13 | 0.12 | 61 | 120 | 94 |
PNMPY-1SSD/P2MT 1.4 V 5:3 molar ratio, t = 30 min 48 h | −123 | 0.036 | 396 | 16.5 | 0.42 | 0.41 | 66 | 969 | 81 |
PNMPY-1SSD/P2MT 1.4 V 5:3 molar ratio, t = 30 min 72 h | −132 | 0.040 | 366 | 18.35 | 0.45 | 0.44 | 71 | 112 | 80 |
PNMPY-1SSD/P2MT 1.4 V 5:3 molar ratio, t = 30 min 96 h | −139 | 0.041 | 362 | 18.81 | 0.47 | 0.46 | 69 | 121 | 78 |
PNMPY-1SSD/P2MT 1.4 V 5:3 molar ratio, t = 30 min 144 h | −141 | 0.043 | 375 | 19.79 | 0.5 | 0.49 | 69 | 122 | 77 |
The System PNMPY-1SSD/P2MT/Brass | Rs (ohm·cm2) | Q-Yo (S·s−n·cm−2) | Q-n | Rf (ohm·cm2) | Q-Yo (S·s−n·cm−2) | Q-n | Rct (ohm·cm2) | χ |
---|---|---|---|---|---|---|---|---|
Brass + 0.5 M H2SO4 | 1.18 | 0.00023 | 0.95 | 4 | 0.00038 | 0.88 | 44 | 2.447 × 10−3 |
PNMPY-1SSD/P2MT 1.1 V 3:5 molar ratio, t = 20 min | 0.86 | 0.00032 | 0.88 | 74 | 0.00094 | 0.62 | 560 | 1.369 × 10−3 |
PNMPY-1SSD/P2MT 1.1 V 5:3 molar ratio, t = 20 min | 1.453 | 0.00004 | 0.88 | 505 | 0.000057 | 0.69 | 2116 | 4.51 × 10−3 |
PNMPY-1SSD/P2MT 1.1 V 3:5 molar ratio, t = 30 min | 0.81 | 0.0013 | 0.78 | 15 | 0.00108 | 0.6 | 140 | 5.802 × 10−3 |
PNMPY-1SSD/P2MT 1.1 V 5:3 molar ratio, t = 30 min | 0.87 | 0.00016 | 0.88 | 149 | 0.00047 | 0.61 | 1123 | 1.28 × 10−3 |
PNMPY-1SSD/P2MT 1.2 V 3:5 molar ratio, t = 20 min | 1.4 | 0.000043 | 0.92 | 18 | 0.00041 | 0.66 | 1120 | 1.731 × 10−3 |
PNMPY-1SSD/P2MT 1.2 V 5:3 molar ratio, t = 20 min | 1.44 | 0.000042 | 0.88 | 641 | 0.000049 | 0.77 | 1829 | 2.008 × 10−3 |
PNMPY-1SSD/P2MT 1.2 V 3:5 molar ratio, t = 30 min | 1.03 | 0.00034 | 0.83 | 46 | 0.00001 | 0.96 | 163 | 3.027 × 10−3 |
PNMPY-1SSD/P2MT 1.2 V 5:3 molar ratio, t = 30 min | 0.95 | 0.000045 | 0.98 | 16 | 0.00052 | 0.81 | 212 | 5.871 × 10−4 |
PNMPY-1SSD/P2MT 1.4 V 3:5 molar ratio, t = 20 min | 1.02 | 0.00146 | 0.81 | 12 | 0.00087 | 0.89 | 140 | 3.312 × 10−3 |
PNMPY-1SSD/P2MT 1.4 V 5:3 molar ratio, t = 20 min | 1.21 | 0.00019 | 0.90 | 226 | 0.00017 | 0.75 | 880 | 3.280 × 10−3 |
PNMPY-1SSD/P2MT 1.4 V 3:5 molar ratio, t = 30min | 0.99 | 0.00061 | 0.87 | 15 | 0.00117 | 0.86 | 150 | 3.930 × 10−3 |
PNMPY-1SSD/P2MT 1.4 V 5:3 molar ratio, t = 30 min | 0.73 | 0.00317 | 0.74 | 54 | 0.0019 | 0.83 | 227 | 4.747 × 10−4 |
The System PNMPY-1SSD/P2MT/Brass | Rs (ohm·cm2) | Q-Yo (S·s−n·cm−2) | Q-n | Rf (ohm·cm2) | Q-Yo (S·s−n·cm−2) | Q-n | Rct (ohm·cm2) | χ |
---|---|---|---|---|---|---|---|---|
Brass + 0.5 M H2SO4 | 1.18 | 0.00023 | 0.95 | 4 | 0.00038 | 0.88 | 44 | 2.447 × 10−3 |
PNMPY-1SSD/P2MT 1 mA/cm2 3:5 molar ratio, t = 20 min | 0.77 | 0.00042 | 0.87 | 89 | 0.00039 | 0.82 | 233 | 8.044 × 10−3 |
PNMPY-1SSD/P2MT 1 mA/cm2 5:3 molar ratio, t = 20 min | 1.19 | 0.00044 | 0.86 | 372 | 0.0218 | 0.76 | 6118 | 7.432 × 10−4 |
PNMPY-1-DSS/PTPH 1 mA/cm2 3:5 molar ratio, t = 30 min | 0.89 | 0.00303 | 0.62 | 110 | 0.01003 | 0.96 | 226 | 2.88 × 10−3 |
PNMPY-1SSD/P2MT 1 mA/cm2 5:3 molar ratio, t = 30 min | 0.79 | 0.00058 | 0.82 | 54 | 0.00061 | 0.74 | 129 | 4.336 × 10−3 |
PNMPY-1SSD/P2MT 0.5 mA/cm2 3:5 molar ratio, t = 20 min | 0.98 | 0.00109 | 0.76 | 35 | 0.00259 | 0.78 | 155 | 1.088 × 10−3 |
PNMPY-1SSD/P2MT 0.5 mA/cm2 5:3 molar ratio, t = 20 min | 1.10 | 0.00018 | 0.87 | 60 | 0.00170 | 0.74 | 101 | 3.082 × 10−3 |
PNMPY-1SSD/P2MT 0.5 mA/cm2 3:5 molar ratio, t = 30 min | 1.23 | 0.00054 | 0.86 | 159 | 0.00042 | 0.85 | 184 | 3.039 × 10−3 |
PNMPY-1SSD/P2MT 0.5 mA/cm2 5:3 molar ratio, t = 30 min | 1.46 | 0.00088 | 0.72 | 72 | 0.00243 | 0.83 | 645 | 2.803 × 10−3 |
PNMPY-1SSD/P2MT 3 mA/cm2 3:5 molar ratio, t = 20 min | 0.77 | 0.00059 | 0.78 | 36 | 0.00304 | 0.65 | 143 | 1.584 × 10−3 |
PNMPY-1SSD/P2MT 3 mA/cm2 5:3 molar ratio, t = 20 min | 0.87 | 0.00041 | 0.79 | 45 | 0.0031 | 0.71 | 104 | 2.881 × 10−3 |
The System PNMPY-1SSD/P2MT/Brass | Rs (ohm·cm2) | Q-Yo (S·s−n·cm−2) | Q-n | Rf (ohm·cm2) | Q-Yo (S·s−n·cm−2) | Q-n | Rct (ohm·cm2) | χ |
---|---|---|---|---|---|---|---|---|
Brass + 0.5 M H2SO4 | 1.18 | 0.00023 | 0.95 | 4 | 0.00036 | 0.88 | 44 | 2.447 × 10−3 |
PNMPY-1SSD/P2MT 1.1 V 3:5 molar ratio, t = 20 min 0 h | 1.45 | 4.07 × 10−5 | 0.88 | 505 | 0.000057 | 0.69 | 2116 | 2.773 × 10−3 |
PNMPY-1SSD/P2MT 1.1 V 3:5 molar ratio, t = 20 min 24 h | 1.05 | 5.58 × 10−5 | 0.88 | 343 | 0.00017 | 0.62 | 1518 | 4.514 × 10−3 |
PNMPY-1SSD/P2MT 1.1 V 3:5 molar ratio, t = 20 min 48 h | 1.02 | 7.138 × 10−5 | 0.89 | 39 | 0.00036 | 0.61 | 2357 | 1.756 × 10−3 |
PNMPY-1SSD/P2MT 1.1V 3:5 molar ratio, t = 20min 72h | 1.01 | 0.00012 | 0.88 | 29 | 0.00049 | 0.59 | 1909 | 2.585 × 10−3 |
PNMPY-1SSD/P2MT 1.1 V 3:5 molar ratio, t = 20 min 96 h | 1.03 | 0.00091 | 0.73 | 32 | 0.000043 | 0.93 | 794 | 6.557 × 10−4 |
PNMPY-1SSD/P2MT 1.1 V 3:5 molar ratio, t = 20 min 120 h | 1.13 | 0.00127 | 0.74 | 27 | 0.00018 | 0.87 | 670 | 2.500 × 10−3 |
PNMPY-1SSD/P2MT 1.1 V 3:5 molar ratio, t = 20 min 144 h | 1.12 | 0.00136 | 0.73 | 24 | 0.00012 | 0.92 | 646 | 2.603 × 10−3 |
PNMPY-1SSD/P2MT 1.4 V 5:3 molar ratio, t = 30 min 0 h | 0.73 | 0.00317 | 0.74 | 54 | 0.0019 | 0.83 | 227 | 4.747 × 10−4 |
PNMPY-1SSD/P2MT 1.4 V 5:3 molar ratio, t = 30 min 48 h | 0.76 | 0.00228 | 0.80 | 32 | 0.0043 | 0.87 | 263 | 2.321 × 10−3 |
PNMPY-1SSD/P2MT 1.4 V 5:3 molar ratio, t = 30 min 72 h | 0.77 | 0.0028 | 0.70 | 30 | 0.0059 | 0.90 | 293 | 2.956 × 10−3 |
PNMPY-1SSD/P2MT 1.4 V 5:3 molar ratio, t = 30 min 96 h | 0.63 | 0.00295 | 0.65 | 26 | 0.0082 | 0.85 | 304 | 1.405 × 10−3 |
PNMPY-1SSD/P2MT 1.4 V 5:3 molar ratio, t = 30 min 144 h | 0.61 | 0.00301 | 0.64 | 22 | 0.0099 | 0.85 | 294 | 1.755 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Branzoi, F.; Petrescu, S. The Electrodeposition of Derivatives of Pyrrole and Thiophene on Brass Alloy in the Presence of Dodecane-1-Sulfonic Acid Sodium Salt in Acidic Medium and Its Anti-Corrosive Properties. Coatings 2023, 13, 953. https://doi.org/10.3390/coatings13050953
Branzoi F, Petrescu S. The Electrodeposition of Derivatives of Pyrrole and Thiophene on Brass Alloy in the Presence of Dodecane-1-Sulfonic Acid Sodium Salt in Acidic Medium and Its Anti-Corrosive Properties. Coatings. 2023; 13(5):953. https://doi.org/10.3390/coatings13050953
Chicago/Turabian StyleBranzoi, Florina, and Simona Petrescu. 2023. "The Electrodeposition of Derivatives of Pyrrole and Thiophene on Brass Alloy in the Presence of Dodecane-1-Sulfonic Acid Sodium Salt in Acidic Medium and Its Anti-Corrosive Properties" Coatings 13, no. 5: 953. https://doi.org/10.3390/coatings13050953
APA StyleBranzoi, F., & Petrescu, S. (2023). The Electrodeposition of Derivatives of Pyrrole and Thiophene on Brass Alloy in the Presence of Dodecane-1-Sulfonic Acid Sodium Salt in Acidic Medium and Its Anti-Corrosive Properties. Coatings, 13(5), 953. https://doi.org/10.3390/coatings13050953