Correlation between the Rheological Properties of Asphalt Mortar and the High-Temperature Performance of Asphalt Mixture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.1.1. Asphalt Binder
2.1.2. Aggregates and Fillers
2.1.3. Asphalt Mixture
2.1.4. Asphalt Mortar
2.2. Laboratory Tests
2.2.1. Multisequence Repeated Loading Test of Asphalt Mixture
2.2.2. Multiple-Stress Creep–Recovery Test of Asphalt Mortar
3. Results and Discussion
3.1. MSRL Test Results for Asphalt Mixture
3.2. MSCR Test Results of Asphalt Mortar
3.3. Regression Model of Asphalt Mixture High-Temperatures Behaviour Based on Asphalt Mortar Properties
3.3.1. Parameter Determination of the Regression Model
3.3.2. CASR Regression Model of Asphalt Mixture
3.4. Validation of the CASR Regression Model for Asphalt Mixtures
4. Conclusions
- The SR index of different asphalt mixtures was calculated through the MSRL test, and the composite average strain rate CASR index was obtained from the mean value of the SR index under different stresses. The test results of the high-temperature properties of the asphalt mixture measured by the MSRL test were in agreement with the general change law.
- The MSCR tests of different kinds of asphalt mortars were carried out by DSR, and the nonrecoverable compliance Jnr and recovery percentage %R were used to quantitatively evaluate the viscoelastic properties of asphalt mortars at high temperatures. F-AC20+PG76 and F-SUP20+PG76 asphalt mortar samples had better elastic recovery performance. The asphalt mortar sample with PG76 asphalt binder had better high-temperature performance and elastic recovery performance than that with PG70 asphalt binder.
- Based on the Hirsch model, the CASR regression model of asphalt mixtures was established by using the Jnr and %R index results of asphalt mortar and the VFF and VCA indicators results of asphalt mortar and coarse aggregate particles. Through verification, the model could accurately predict the high-temperature performance levels of asphalt mixtures.
- Through regression model investigation, the index value of asphalt mortar under 12.8 kPa loading conditions in the MSCR test had the best correlation with the high-temperature properties of the asphalt mixture. Therefore, the MSCR test index of asphalt mortar under the stress condition of 12.8 kPa could best reflect its viscoelastic properties during asphalt mixture deformation at high temperatures.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suresha, S.N.; Ningappa, A. Recent Trends and Laboratory Performance Studies on FAM Mixtures: A State-of-the-Art Review. Constr. Build. Mater. 2018, 174, 496–506. [Google Scholar] [CrossRef]
- Kim, Y.R. Mechanistic Fatigue Characterization and Damage Modeling of Asphalt Mixtures. Ph.D. Thesis, Texas A & M University, College Station, TX, USA, 2003. [Google Scholar]
- Freire, R.A.; Babadopulos, L.F.A.L.; Castelo Branco, V.T.F.; Bhasin, A. Aggregate Maximum Nominal Sizes’ Influence on Fatigue Damage Performance Using Different Scales. J. Mater. Civ. Eng. 2017, 29, 04017067. [Google Scholar] [CrossRef]
- Sousa, P.; Kassem, E.; Masad, E.; Little, D. New Design Method of Fine Aggregates Mixtures and Automated Method for Analysis of Dynamic Mechanical Characterization Data. Constr. Build. Mater. 2013, 41, 216–223. [Google Scholar] [CrossRef]
- Liu, X.; Liu, W.; Wang, S.; Wang, Z.; Shao, L. Performance Evaluation of Asphalt Mixture with Nanosized Volcanic Ash Filler. J. Transp. Eng. Part B Pavements 2018, 144, 04018028. [Google Scholar] [CrossRef]
- Karki, P. Computational and Experimental Characterization of Bituminous Composites Based on Eexperimentally Determined Properties of Constituents. Master’s Thesis, University of Nebraska Lincoln, Lincoln, NE, USA, 2010. [Google Scholar]
- Wang, H.; Liu, X.; Apostolidis, P.; Wang, D.; Leng, Z.; Lu, G.; Erkens, S.; Skarpas, A. Investigating the High- and Low-Temperature Performance of Warm Crumb Rubber–Modified Bituminous Binders Using Rheological Tests. J. Transp. Eng. Part B Pavements 2021, 147, 04021067. [Google Scholar] [CrossRef]
- Ng, A.K.Y.; Vale, A.C.D.; Gigante, A.C.; Faxina, A.L. Determination of the Binder Content of Fine Aggregate Matrices Prepared with Modified Binders. J. Mater. Civ. Eng. 2018, 30, 04018045. [Google Scholar] [CrossRef]
- Im, S.; You, T.; Ban, H.; Kim, Y.-R. Multiscale Testing-Analysis of Asphaltic Materials Considering Viscoelastic and Viscoplastic Deformation. Int. J. Pavement Eng. 2017, 18, 783–797. [Google Scholar] [CrossRef]
- Karki, P.; Kim, Y.-R.; Little, D.N. Dynamic Modulus Prediction of Asphalt Concrete Mixtures through Computational Micromechanics. Transp. Res. Rec. 2015, 2507, 1–9. [Google Scholar] [CrossRef]
- Underwood, B.S.; Kim, Y.R. Experimental Investigation into the Multiscale Behaviour of Asphalt Concrete. Int. J. Pavement Eng. 2011, 12, 357–370. [Google Scholar] [CrossRef]
- Li, S.; Ni, F.; Dong, Q.; Zhao, Z.; Ma, X. Effect of Filler in Asphalt Mastic on Rheological Behaviour and Susceptibility to Rutting. Int. J. Pavement Eng. 2021, 22, 87–96. [Google Scholar] [CrossRef]
- Sadeq, M.; Al-Khalid, H.; Masad, E.; Sirin, O. Comparative Evaluation of Fatigue Resistance of Warm Fine Aggregate Asphalt Mixtures. Constr. Build. Mater. 2016, 109, 8–16. [Google Scholar] [CrossRef]
- Kanaan, A.I.; Ozer, H.; Al-Qadi, I.L. Testing of Fine Asphalt Mixtures to Quantify Effectiveness of Asphalt Binder Replacement Using Recycled Shingles. Transp. Res. Rec. 2014, 2445, 103–112. [Google Scholar] [CrossRef]
- Underwood, B.S. A Continuum Damage Model for Asphalt Cement and Asphalt Mastic Fatigue. Int. J. Fatigue 2016, 82, 387–401. [Google Scholar] [CrossRef]
- Mignini, C.; Cardone, F.; Graziani, A. Correction to: Experimental Study of Bitumen Emulsion–Cement Mortars: Mechanical Behaviour and Relation to Mixtures. Mater. Struct. 2019, 52, 42. [Google Scholar] [CrossRef]
- Zhang, L.; Xing, C.; Gao, F.; Li, T.; Tan, Y. Using DSR and MSCR Tests to Characterize High Temperature Performance of Different Rubber Modified Asphalt. Constr. Build. Mater. 2016, 127, 466–474. [Google Scholar] [CrossRef]
- Mo, L.; Huurman, M.; Wu, S.; Molenaar, A.A.A. Mortar Fatigue Model for Meso-Mechanistic Mixture Design of Ravelling Resistant Porous Asphalt Concrete. Mater. Struct. 2014, 47, 947–961. [Google Scholar] [CrossRef]
- D’Angelo, J.A. The Relationship of the MSCR Test to Rutting. Road Mater. Pavement Des. 2009, 10, 61–80. [Google Scholar] [CrossRef]
- D’Angelo, S.; Ferrotti, G.; Cardone, F.; Canestrari, F. Asphalt Binder Modification with Plastomeric Compounds Containing Recycled Plastics and Graphene. Materials 2022, 15, 516. [Google Scholar] [CrossRef]
- Turbay, E.; Martinez-Arguelles, G.; Navarro-Donado, T.; Sánchez-Cotte, E.; Polo-Mendoza, R.; Covilla-Valera, E. Rheological Behaviour of WMA-Modified Asphalt Binders with Crumb Rubber. Polymers 2022, 14, 4148. [Google Scholar] [CrossRef]
- Li, M.; Luo, C.; Zhu, L.; Li, H.; Cong, P.; Feng, Y.; Yan, L. A Novel Epoxy-Terminated Polyethylene Modified Asphalt with Low-Viscosity and High Storage Stability. Constr. Build. Mater. 2022, 335, 127473. [Google Scholar] [CrossRef]
- Pstrowska, K.; Gunka, V.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Kułażyński, M.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-Y.; Le, T.H.M. Laboratory and Full-Scale Testbed Study in the Feasibility of Styrene-Butadiene-Styrene Asphalt Pavement Having Epoxy Resin and Crumb Rubber Powder. Buildings 2023, 13, 652. [Google Scholar] [CrossRef]
- Yang, S.; Ji, J.; Tao, H.; Muhammad, Y.; Huang, J.; Wang, S.; Wei, Y.; Li, J. Fabrication of Urea Formaldehyde–Epoxy Resin Microcapsules for the Preparation of High Self-healing Ability Containing SBS Modified Asphalt. Polym. Compos. 2021, 42, 4128–4137. [Google Scholar] [CrossRef]
- Wasage, T.L.J.; Stastna, J.; Zanzotto, L. Rheological Analysis of Multi-Stress Creep Recovery (MSCR) Test. Int. J. Pavement Eng. 2011, 12, 561–568. [Google Scholar] [CrossRef]
- Li, S. Multiscale Research on High-Temperature Creep Behaviour of Asphalt Mixture. Ph.D. Thesis, Southeast University, Nanjing, China, 2020. (In Chinese) [Google Scholar] [CrossRef]
- MOT, JTG E20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. Ministry of Transport of the People’s Republic of China: Beijing, China, 2011. (In Chinese)
- Li, S.; Dong, Q.; Ni, F.; Jiang, J.; Han, Y. Evaluation of Susceptibility of High-Temperature Performance of Asphalt Mixture to Morphological Feature of Aggregates by Fractal Theory. J. Mater. Civ. Eng. 2018, 30, 06018018. [Google Scholar] [CrossRef]
- Bastos, J.B.S.; Babadopulos, L.F.A.L.; Soares, J.B. Relationship between Multiple Stress Creep Recovery (MSCR) Binder Test Results and Asphalt Concrete Rutting Resistance in Brazilian Roadways. Constr. Build. Mater. 2017, 145, 20–27. [Google Scholar] [CrossRef]
- Bao, B.; Liu, J.; Li, S.; Si, C.; Zhang, Q. Laboratory Evaluation of the Relationship of Asphalt Binder and Asphalt Mastic via a Modified MSCR Test. Coatings 2023, 13, 304. [Google Scholar] [CrossRef]
- Delgadillo, R.; Bahia, H.U. The Relationship between Nonlinearity of Asphalt Binders and Asphalt Mixture Permanent Deformation. Road Mater. Pavement Des. 2010, 11, 653–680. [Google Scholar] [CrossRef]
- AASHTO, T350-14; Standard Method of Test for Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). AASHTO: Washington, DC, USA, 2018.
- Ling, C.; Arshadi, A.; Bahia, H. Importance of Binder Modification Type and Aggregate Structure on Rutting Resistance of Asphalt Mixtures Using Image-Based Multi-Scale Modelling. Road Mater. Pavement Des. 2017, 18, 785–799. [Google Scholar] [CrossRef]
- Alrashydah, E.I.; Abo-Qudais, S.A. Modeling of Creep Compliance Behavior in Asphalt Mixes Using Multiple Regression and Artificial Neural Networks. Constr. Build. Mater. 2018, 159, 635–641. [Google Scholar] [CrossRef]
- Barugahare, J.; Amirkhanian, A.N.; Xiao, F.; Amirkhanian, S.N. ANN-Based Dynamic Modulus Models of Asphalt Mixtures with Similar Input Variables as Hirsch and Witczak Models. Int. J. Pavement Eng. 2022, 23, 1328–1338. [Google Scholar] [CrossRef]
Indicators | PG70 | PG76 |
---|---|---|
SBS content (ratio of binder by mass) | 3.0% | 3.5% |
Softening point (°C) | 65 | 76 |
Ductility (cm, 5 cm/min, 5 °C) | 50 | 43 |
Penetration (0.1 mm, 100 g, 25 °C, 5 s) | 52 | 54 |
G*/sinδ @70 °C for original binder (kPa) | 1.93 | 2.15 |
G*/sinδ @76 °C for original binder (kPa) | 1.15 | 1.44 |
G*/sinδ @70 °C for RTFOT binder (kPa) | 2.88 | 3.56 |
G*/sinδ @76 °C for RTFOT binder (kPa) | 1.60 | 2.87 |
Gradations | Sieve Size (mm) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
26.5 | 19 | 16 | 13.2 | 9.5 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 | |||
Passing percentage (%) | AC-13 | UL | 100 | 100 | 100 | 100 | 85 | 68 | 50 | 38 | 28 | 20 | 15 | 8 |
LL | 100 | 100 | 100 | 90 | 68 | 38 | 24 | 15 | 10 | 7 | 5 | 4 | ||
DG | 100 | 100 | 100 | 96.3 | 77.9 | 46.1 | 40.5 | 31.5 | 18.8 | 11.9 | 9.2 | 6.3 | ||
SMA-13 | UL | 100 | 100 | 100 | 100 | 75 | 34 | 26 | 24 | 20 | 16 | 15 | 12 | |
LL | 100 | 100 | 100 | 90 | 50 | 20 | 15 | 14 | 12 | 10 | 9 | 8 | ||
DG | 100 | 100 | 100 | 93.9 | 63.2 | 24.8 | 22.5 | 19.5 | 15.4 | 13.1 | 12.1 | 9.9 | ||
SUP-13 | UL | 100 | 100 | 100 | 100 | 85 | 68 | 39.1 | 38 | 28 | 20 | 15 | 10 | |
LL | 100 | 100 | 100 | 90 | 68 | 38 | 28 | 15 | 10 | 7 | 5 | 2 | ||
DG | 100 | 100 | 100 | 96.6 | 79.7 | 38.3 | 32.0 | 25.0 | 15.2 | 10.0 | 7.8 | 5.5 | ||
AC-20 | UL | 100 | 100 | 92 | 82 | 72 | 56 | 44 | 33 | 24 | 17 | 13 | 7 | |
LL | 100 | 90 | 74 | 62 | 50 | 26 | 16 | 12 | 8 | 5 | 4 | 3 | ||
DG | 100 | 100 | 87.3 | 80.9 | 60.9 | 40.1 | 31.0 | 23.4 | 14.3 | 10.3 | 8.2 | 6.8 | ||
SUP-20 | UL | 100 | 100 | 92 | 82 | 72 | 56 | 34.6 | 33 | 24 | 17 | 13 | 8 | |
LL | 100 | 90 | 74 | 62 | 50 | 26 | 23 | 12 | 8 | 5 | 4 | 2 | ||
DG | 100 | 100 | 82.5 | 73.9 | 54.5 | 36.4 | 28.2 | 21.3 | 13.2 | 9.6 | 7.7 | 6.4 | ||
AC-25 | UL | 100 | 90 | 83 | 76 | 65 | 52 | 42 | 33 | 24 | 17 | 13 | 7 | |
LL | 90 | 70 | 60 | 51 | 40 | 24 | 14 | 10 | 7 | 5 | 4 | 3 | ||
DG | 95.0 | 80.3 | 70.2 | 65.2 | 51.4 | 37.5 | 29.3 | 22.3 | 13.9 | 10.1 | 8.3 | 6.9 |
Gradations | Sieve Size (mm) | ||||||
---|---|---|---|---|---|---|---|
2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 | ||
Passing percentage (%) | F-AC13 | 100 | 76.9 | 44.3 | 26.8 | 19.7 | 12.3 |
F-SMA13 | 100 | 82.9 | 59.0 | 46.2 | 40.2 | 27.5 | |
F-SUP13 | 100 | 77.5 | 46.3 | 29.5 | 22.7 | 15.3 | |
F-AC20 | 100 | 75.5 | 46.3 | 33.3 | 26.5 | 22.0 | |
F-SUP20 | 100 | 75.5 | 46.7 | 33.9 | 27.2 | 22.6 | |
F-AC25 | 100 | 76.0 | 47.3 | 34.6 | 28.3 | 23.5 |
SA (m2/kg) | SA<2.36 (m2/kg) | Pa (%) | P2.36 (%) | Pa-mortar (%) | |
---|---|---|---|---|---|
F-AC13 | 5.906 | 4.975 | 4.9 | 40.469 | 10.2 |
F-SMA13 | 6.980 | 6.284 | 5.8 | 22.492 | 23.2 |
F-SUP13 | 5.051 | 4.221 | 4.8 | 32.048 | 12.5 |
F-AC20 | 5.497 | 4.669 | 4.4 | 30.974 | 12.1 |
F-SUP20 | 5.141 | 4.351 | 4.3 | 28.240 | 12.9 |
F-AC25 | 5.465 | 4.661 | 4.0 | 29.292 | 11.6 |
Asphalt Mixtures | AC-13, SMA-13, SUP-13 | AC-20, SUP-20 | AC-25 |
---|---|---|---|
Asphalt binder | PG70, PG76 | PG70, PG76 | PG70 |
Test temperature | 62 °C | 58 °C | 52 °C |
Specimen size | Φ150 mm × 40 mm | Φ150 mm × 60 mm | Φ150 mm × 80 mm |
Loading cycle | 1.0 s (0.1 s + 0.9 s) | 1.0 s (0.1 s + 0.9 s) | 1.0 s (0.1 s + 0.9 s) |
Loading stress | 600, 700, 800, 900, 1000, 1100 kPa | 500, 600, 700, 800, 900, 1000 kPa | 300, 400, 500, 600, 700, 800 kPa |
Preloading | 700 kPa, 500 times | 600 kPa, 500 times | 400 kPa, 500 times |
Loading times | 100 times of each stress level | 100 times of each stress level | 100 times of each stress level |
Pavement Layer | Upper Layer | Middle Layer | Lower Layer |
---|---|---|---|
Asphalt mixture | AC-13+PG76, SMA-13+PG70, SMA-13+PG76, SUP-13+PG70 and SUP-13+PG76 | AC-20+PG70, AC-20+PG76 and SUP-20+PG70 | AC-25+PG70 |
Asphalt mortar | F-AC13+PG70, F-SMA13+PG70, F-SMA13+PG76, F-SUP13+PG70 and F-SUP13+PG76 | F-AC20+PG70, F-AC20+PG76 and F-SUP20+PG70 | F-AC25+PG70 |
Asphalt mixture test | MSRL | MSRL | MSRL |
Asphalt mortar test | MSCR | MSCR | MSCR |
Test temperature | 62 °C | 58 °C | 52 °C |
Asphalt Mixture | Jnr-12.8 | %R-12.8 | VCA | VFF | Measured CASR | Predict CASR | Relative Error |
---|---|---|---|---|---|---|---|
AC-13+PG70 | 0.000225 | 77.257 | 49.447 | 91.911 | 0.965 | 1.041 | 7.86% |
SUP-20+PG76 | 0.000180 | 94.031 | 40.133 | 90.033 | 0.563 | 0.568 | 0.91% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Shi, X.; Si, C.; Bao, B.; Hu, M. Correlation between the Rheological Properties of Asphalt Mortar and the High-Temperature Performance of Asphalt Mixture. Coatings 2023, 13, 1058. https://doi.org/10.3390/coatings13061058
Li S, Shi X, Si C, Bao B, Hu M. Correlation between the Rheological Properties of Asphalt Mortar and the High-Temperature Performance of Asphalt Mixture. Coatings. 2023; 13(6):1058. https://doi.org/10.3390/coatings13061058
Chicago/Turabian StyleLi, Song, Xingxing Shi, Chundi Si, Binshuo Bao, and Mengmeng Hu. 2023. "Correlation between the Rheological Properties of Asphalt Mortar and the High-Temperature Performance of Asphalt Mixture" Coatings 13, no. 6: 1058. https://doi.org/10.3390/coatings13061058
APA StyleLi, S., Shi, X., Si, C., Bao, B., & Hu, M. (2023). Correlation between the Rheological Properties of Asphalt Mortar and the High-Temperature Performance of Asphalt Mixture. Coatings, 13(6), 1058. https://doi.org/10.3390/coatings13061058