Crack Formation Mechanisms and Control Methods of Laser Cladding Coatings: A Review
Abstract
:1. Introduction
2. Types and Causes of Cracks
2.1. Types of Cracks
2.2. Causes of Cracks
2.2.1. Thermal Stress
2.2.2. Organizational Stress
2.2.3. Constraint Stress
3. Crack Control Method
3.1. Preferred Cladding Material
3.1.1. Control of Hard-Phase Content in the Cladding Layer
3.1.2. Preferred Hard-Phase Particle Type
3.1.3. Adding Alloying Elements
3.1.4. Addition of Rare Earth Oxides
3.1.5. Adding a Transition Layer
3.2. Optimization of Cladding Process Parameters
3.2.1. Main Process Parameters
3.2.2. Other Process Parameters
3.3. Increasing Heat Treatment
3.4. Application of Auxiliary Field
3.5. Numerical Analysis
3.5.1. Melt Pool and Physical Field Model
3.5.2. Process Parameters and Crack Prediction Model
3.6. Other Methods
3.7. Cracks Control Methods Comparison and Evaluation
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, L.; Xue, P.; Lan, Q.; Meng, G.; Ren, Y.; Yang, Z.; Xu, P.; Liu, Z. Recent Research and Development Status of Laser Cladding: A Review. Opt. Laser Technol. 2021, 138, 106915. [Google Scholar] [CrossRef]
- He, B.; Zhang, L.; Zhu, Q.; Wang, J.; Yun, X.; Luo, J.; Chen, Z. Effect of Solution Treated 316L Layer Fabricated by Laser Cladding on Wear and Corrosive Wear Resistance. Opt. Laser Technol. 2020, 121, 105788. [Google Scholar] [CrossRef]
- Wang, Q.-Y.; Zhang, Y.-F.; Bai, S.-L.; Liu, Z.-D. Microstructures, Mechanical Properties and Corrosion Resistance of Hastelloy C22 Coating Produced by Laser Cladding. J. Alloys Compd. 2013, 553, 253–258. [Google Scholar] [CrossRef]
- Lu, X.-L.; Liu, X.-B.; Yu, P.-C.; Qiao, S.-J.; Zhai, Y.-J.; Wang, M.-D.; Chen, Y.; Xu, D. Synthesis and Characterization of Ni60-HBN High Temperature Self-Lubricating Anti-Wear Composite Coatings on Ti6Al4V Alloy by Laser Cladding. Opt. Laser Technol. 2016, 78, 87–94. [Google Scholar] [CrossRef]
- Wu, C.L.; Zhang, S.; Zhang, C.H.; Zhang, J.B.; Liu, Y.; Chen, J. Effects of SiC Content on Phase Evolution and Corrosion Behavior of SiC-Reinforced 316L Stainless Steel Matrix Composites by Laser Melting Deposition. Opt. Laser Technol. 2019, 115, 134–139. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, X.; Yan, H. Phase Composition, Microstructure Evolution and Wear Behavior of Ni-Mn-Si Coatings on Copper by Laser Cladding. Surf. Coat. Technol. 2017, 332, 504–510. [Google Scholar] [CrossRef]
- Siddiqui, A.A.; Dubey, A.K. Recent Trends in Laser Cladding and Surface Alloying. Opt. Laser Technol. 2021, 134, 106619. [Google Scholar] [CrossRef]
- Chen, L.; Yu, T.; Chen, X.; Zhao, Y.; Guan, C. Process Optimization, Microstructure and Microhardness of Coaxial Laser Cladding TiC Reinforced Ni-Based Composite Coatings. Opt. Laser Technol. 2022, 152, 108129. [Google Scholar] [CrossRef]
- Lu, J.Z.; Xue, K.N.; Lu, H.F.; Xing, F.; Luo, K.Y. Laser Shock Wave-Induced Wear Property Improvement and Formation Mechanism of Laser Cladding Ni25 Coating on H13 Tool Steel. J. Mater. Process. Technol. 2021, 296, 117202. [Google Scholar] [CrossRef]
- Guo, C.; Chen, J.; Zhou, J.; Zhao, J.; Wang, L.; Yu, Y.; Zhou, H. Effects of WC–Ni Content on Microstructure and Wear Resistance of Laser Cladding Ni-Based Alloys Coating. Surf. Coat. Technol. 2012, 206, 2064–2071. [Google Scholar] [CrossRef]
- Song, J.; Deng, Q.; Chen, C.; Hu, D.; Li, Y. Rebuilding of Metal Components with Laser Cladding Forming. Appl. Surf. Sci. 2006, 252, 7934–7940. [Google Scholar] [CrossRef]
- Lu, M.; McCormick, P.; Zhao, Y.; Fan, Z.; Huang, H. Laser Deposition of Compositionally Graded Titanium Oxide on Ti6Al4V Alloy. Ceram. Int. 2018, 44, 20851–20861. [Google Scholar] [CrossRef]
- Lian, G.; Yao, M.; Zhang, Y.; Huang, X. Analysis and Respond Surface Methodology Modeling on Property and Performance of Two-Dimensional Gradient Material Laser Cladding on Die-Cutting Tool. Materials 2018, 11, 2052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Song, B.; Wei, Q.; Bourell, D.; Shi, Y. A Review of Selective Laser Melting of Aluminum Alloys: Processing, Microstructure, Property and Developing Trends. J. Mater. Sci. Technol. 2019, 35, 270–284. [Google Scholar] [CrossRef]
- Galy, C.; Le Guen, E.; Lacoste, E.; Arvieu, C. Main Defects Observed in Aluminum Alloy Parts Produced by SLM: From Causes to Consequences. Addit. Manuf. 2018, 22, 165–175. [Google Scholar] [CrossRef]
- Quazi, M.M.; Fazal, M.A.; Haseeb, A.S.M.A.; Yusof, F.; Masjuki, H.H.; Arslan, A. Effect of Rare Earth Elements and Their Oxides on Tribo-Mechanical Performance of Laser Claddings: A Review. J. Rare Earths 2016, 34, 549–564. [Google Scholar] [CrossRef]
- Wang, X.; Lei, L.; Yu, H. A Review on Microstructural Features and Mechanical Properties of Wheels/Rails Cladded by Laser Cladding. Micromachines 2021, 12, 152. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Cong, W. A Review on Laser Deposition-Additive Manufacturing of Ceramics and Ceramic Reinforced Metal Matrix Composites. Ceram. Int. 2018, 44, 20599–20612. [Google Scholar] [CrossRef]
- Fang, Z.-C.; Wu, Z.-L.; Huang, C.-G.; Wu, C.-W. Review on Residual Stress in Selective Laser Melting Additive Manufacturing of Alloy Parts. Opt. Laser Technol. 2020, 129, 106283. [Google Scholar] [CrossRef]
- Sanaei, N.; Fatemi, A. Defects in Additive Manufactured Metals and Their Effect on Fatigue Performance: A State-of-the-Art Review. Prog. Mater. Sci. 2021, 117, 100724. [Google Scholar] [CrossRef]
- Cheng, J.; Xing, Y.; Dong, E.; Zhao, L.; Liu, H.; Chang, T.; Chen, M.; Wang, J.; Lu, J.; Wan, J. An Overview of Laser Metal Deposition for Cladding: Defect Formation Mechanisms, Defect Suppression Methods and Performance Improvements of Laser-Cladded Layers. Materials 2022, 15, 5522. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Mao, H.; Zhang, D.; Zhao, X.; Shen, Y. Online Study of Cracks during Laser Cladding Process Based on Acoustic Emission Technique and Finite Element Analysis. Appl. Surf. Sci. 2008, 255, 3267–3275. [Google Scholar] [CrossRef]
- Wang, D.; Liang, E.; Chao, M.; Yuan, B. Investigation on the Microstructure and Cracking Susceptibility of Laser-Clad V2O5/NiCrBSiC Alloy Coatings. Surf. Coat. Technol. 2008, 202, 1371–1378. [Google Scholar] [CrossRef]
- Cloots, M.; Uggowitzer, P.J.; Wegener, K. Investigations on the Microstructure and Crack Formation of IN738LC Samples Processed by Selective Laser Melting Using Gaussian and Doughnut Profiles. Mater. Des. 2016, 89, 770–784. [Google Scholar] [CrossRef]
- Eo, D.-R.; Chung, S.-G.; Yang, J.; Cho, W.T.; Park, S.-H.; Cho, J.-W. Surface Modification of High-Mn Steel via Laser-DED: Microstructural Characterization and Hot Crack Susceptibility of Clad Layer. Mater. Des. 2022, 223, 111188. [Google Scholar] [CrossRef]
- Alizadeh-Sh, M.; Marashi, S.P.H.; Ranjbarnodeh, E.; Shoja-Razavi, R. Laser Cladding of Inconel 718 Powder on a Non-Weldable Substrate: Clad Bead Geometry-Solidification Cracking Relationship. J. Manuf. Process. 2020, 56, 54–62. [Google Scholar] [CrossRef]
- Shankar, V.; Gill, T.P.S.; Mannan, S.L.; Terrance, A.L.E.; Sundaresan, S. Relation between Microstructure, Composition, and Hot Cracking in Ti-Stabilized Austenitic Stainless Steel Weldments. Metall. Mater. Trans. A 2000, 31, 3109–3122. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, F.; Zhang, K.; Nie, P.; Elmi Hosseini, S.R.; Feng, K.; Li, Z. Dendritic Microstructure and Hot Cracking of Laser Additive Manufactured Inconel 718 under Improved Base Cooling. J. Alloys Compd. 2016, 670, 312–321. [Google Scholar] [CrossRef]
- Ebrahimzadeh, H.; Farhangi, H.; Mousavi, S.A.A.A. Hot Cracking in Autogenous Welding of 6061-T6 Aluminum Alloy by Rectangular Pulsed Nd: YAG Laser Beam. Weld. World 2020, 64, 1077–1088. [Google Scholar] [CrossRef]
- Zenitani, S.; Hayakawa, N.; Yamamoto, J.; Hiraoka, K.; Morikage, Y.; Kubo, T.; Yasuda, K.; Amano, K. Development of New Low Transformation Temperature Welding Consumable to Prevent Cold Cracking in High Strength Steel Welds. Sci. Technol. Weld. Join. 2007, 12, 516–522. [Google Scholar] [CrossRef]
- Hu, L.H.; Huang, J.; Li, Z.G.; Wu, Y.X. Effects of Preheating Temperature on Cold Cracks, Microstructures and Properties of High Power Laser Hybrid Welded 10Ni3CrMoV Steel. Mater. Des. 2011, 32, 1931–1939. [Google Scholar] [CrossRef]
- Boes, J.; Röttger, A.; Theisen, W. Processing of X65MoCrWV3-2 Cold Work Tool Steel by Laser Powder Bed Fusion. Steel Res. Int. 2020, 91, 1900445. [Google Scholar] [CrossRef]
- Li, K.; Wang, X.; Brodusch, N.; Tu, G. Mitigating Cracking in Laser Powder Bed Fusion of Ti-48Al-2Cr-2Nb via Introducing Massive β Phase. Mater. Charact. 2023, 196, 112558. [Google Scholar] [CrossRef]
- Sadhu, A.; Choudhary, A.; Sarkar, S.; Nair, A.M.; Nayak, P.; Pawar, S.D.; Muvvala, G.; Pal, S.K.; Nath, A.K. A Study on the Influence of Substrate Pre-Heating on Mitigation of Cracks in Direct Metal Laser Deposition of NiCrSiBC-60%WC Ceramic Coating on Inconel 718. Surf. Coat. Technol. 2020, 389, 125646. [Google Scholar] [CrossRef]
- Liu, S.; Sun, Y.; Zhai, P.; Fan, P.; Zhang, Y.; Li, M.; Fang, J.; Wu, R.; Cai, Z. Microstructure and Properties of Nickel-Based Gradient Coatings Prepared Using Cold Spraying Combined with Laser Cladding Methods. Materials 2023, 16, 1627. [Google Scholar] [CrossRef]
- Dmitrieva, A.; Klimova-Korsmik, O.; Gushchina, M.; Korsmik, R.; Zadykyan, G.; Tukov, S. Effect of the Laser Cladding Parameters on the Crack Formation and Microstructure during Nickel Superalloy Gas Turbine Engines Repair. Metals 2023, 13, 393. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, Y.; Chen, Y.; Su, Z.; Shan, J.; Wu, A.; Sato, Y.S.; Gu, H.; Tang, X. The Role of the Pulsed-Wave Laser Characteristics on Restraining Hot Cracking in Laser Cladding Non-Weldable Nickel-Based Superalloy. Mater. Des. 2021, 198, 109346. [Google Scholar] [CrossRef]
- Meng, L.; Sheng, P.; Zeng, X. Comparative Studies on the Ni60 Coatings Deposited by Conventional and Induction Heating Assisted Extreme-High-Speed Laser Cladding Technology: Formability, Microstructure and Hardness. J. Mater. Res. Technol. 2022, 16, 1732–1746. [Google Scholar] [CrossRef]
- Ma, Q.; Lu, B.; Zhang, Y.; Wang, Y.; Yan, X.; Liu, M.; Zhao, G. Crack-Free 60 Wt% WC Reinforced FeCoNiCr High-Entropy Alloy Composite Coating Fabricated by Laser Cladding. Mater. Lett. 2022, 324, 132667. [Google Scholar] [CrossRef]
- Wang, K.; Liu, B.; Wang, Q.; Bao, R. Macrostructures and Mechanical Properties in Laser Melting Deposited Titanium Alloy Plate at Different Thickness Positions. Mater. Sci. Eng. A 2022, 832, 142433. [Google Scholar] [CrossRef]
- Wang, K.; Bao, R.; Liu, D.; Yan, C. Plastic Anisotropy of Laser Melting Deposited Ti–5Al–5Mo–5V–1Cr–1Fe Titanium Alloy. Mater. Sci. Eng. A 2019, 746, 276–289. [Google Scholar] [CrossRef]
- Mishra, R.S.; Ma, Z.Y. Friction Stir Welding and Processing. Mater. Sci. Eng. R Rep. 2005, 50, 1–78. [Google Scholar] [CrossRef]
- Wu, P.; Du, H.M.; Chen, X.L.; Li, Z.Q.; Bai, H.L.; Jiang, E.Y. Influence of WC Particle Behavior on the Wear Resistance Properties of Ni–WC Composite Coatings. Wear 2004, 257, 142–147. [Google Scholar] [CrossRef]
- Bussu, G.; Irving, P. The Role of Residual Stress and Heat Affected Zone Properties on Fatigue Crack Propagation in Friction Stir Welded 2024-T351 Aluminium Joints. Int. J. Fatigue 2003, 25, 77–88. [Google Scholar] [CrossRef]
- Zhang, Z.; Kovacevic, R. A Thermo-Mechanical Model for Simulating the Temperature and Stress Distribution during Laser Cladding Process. Int. J. Adv. Manuf. Technol. 2019, 102, 457–472. [Google Scholar] [CrossRef]
- Zhou, S.; Zeng, X.; Hu, Q.; Huang, Y. Analysis of Crack Behavior for Ni-Based WC Composite Coatings by Laser Cladding and Crack-Free Realization. Appl. Surf. Sci. 2008, 255, 1646–1653. [Google Scholar] [CrossRef]
- Ignat, S.; Sallamand, P.; Nichici, A.; Vannes, B.; Grevey, D.; Cicalã, E. MoSi2 Laser Cladding—Elaboration, Characterisation and Addition of Non-Stabilized ZrO2 Powder Particles. Intermetallics 2003, 11, 931–938. [Google Scholar] [CrossRef]
- Shah, K.; Khurshid, H.; ul Haq, I.; Anwar, S.; Shah, S.A. Numerical Modelling of Pulsed and Continuous Wave Direct Laser Deposition of Ti-6Al-4V and Inconel 718. Int. J. Adv. Manuf. Technol. 2018, 95, 847–860. [Google Scholar] [CrossRef]
- Sun, S.; Fu, H.; Chen, S.; Ping, X.; Wang, K.; Guo, X.; Lin, J.; Lei, Y. A Numerical-Experimental Investigation of Heat Distribution, Stress Field and Crack Susceptibility in Ni60A Coatings. Opt. Laser Technol. 2019, 117, 175–185. [Google Scholar] [CrossRef]
- Ramakrishnan, A.; Dinda, G.P. Direct Laser Metal Deposition of Inconel 738. Mater. Sci. Eng. A 2019, 740–741, 1–13. [Google Scholar] [CrossRef]
- Brauner, N.; Shacham, M. Statistical Analysis of Linear and Nonlinear Correlation of the Arrhenius Equation Constants. Chem. Eng. Process. Process Intensif. 1997, 36, 243–249. [Google Scholar] [CrossRef]
- Zhou, Z.; Di, X.; Li, C.; Wu, S. Effect of Restraint Stress on Martensite Transformation in Low Transformation Temperature Weld Metal. J. Mater. Sci. 2020, 55, 2202–2214. [Google Scholar] [CrossRef]
- Bendeich, P.; Alam, N.; Brandt, M.; Carr, D.; Short, K.; Blevins, R.; Curfs, C.; Kirstein, O.; Atkinson, G.; Holden, T.; et al. Residual Stress Measurements in Laser Clad Repaired Low Pressure Turbine Blades for the Power Industry. Mater. Sci. Eng. A 2006, 437, 70–74. [Google Scholar] [CrossRef]
- Kirchlechner, C.; Martinschitz, K.J.; Daniel, R.; Klaus, M.; Genzel, C.; Mitterer, C.; Keckes, J. Residual Stresses and Thermal Fatigue in CrN Hard Coatings Characterized by High-Temperature Synchrotron X-Ray Diffraction. Thin Solid Films 2010, 518, 2090–2096. [Google Scholar] [CrossRef]
- Dixneit, J.; Kromm, A.; Hannemann, A.; Friedersdorf, P.; Kannengiesser, T.; Gibmeier, J. In-Situ Load Analysis in Multi-Run Welding Using LTT Filler Materials. Weld. World 2016, 60, 1159–1168. [Google Scholar] [CrossRef]
- Yu, T.; Deng, Q.; Dong, G.; Yang, J. Effects of Ta on Microstructure and Microhardness of Ni Based Laser Clad Coating. Appl. Surf. Sci. 2011, 257, 5098–5103. [Google Scholar] [CrossRef]
- Zhang, S.H.; Li, M.X.; Cho, T.Y.; Yoon, J.H.; Lee, C.G.; He, Y.Z. Laser Clad Ni-Base Alloy Added Nano- and Micron-Size CeO2 Composites. Opt. Laser Technol. 2008, 40, 716–722. [Google Scholar] [CrossRef]
- Zheng, B.J.; Chen, X.M.; Lian, J.S. Microstructure and Wear Property of Laser Cladding Al+SiC Powders on AZ91D Magnesium Alloy. Opt. Lasers Eng. 2010, 48, 526–532. [Google Scholar] [CrossRef]
- Xu, G.; Kutsuna, M.; Liu, Z.; Zhang, H. Characteristics of Ni-Based Coating Layer Formed by Laser and Plasma Cladding Processes. Mater. Sci. Eng. A 2006, 417, 63–72. [Google Scholar] [CrossRef]
- Huang, L.; Zhou, J.; Xu, J.; Huo, K.; He, W.; Meng, X.; Huang, S. Microstructure and Wear Resistance of Electromagnetic Field Assisted Multi-Layer Laser Clad Fe901 Coating. Surf. Coat. Technol. 2020, 395, 125876. [Google Scholar] [CrossRef]
- Li, X.P.; Roberts, M.; Liu, Y.J.; Kang, C.W.; Huang, H.; Sercombe, T.B. Effect of Substrate Temperature on the Interface Bond between Support and Substrate during Selective Laser Melting of Al–Ni–Y–Co–La Metallic Glass. Mater. Des. (1980–2015) 2015, 65, 1–6. [Google Scholar] [CrossRef]
- Gan, Z.; Yu, G.; He, X.; Li, S. Surface-Active Element Transport and Its Effect on Liquid Metal Flow in Laser-Assisted Additive Manufacturing. Int. Commun. Heat Mass Transf. 2017, 86, 206–214. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Wang, L.; Wang, Y.; Lyu, F.; Zhan, X. Crack Defects and Formation Mechanism of FeCoCrNi High Entropy Alloy Coating on TC4 Titanium Alloy Prepared by Laser Cladding. J. Alloys Compd. 2022, 903, 163905. [Google Scholar] [CrossRef]
- Ning, Z.; Li, T.; Hui, G.; Mengqi, Z. Effect of Ultra-Fine WC Particles on Microstructural Evolution and Wear Behavior of Ni-Based Nano-CeO2 Coatings Produced by Laser. Rare Met. Mater. Eng. 2018, 47, 20–25. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Peng, H.; Xue, Y.; Wang, B.; Su, G.; Zhu, J.; Li, A. Microstructure and Properties of WC/Ni-Based Laser-Clad Coatings with Different WC Content Values. Materials 2022, 15, 6309. [Google Scholar] [CrossRef]
- Shen, X.; He, X.; Gao, L.; Su, G.; Xu, C.; Xu, N. Study on Crack Behavior of Laser Cladding Ceramic-Metal Composite Coating with High Content of WC. Ceram. Int. 2022, 48, 17460–17470. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, S.Q.; Li, A.; Wang, H.M. Microstructure and Tensile Properties of Laser Melting Deposited TiC/TA15 Titanium Matrix Composites. J. Alloys Compd. 2009, 485, 156–162. [Google Scholar] [CrossRef]
- Zhang, P.; Pang, Y.; Yu, M. Effects of WC Particle Types on the Microstructures and Properties of WC-Reinforced Ni60 Composite Coatings Produced by Laser Cladding. Metals 2019, 9, 583. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Ma, Y.; Ponge, D.; Zaefferer, S.; Jägle, E.A.; Gault, B.; Rollett, A.D.; Raabe, D. Thermodynamics-Guided Alloy and Process Design for Additive Manufacturing. Nat. Commun. 2022, 13, 4361. [Google Scholar] [CrossRef]
- Chen, H.; Xu, C.; Chen, J.; Zhao, H.; Zhang, L.; Wang, Z. Microstructure and Phase Transformation of WC/Ni60B Laser Cladding Coatings during Dry Sliding Wear. Wear 2008, 264, 487–493. [Google Scholar] [CrossRef]
- Paul, C.P.; Toyserkani, E.; Khajepour, A.; Corbin, S. Cladding of WC–12 Co on Low Carbon Steel Using a Pulsed Nd:YAG Laser. Mater. Sci. Eng. A 2007, 464, 170–176. [Google Scholar] [CrossRef]
- Wang, K.L.; Zhang, Q.B.; Sun, M.L.; Wei, X.G. Microstructural Characteristics of Laser Clad Coatings with Rare Earth Metal Elements. J. Mater. Process. Technol. 2003, 139, 448–452. [Google Scholar] [CrossRef]
- He, X.; Song, R.G.; Kong, D.J. Effects of TiC on the Microstructure and Properties of TiC/TiAl Composite Coating Prepared by Laser Cladding. Opt. Laser Technol. 2019, 112, 339–348. [Google Scholar] [CrossRef]
- Wang, H.; Zuo, D.; Sun, Y.; Xu, F.; Zhang, D. Microstructure of Nanometer Al2O3 Dispersion Strengthened Ni-Based High-Temperature Protective Coatings by Laser Cladding. Trans. Nonferrous Met. Soc. China 2009, 19, 586–591. [Google Scholar] [CrossRef]
- Li, X.; Yang, X.; Yi, D.; Liu, B.; Zhu, J.; Li, J.; Gao, C.; Wang, L. Effects of NbC Content on Microstructural Evolution and Mechanical Properties of Laser Cladded Fe50Mn30Co10Cr10-XNbC Composite Coatings. Intermetallics 2021, 138, 107309. [Google Scholar] [CrossRef]
- Zhang, J.; Lei, J.; Gu, Z.; Tantai, F.; Tian, H.; Han, J.; Fang, Y. Effect of WC-12Co Content on Wear and Electrochemical Corrosion Properties of Ni-Cu/WC-12Co Composite Coatings Deposited by Laser Cladding. Surf. Coat. Technol. 2020, 393, 125807. [Google Scholar] [CrossRef]
- Mazaheri Tehrani, H.; Shoja-Razavi, R.; Erfanmanesh, M.; Hashemi, S.H.; Barekat, M. Evaluation of the Mechanical Properties of WC-Ni Composite Coating on an AISI 321 Steel Substrate. Opt. Laser Technol. 2020, 127, 106138. [Google Scholar] [CrossRef]
- Dai, Q.-L.; Luo, C.; You, F. Crack Restraining Methods and Their Effects on the Microstructures and Properties of Laser Cladded WC/Fe Coatings. Materials 2018, 11, 2541. [Google Scholar] [CrossRef] [Green Version]
- Qi, K.; Yang, Y.; Liang, W.; Jin, K.; Xiong, L. Influence of the Anomalous Elastic Modulus on the Crack Sensitivity and Wear Properties of Laser Cladding under the Effects of a Magnetic Field and Cr Addition. Surf. Coat. Technol. 2021, 423, 127575. [Google Scholar] [CrossRef]
- Sun, S.; Fu, H.; Ping, X.; Guo, X.; Lin, J.; Lei, Y.; Wu, W.; Zhou, J. Effect of CeO2 Addition on Microstructure and Mechanical Properties of In-Situ (Ti, Nb) C/Ni Coating. Surf. Coat. Technol. 2019, 359, 300–313. [Google Scholar] [CrossRef]
- Shu, D.; Dai, S.; Wang, G.; Si, W.; Xiao, P.; Cui, X.; Chen, X. Influence of CeO2 Content on WC Morphology and Mechanical Properties of WC/Ni Matrix Composites Coating Prepared by Laser in-Situ Synthesis Method. J. Mater. Res. Technol. 2020, 9, 11111–11120. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.H.; Qu, K.L.; Liu, S.S. Effect of Rare Earth Oxide on Microstructure and High Temperature Oxidation Properties of Laser Cladding Coatings on 5CrNiMo Die Steel Substrate. Opt. Laser Technol. 2019, 119, 105597. [Google Scholar] [CrossRef]
- Li, J.; Luo, X.; Li, G.J. Effect of Y2O3 on the Sliding Wear Resistance of TiB/TiC-Reinforced Composite Coatings Fabricated by Laser Cladding. Wear 2014, 310, 72–82. [Google Scholar] [CrossRef]
- Li, M.; Han, B.; Wang, Y.; Pu, K. Effects of La2O3 on the Microstructure and Property of Laser Cladding Ni-Based Ceramic Coating. Optik 2017, 130, 1032–1037. [Google Scholar] [CrossRef]
- Farahmand, P.; Liu, S.; Zhang, Z.; Kovacevic, R. Laser Cladding Assisted by Induction Heating of Ni–WC Composite Enhanced by Nano-WC and La2O3. Ceram. Int. 2014, 40, 15421–15438. [Google Scholar] [CrossRef]
- Tian, Y.S.; Chen, C.Z.; Chen, L.X.; Huo, Q.H. Effect of RE Oxides on the Microstructure of the Coatings Fabricated on Titanium Alloys by Laser Alloying Technique. Scr. Mater. 2006, 54, 847–852. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, F.; Zhang, H.; Zhang, T.; Wang, H.; Xu, Y.; Ma, Q. Influence of CeO2 Addition on Forming Quality and Microstructure of TiC -Reinforced CrTi4-Based Laser Cladding Composite Coating. Mater. Charact. 2021, 171, 110732. [Google Scholar] [CrossRef]
- Yuling, G.; Meiping, W.; Xiaojin, M.; Chen, C. Effect of CeO2 on Crack Sensitivity and Tribological Properties of Ni60A Coatings Prepared by Laser Cladding. Adv. Mech. Eng. 2021, 13, 168781402110131. [Google Scholar] [CrossRef]
- Wang, C.; Gao, Y.; Zeng, Z.; Fu, Y. Effect of Rare-Earth on Friction and Wear Properties of Laser Cladding Ni-Based Coatings on 6063Al. J. Alloys Compd. 2017, 727, 278–285. [Google Scholar] [CrossRef]
- Tey, C.F.; Tan, X.; Sing, S.L.; Yeong, W.Y. Additive Manufacturing of Multiple Materials by Selective Laser Melting: Ti-Alloy to Stainless Steel via a Cu-Alloy Interlayer. Addit. Manuf. 2020, 31, 100970. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, Z.; Shi, L.; Xi, M. Characterization of Laser Powder Deposited Ti–TiC Composites and Functional Gradient Materials. J. Mater. Process. Technol. 2008, 206, 438–444. [Google Scholar] [CrossRef]
- Mahamood, R.M.; Akinlabi, E.T. Laser Metal Deposition of Functionally Graded Ti6Al4V/TiC. Mater. Des. 2015, 84, 402–410. [Google Scholar] [CrossRef]
- Cao, S.; Liang, J.; Wang, L.; Zhou, J. Effects of NiCr Intermediate Layer on Microstructure and Tribological Property of Laser Cladding Cr3C2 Reinforced Ni60A-Ag Composite Coating on Copper Alloy. Opt. Laser Technol. 2021, 142, 106963. [Google Scholar] [CrossRef]
- Cai, Y.; Sun, D.; Cui, Y.; Manladan, S.M.; Wang, T.; Shan, M.; Han, J. Effect of CoCrFeMnNi Transition Cladding Layer on Crack Resistance of CoCrFeMnNi + x(TiC) Composite Cladding Layer. Mater. Lett. 2021, 304, 130700. [Google Scholar] [CrossRef]
- Thawari, N.; Gullipalli, C.; Katiyar, J.K.; Gupta, T.V.K. Influence of Buffer Layer on Surface and Tribomechanical Properties of Laser Cladded Stellite 6. Mater. Sci. Eng. B 2021, 263, 114799. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Q.; Zhang, L.; Chen, D.X.; Jin, H.; Li, J.D.; Zhang, J.W.; Ban, C.Y. Microstructure and Properties of Ni-WC Gradient Composite Coating Prepared by Laser Cladding. Ceram. Int. 2022, 48, 7905–7917. [Google Scholar] [CrossRef]
- Li, L.; Wang, J.; Lin, P.; Liu, H. Microstructure and Mechanical Properties of Functionally Graded TiCp/Ti6Al4V Composite Fabricated by Laser Melting Deposition. Ceram. Int. 2017, 43, 16638–16651. [Google Scholar] [CrossRef]
- Lee, Y.; Nordin, M.; Babu, S.S.; Farson, D.F. Effect of Fluid Convection on Dendrite Arm Spacing in Laser Deposition. Metall. Mater. Trans. B 2014, 45, 1520–1529. [Google Scholar] [CrossRef]
- Fu, F.; Zhang, Y.; Chang, G.; Dai, J. Analysis on the Physical Mechanism of Laser Cladding Crack and Its Influence Factors. Optik 2016, 127, 200–202. [Google Scholar] [CrossRef]
- El-Labban, H.F.; Mahmoud, E.R.I.; Algahtani, A. Microstructure, Wear, and Corrosion Characteristics of TiC-Laser Surface Cladding on Low-Carbon Steel. Metall. Mater. Trans. B 2016, 47, 974–982. [Google Scholar] [CrossRef]
- Valsecchi, B.; Previtali, B.; Vedani, M.; Vimercati, G. Fiber Laser Cladding with High Content of WC-Co Based Powder. Int. J. Mater. 2010, 3, 1127–1130. [Google Scholar] [CrossRef]
- Song, M.; Wu, L.; Liu, J.; Hu, Y. Effects of Laser Cladding on Crack Resistance Improvement for Aluminum Alloy Used in Aircraft Skin. Opt. Laser Technol. 2021, 133, 106531. [Google Scholar] [CrossRef]
- Xiong, Z.; Chen, G.; Zeng, X. Effects of Process Variables on Interfacial Quality of Laser Cladding on Aeroengine Blade Material GH4133. J. Mater. Process. Technol. 2009, 209, 930–936. [Google Scholar] [CrossRef]
- Baldridge, T.; Poling, G.; Foroozmehr, E.; Kovacevic, R.; Metz, T.; Kadekar, V.; Gupta, M.C. Laser Cladding of Inconel 690 on Inconel 600 Superalloy for Corrosion Protection in Nuclear Applications. Opt. Lasers Eng. 2013, 51, 180–184. [Google Scholar] [CrossRef]
- Yu, J.; Sun, W.; Huang, H.; Wang, W.; Wang, Y.; Hu, Y. Crack Sensitivity Control of Nickel-Based Laser Coating Based on Genetic Algorithm and Neural Network. Coatings 2019, 9, 728. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.; Yang, Y.; Qi, K.; Lu, X.; Li, J. Investigation of the Microstructure and Properties of NiCrBSi Coating Obtained by Laser Cladding with Different Process Parameters. Trans. Indian Inst. Met. 2020, 73, 2623–2634. [Google Scholar] [CrossRef]
- Majumdar, J.D.; Rittinghaus, S.K.; Wissenbach, K.; Höche, D.; Blawert, C.; Weisheit, A. Direct Laser Cladding of the Silicide Dispersed Titanium Aluminide (Ti45Al5Nb0.5Si) Composites. Opt. Laser Technol. 2018, 106, 182–190. [Google Scholar] [CrossRef]
- Desale, G.R.; Paul, C.P.; Gandhi, B.K.; Jain, S.C. Erosion Wear Behavior of Laser Clad Surfaces of Low Carbon Austenitic Steel. Wear 2009, 266, 975–987. [Google Scholar] [CrossRef]
- Saboori, A.; Gallo, D.; Biamino, S.; Fino, P.; Lombardi, M. An Overview of Additive Manufacturing of Titanium Components by Directed Energy Deposition: Microstructure and Mechanical Properties. Appl. Sci. 2017, 7, 883. [Google Scholar] [CrossRef] [Green Version]
- Beuth, J.; Klingbeil, N. The Role of Process Variables in Laser-Based Direct Metal Solid Freeform Fabrication. JOM 2001, 53, 36–39. [Google Scholar] [CrossRef]
- Javid, Y. Multi-Response Optimization in Laser Cladding Process of WC Powder on Inconel 718. CIRP J. Manuf. Sci. Technol. 2020, 31, 406–417. [Google Scholar] [CrossRef]
- Khorram, A.; Davoodi Jamaloei, A.; Sepehrnia, R. Analysis of Solidification Crack Behavior for Amdry 997 Coating on Inconel 713 LC Superalloy by Laser Cladding Process. Optik 2022, 264, 169407. [Google Scholar] [CrossRef]
- Shi, B.; Mu, X.; Zhan, H.; Deng, L.; Li, T.; Zhang, H. Crack Behavior of Ni60A Coating Prepared by Laser Cladding on a Tilted Substrate. Coatings 2022, 12, 966. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Hagino, H. Effects of the Ambient Oxygen Concentration on WC-12Co Cermet Coatings Fabricated by Laser Cladding. Opt. Laser Technol. 2021, 139, 106922. [Google Scholar] [CrossRef]
- Ding, C.; Cui, X.; Jiao, J.; Zhu, P. Effects of Substrate Preheating Temperatures on the Microstructure, Properties, and Residual Stress of 12CrNi2 Prepared by Laser Cladding Deposition Technique. Materials 2018, 11, 2401. [Google Scholar] [CrossRef] [Green Version]
- Bidron, G.; Doghri, A.; Malot, T.; Fournier-Dit-Chabert, F.; Thomas, M.; Peyre, P. Reduction of the Hot Cracking Sensitivity of CM-247LC Superalloy Processed by Laser Cladding Using Induction Preheating. J. Mater. Process. Technol. 2020, 277, 116461. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Huang, Y.; Zeng, X.; Hu, Q. Microstructure Characteristics of Ni-Based WC Composite Coatings by Laser Induction Hybrid Rapid Cladding. Mater. Sci. Eng. A 2008, 480, 564–572. [Google Scholar] [CrossRef]
- Li, G.J.; Li, J.; Luo, X. Effects of Post-Heat Treatment on Microstructure and Properties of Laser Cladded Composite Coatings on Titanium Alloy Substrate. Opt. Laser Technol. 2015, 65, 66–75. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Conlon, K.; Xue, L.; Rogge, R. Experimental Study of Residual Stresses in Laser Clad AISI P20 Tool Steel on Pre-Hardened Wrought P20 Substrate. Mater. Sci. Eng. A 2010, 527, 7265–7273. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wang, S.-H.; Xue, L. On the Development of Microstructures and Residual Stresses during Laser Cladding and Post-Heat Treatments. J. Mater. Sci. 2012, 47, 779–792. [Google Scholar] [CrossRef]
- Telasang, G.; Dutta Majumdar, J.; Wasekar, N.; Padmanabham, G.; Manna, I. Microstructure and Mechanical Properties of Laser Clad and Post-Cladding Tempered AISI H13 Tool Steel. Metall. Mater. Trans. A 2015, 46, 2309–2321. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, Y.; Yang, J.; Wang, Q. Influence of Laser Remelting on Organization, Mechanical Properties and Corrosion Resistance of Fe-Based Amorphous Composite Coating. Surf. Coat. Technol. 2021, 414, 127081. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, G.; Wang, Y.; Li, H.; Qin, Z.; Lu, X. Crack-Free Fe-Based Amorphous Coating Synthesized by Laser Cladding. Mater. Lett. 2018, 210, 46–50. [Google Scholar] [CrossRef]
- Zhai, L.L.; Zhang, J.W.; Ban, C.Y. Influence on the Microstructure of Laser Cladding NiCrBSi Coatings with Electromagnetic Compound Field. SSP 2019, 295, 15–20. [Google Scholar] [CrossRef]
- Xie, S.; Li, R.; Yuan, T.; Chen, C.; Zhou, K.; Song, B.; Shi, Y. Laser Cladding Assisted by Friction Stir Processing for Preparation of Deformed Crack-Free Ni-Cr-Fe Coating with Nanostructure. Opt. Laser Technol. 2018, 99, 374–381. [Google Scholar] [CrossRef]
- Li, M.; Han, B.; Wang, Y.; Song, L.; Guo, L. Investigation on Laser Cladding High-Hardness Nano-Ceramic Coating Assisted by Ultrasonic Vibration Processing. Optik 2016, 127, 4596–4600. [Google Scholar] [CrossRef]
- Qi, K.; Yang, Y.; Sun, R.; Hu, G.; Lu, X.; Li, J.; Liang, W.; Jin, K.; Xiong, L. Effect of Magnetic Field on Crack Control of Co-Based Alloy Laser Cladding. Opt. Laser Technol. 2021, 141, 107129. [Google Scholar] [CrossRef]
- Han, X.; Li, C.; Yang, Y.; Gao, X.; Gao, H. Experimental Research on the Influence of Ultrasonic Vibrations on the Laser Cladding Process of a Disc Laser. Surf. Coat. Technol. 2021, 406, 126750. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, F.Q.; Li, Q.; Zhang, L.; Jin, H.; Zhang, J.W. Microstructure and Properties of Ni60 Alloy Coating Prepared by Electromagnetic Compound Field Assisted Laser Cladding. Mater. Chem. Phys. 2022, 291, 126678. [Google Scholar] [CrossRef]
- Hu, G.; Yang, Y.; Sun, R.; Qi, K.; Lu, X.; Li, J. Microstructure and Properties of Laser Cladding NiCrBSi Coating Assisted by Electromagnetic-Ultrasonic Compound Field. Surf. Coat. Technol. 2020, 404, 126469. [Google Scholar] [CrossRef]
- Wang, Q.; Zhai, L.L.; Zhang, L.; Zhang, J.W.; Ban, C.Y. Effect of Steady Magnetic Field on Microstructure and Properties of Laser Cladding Ni-Based Alloy Coating. J. Mater. Res. Technol. 2022, 17, 2145–2157. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, G.L.; Wang, X.H.; Liu, S.S.; Ying, W.L. Microstructure Evolution and Properties of In-Situ Ceramic Particles Reinforced Fe-Based Composite Coating Produced by Ultrasonic Vibration Assisted Laser Cladding Processing. Surf. Coat. Technol. 2020, 403, 126445. [Google Scholar] [CrossRef]
- Niu, P.; Li, R.; Yuan, T.; Wang, M.; Xie, S.; Wu, H. Laser Solid Forming Assisted by Friction Stir Processing for Preparation of Ni–16Cr–8Fe Alloys: Crack Repairing and Grain Refinement. J. Mater. Res. 2018, 33, 3521–3529. [Google Scholar] [CrossRef]
- Aliabadi, M.; Khodabakhshi, F.; Soltani, R.; Gerlich, A.P. Modification of Flame-Sprayed NiCrBSi Alloy Wear-Resistant Coating by Friction Stir Processing and Furnace Re-Melting Treatments. Surf. Coat. Technol. 2023, 455, 129236. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, J.; Wang, J.; Meng, X.; Li, P.; Huang, S.; Zhu, H. Effect of Hybrid Ultrasonic-Electromagnetic Field on Cracks and Microstructure of Inconel 718/60%WC Composites Coating Fabricated by Laser Cladding. Ceram. Int. 2022, 48, 33901–33913. [Google Scholar] [CrossRef]
- Wang, L.; Yao, J.; Hu, Y.; Zhang, Q.; Sun, Z.; Liu, R. Influence of Electric-Magnetic Compound Field on the WC Particles Distribution in Laser Melt Injection. Surf. Coat. Technol. 2017, 315, 32–43. [Google Scholar] [CrossRef]
- Kumar, A.; Roy, S. Effect of Three-Dimensional Melt Pool Convection on Process Characteristics during Laser Cladding. Comput. Mater. Sci. 2009, 46, 495–506. [Google Scholar] [CrossRef]
- Chew, Y.; Pang, J.H.L.; Bi, G.; Song, B. Thermo-Mechanical Model for Simulating Laser Cladding Induced Residual Stresses with Single and Multiple Clad Beads. J. Mater. Process. Technol. 2015, 224, 89–101. [Google Scholar] [CrossRef]
- Aucott, L.; Dong, H.; Mirihanage, W.; Atwood, R.; Kidess, A.; Gao, S.; Wen, S.; Marsden, J.; Feng, S.; Tong, M.; et al. Revealing Internal Flow Behaviour in Arc Welding and Additive Manufacturing of Metals. Nat. Commun. 2018, 9, 5414. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.; Chen, J.; Qian, H.; Nie, Y.; Zhang, Q.; Yao, J. Microstructure and Tensile Property of Laser Cladding Assisted with Multidimensional High-Frequency Vibration. Materials 2022, 15, 4295. [Google Scholar] [CrossRef]
- Tian, J.; Xu, P.; Liu, Q. Effects of Stress-Induced Solid Phase Transformations on Residual Stress in Laser Cladding a Fe-Mn-Si-Cr-Ni Alloy Coating. Mater. Des. 2020, 193, 108824. [Google Scholar] [CrossRef]
- Li, C.; Xu, Y.; Jia, T.; Zhao, J.; Han, X. Numerical Simulation Research on Multifield Coupling Evolution Mechanism of IN625 Laser Cladding on Nodular Cast Iron. Int. J. Adv. Manuf. Technol. 2022, 119, 5647–5669. [Google Scholar] [CrossRef]
- Qiao, X.; Xia, T.; Chen, P. Numerical Research on Effect of Overlap Ratio on Thermal-Stress Behaviors of the High-Speed Laser Cladding Coating*. Chin. Phys. B 2021, 30, 018104. [Google Scholar] [CrossRef]
- Li, R.; Qiu, Y.; Zheng, Q.; Liu, B.; Chen, S.; Tian, Y. Finite Element Simulation of Temperature and Stress Field for Laser Cladded Nickel-Based Amorphous Composite Coatings. Coatings 2018, 8, 336. [Google Scholar] [CrossRef] [Green Version]
- Krzyzanowski, M.; Bajda, S.; Liu, Y.; Triantaphyllou, A.; Mark Rainforth, W.; Glendenning, M. 3D Analysis of Thermal and Stress Evolution during Laser Cladding of Bioactive Glass Coatings. J. Mech. Behav. Biomed. Mater. 2016, 59, 404–417. [Google Scholar] [CrossRef]
- Li, K.; Li, T.; Ma, M.; Wang, D.; Deng, W.; Lu, H. Laser Cladding State Recognition and Crack Defect Diagnosis by Acoustic Emission Signal and Neural Network. Opt. Laser Technol. 2021, 142, 107161. [Google Scholar] [CrossRef]
- Cen, L.; Du, W.; Gong, M.; Lu, Y.; Zhang, C.; Gao, M. Effect of High-Frequency Beam Oscillation on Microstructures and Cracks in Laser Cladding of Al-Cu-Mg Alloys. Surf. Coat. Technol. 2022, 447, 128852. [Google Scholar] [CrossRef]
- Yang, H.; Tang, Z.; Wan, L.; Wei, Q.; Wu, J.; Wang, A.; Jin, X.; Li, X.; Wu, Y.; Lu, G.; et al. Achieving Crack-Free CuCrZr/AlSi7Mg Interface by Infrared-Blue Hybrid Laser Cladding with Low Power Infrared Laser. J. Alloys Compd. 2023, 931, 167572. [Google Scholar] [CrossRef]
- Zhang, P.; Chu, J.; Qu, G.; Wang, D. Numerical Simulation of Convex Shape Beam Spot on Stress Field of Plasma-Sprayed MCrAlY Coating during Laser Cladding Process. Int. J. Adv. Manuf. Technol. 2022, 118, 207–217. [Google Scholar] [CrossRef]
- Feng, Y.; Pang, X.; Feng, Y.; Li, Z. Ultrahigh Hardness Coating with Excellent Crack Resistance Achieved by Ultrafine Eutectic. Metall. Mater. Trans. A 2022, 53, 2325–2330. [Google Scholar] [CrossRef]
- Wang, Z.; Tan, M.; Wang, J.; Zeng, J.; Zhao, F.; Xiao, X.; Xu, S.; Liu, B.; Gong, L.; Sui, Q.; et al. Core-Shell Structural Iron Based Metal Matrix Composite Powder for Laser Cladding. J. Alloys Compd. 2021, 878, 160127. [Google Scholar] [CrossRef]
Coating/Substrate | Rare Earth Oxide wt.% | Improvement Effect |
---|---|---|
Fe-based/5CrNiMo [82] | 1%/2%/3% Y2O3 | A 2% Y2O3 coating was added without cracks or pores |
TiB-TiC/Ti6Al4V [83] | 2% Y2O3 | The average fracture toughness was increased from 8.32 MPa m1/2 to 17.36 MPa m1/2, and the cracking resistance was improved |
Ni-based/45 steel [84] | 0.1%–1% La2O3 | The addition amount was 0.6%; the coating had no cracks, and the microstructure was refined |
Ni-60%WC/ASTM A36 [85] | 0.5%–2% La2O3 | A 1% La2O3 was added; the coating was tight and defect free When the addition amount was greater than 1.5%, the oxygen content increased, and defects increased |
Ti/Ti6Al4V [86] | 1% CeO2 and 1% Y2O3 | Refined the coating structure and ensured that the coating had no defects |
CrTi4-TiCx/Ti6Al4V [87] | 1%–4% CeO2 | The addition amount is 2%; the coating has no cracks |
Ni60A/TC4 [88] | 1%–4% CeO2 | The fluidity of the molten pool improved, and the addition amount is 3%; there are no obvious cracks in the coating |
Ni60/6063Al [89] | 5% Y2O3, CeO2, and La2O3 | Dense organization, refined grain size, without obvious cracks and pores |
Coating/Substrate | Process Parameters | Influence Law |
---|---|---|
Ni60/40Cr [99] | P: 1000–1800 W, V: 20–25 mm/s, F: 80 r/min, D: 4 mm, O: 50%, and defocus: 0–4 mm | P: 1000–1800 W, the crack rate decreased from 0.2 to 0.11 N/mm. Defocus: 0–4 mm, the crack rate increased from 0.1 to 0.23 N/mm. |
FeCoCrNi/ TC4 [63] | P: 800–1050 W, V:8–12 mm/s, H: 0.5–1 mm, and D: 2 mm | When the heat input and H increased, the cracking first decreased and then increased. When H was 0.75 mm, the crack rate was the lowest. The influence of P and V on crack rate was much greater than that of H. |
TiC/mild Steel [100] | P: 1000–2800 W, V: 4 mm, and D: 0.5 mm | Under four laser powers, the coating had no cracks or pores, the heat input was large enough, and the coating had no cracks. |
WC-Co/ Cr-Mo-V [101] | P: 600–1000 W, F: 4–30 g/min, D: 2 mm, and nitrogen and argon gas protection atmosphere | When F was higher than 5 g/min, the coating was discontinuous and had defects; under nitrogen protection, all samples had cracks and pores; and under argon protection, all samples had no cracks. |
7055AA/ 2024AA [102] | P: 1200–2000 W, V: 10–30 mm/s, D: 2 mm, linear pattern, and two types of arc pattern cladding | The larger P was, the smaller V was, and the greater residual compressive stress was; the residual stress in linear mode was minimized, and the optimal solution was obtained when the cladding angle was 0°. |
StelliteX-40/ GH4133 [103] | P: 1000–3000 W, V: 5–8 mm/s, H: 0.6–1.2 mm, 750 °C, and 16 h annealing treatment | P: 1000 W, the coating was not fused; P: 3000 W, reheat cracks appeared; H > 1.1 mm, the coating was not melted; and after treatment, only 3000 W coating had intergranular reheat cracks. |
Inconel 690/ Inconel600 [104] | P: 2000–3000 W, V: 12–16 mm/s, D: 5 mm, and 25–300 °C preheating | P was too small, or F was too large, leading to poor coating quality; increasing P, decreasing F, and preheating could reduce defects. |
Ni60/45 Steel [105] | P: 1600 W, V: 5–11 mm/s, F: 15–21 g/min, O: 45–60%, and defocus: 16 mm | When F increased, the crack rate increased; when overlap rate increased, the crack rate increased; the larger the V, the greater the crack rate. |
Auxiliary Field | Coating/Substrate | Effect | Function Mechanism |
---|---|---|---|
Magnetic Field [127] | Co-based/42CrMo | The cracks and pores are reduced; the magnetic field intensity is 20 mT, the magnetostrictive effect is maximum | Magnetostrictive effect can effectively reduce the coefficient of thermal expansion and elastic modulus of cladding layer, and reduce element segregation |
Ultrasonic Vibrations [128] | 316L/ASTM 1045 | Refine the microstructure of the cladding layer, effectively reducing micro defects such as pores and cracks | Vibration causes tissue fragmentation and secondary dendrite fracture, and changes the orientation of the crystal from (220) to (111), resulting in a dense structure |
Friction Stir [125] | Ni-Cr-Fe/45 steel | Refines grain size, obtains nanostructured coatings, and eliminates coating cracks | Rapid stirring increases friction heat and strain rate, which is beneficial for toughening and plasticizing |
Electromagnetic Field [129] | Ni60/pure iron | The toughness of the coating is improved, and the number of cracks is reduced | Electromagnetic stirring causes Cr7C3 to fracture into an independent rod-shaped structure, improving the nucleation rate |
Ultrasonic–Electromagnetic Field [130] | NiCrBSi/42CrMo | Refines organization, reduces element segregation, and significantly reduces coating defects | Ultrasonic flow and electromagnetic force stirring cause the dendrites in the cladding layer to be shattered |
Control Methods | Specific Types | Practical Effects | Advantages | Disadvantages |
---|---|---|---|---|
Preferred Cladding Materials | Control of hard-phase contents in the layer | 2 | Easy to use, wide range of applications | Difficult to eliminate cracks, not applicable without hard phase coating |
Preferred hard-phase particle types | 2 | Better research prospects | Not applicable without hard-phase coating | |
Adding alloying elements | 1 | Easy to use | Few types of alloy elements and may affect coating properties | |
Adding rare earth oxides | 0 | Wide application range and improving coating properties | High cost, fewer types of rare earth oxides | |
Adding transition layer | 2 | Can reduce coating cracks with high hard-phase content | Small scope of application | |
Optimization of Cladding Process Parameters | Main process parameters | 1 | The widest range of applications | Difficult to eliminate cracks in coatings with high hard-phase content |
Other process parameters | 2 | Better research prospects | High requirements for experimental equipment | |
Increasing Heat Treatment | Preheat treatment | 0 | Wide application range | Longer waiting time |
Post-processing | 3 | Easy to use | The effect is average | |
Laser remelting | 3 | Improving coating properties | Additional costs required | |
Application of Auxiliary Field | Magnetic field | 1 | Highly promising research improving coating properties | High requirements for experimental equipment, still in the experimental stage |
Ultrasonic vibrations | 1 | |||
Friction stirring | 1 | |||
Electromagnetic field | 1 | |||
Ultrasonic–electromagnetic field | 0 | Eliminates cracks in coatings with high hard-phase content | Complex coupling process, extremely demanding equipment | |
Numerical Analysis | Melt pool and Physical field model | Provide stress distribution diagram | Exploring the melt pool and providing stress distribution diagram | Model complexity and accuracy need to be improved |
Process Parameters and Crack Prediction Model | Predicts optimal processes and cracks | Highly promising research, reducing experiment cost | Longer simulation time and more difficult operation | |
Other Methods | Novel preparation processes | 0 | Extremely high research prospect | The research is difficult and still in the exploration stage |
Novel structural materials | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Huang, K.; Yi, X. Crack Formation Mechanisms and Control Methods of Laser Cladding Coatings: A Review. Coatings 2023, 13, 1117. https://doi.org/10.3390/coatings13061117
Li M, Huang K, Yi X. Crack Formation Mechanisms and Control Methods of Laser Cladding Coatings: A Review. Coatings. 2023; 13(6):1117. https://doi.org/10.3390/coatings13061117
Chicago/Turabian StyleLi, Mingke, Kepeng Huang, and Xuemei Yi. 2023. "Crack Formation Mechanisms and Control Methods of Laser Cladding Coatings: A Review" Coatings 13, no. 6: 1117. https://doi.org/10.3390/coatings13061117
APA StyleLi, M., Huang, K., & Yi, X. (2023). Crack Formation Mechanisms and Control Methods of Laser Cladding Coatings: A Review. Coatings, 13(6), 1117. https://doi.org/10.3390/coatings13061117