Nano–Bio Interface of Molybdenum Disulfide for Biological Applications
Abstract
:1. Introduction
2. Interaction of MoS2 with Various Biomolecules
2.1. Amino Acid Binding on MoS2
2.2. Peptides and Proteins Mediated by MoS2
2.3. Phospholipid Membrane Interacting with MoS2
2.4. Nucleic Acids Interacting with MoS2
3. Biomedical Applications Based on the Nano–Bio Interactions of MoS2
3.1. Peptide and Protein Detection
3.2. DNA Detection and Sequencing
3.3. Antibacterial and Wound Therapy
4. Biological Safety of MoS2
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tan, L.F.; Wang, S.P.; Xu, K.; Liu, T.L.; Liang, P.; Niu, M.; Fu, C.H.; Shao, H.B.; Yu, J.; Ma, T.C.; et al. Layered MoS2 hollow spheres for highly-efficient photothermal therapy of rabbit liver orthotopic transplantation tumors. Small 2016, 12, 2046–2055. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Hu, S.H.; Zhang, R.; Gu, Y.J.; Li, Y.G.; Jia, Y.F. Porous graphene oxide enhanced aptamer specific circulating-tumor-cell sensing interface on light addressable potentiometric sensor: Clinical application and simulation. ACS Appl. Mater. Interfaces 2019, 11, 8704–8709. [Google Scholar] [CrossRef] [PubMed]
- Amrollahi-Sharifabadi, M.; Koohi, M.K.; Zayerzadeh, E.; Hablolvarid, M.H.; Hassan, J.; Seifalian, A.M. In vivo toxico-logical evaluation of graphene oxide nanoplatelets for clinical application. Int. J. Nanomed. 2018, 13, 4757. [Google Scholar] [CrossRef] [Green Version]
- Rao, C.N.R.; Ramakrishna Matte, H.S.S.; Maitra, U. Graphene analogues of inorganic layered materials. Angew. Chem. Int. Ed. 2013, 52, 13162–13185. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.M.; Li, C.H.; Fang, P.F.; Zhang, Z.L.; Zhang, J.Z. Synthesis, properties, and optoelectronic applications of two-dimensional MoS2 and MoS2-based heterostructures. Chem. Soc. Rev. 2018, 47, 6101–6127. [Google Scholar] [CrossRef]
- Benavente, E.; Santa Ana, M.A.; Mendizabal, F.; Gonzalez, G. Intercalation chemistry of molybdenum disulfide. Coord. Chem. Rev. 2002, 224, 87–109. [Google Scholar] [CrossRef]
- Enyashin, A.N.; Yadgarov, L.; Houben, L.; Popov, I.; Weidenbach, M.; Tenne, R.; Bar-Sadan, M.; Seifert, G. New route for stabilization of 1T-WS2 and MoS2 phases. J. Phys. Chem. C 2011, 115, 24586–24591. [Google Scholar] [CrossRef] [Green Version]
- Chai, Y.; Su, S.S.; Yan, D.; Ozkan, M.; Lake, R.; Ozkan, C.S. Strain gated bilayer molybdenum disulfide field effect transistor with edge contacts. Sci. Rep. 2017, 7, 41593. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.Z.; Zhou, W.D.; Hong, A.J.; Guo, M.M.; Luo, X.F.; Yuan, C.L. MoS2 moire superlattice for hydrogen evolution reaction. ACS Energy Lett. 2019, 4, 2830–2835. [Google Scholar] [CrossRef]
- Wang, L.W.; Zhang, X.D.; You, Z.; Yang, Z.W.; Guo, M.Y.; Guo, J.W.; Liu, H.; Zhang, X.Y.; Wang, Z.; Wang, A.Z.; et al. A molybdenum disulfide nanozyme with charge-enhanced activity for ultrasound-mediated cascade-catalytic tumor ferroptosis. Angew. Chem. Int. Ed. 2023, 62, e202217448. [Google Scholar] [CrossRef]
- Zhu, C.F.; Zeng, Z.Y.; Li, H.; Li, F.; Fan, C.H.; Zhang, H. Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc. 2013, 135, 5998–6001. [Google Scholar] [CrossRef]
- Yin, W.Y.; Yan, L.; Yu, J.; Tian, G.; Zhou, L.J.; Zheng, X.P.; Zhang, X.; Yong, Y.; Li, J.; Gu, Z.J.; et al. High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 2014, 8, 6922–6933. [Google Scholar] [CrossRef]
- Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X.Z.; Feng, L.Z.; Sun, B.Q.; Liu, Z. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv. Mater. 2014, 26, 3433–3440. [Google Scholar] [CrossRef]
- Liu, T.; Shi, S.X.; Liang, C.; Shen, S.; Cheng, L.; Wang, C.; Song, X.J.; Goel, S.; Barnhart, T.E.; Cai, W.B.; et al. Iron oxide deco-rated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photo-thermal therapy. ACS Nano 2015, 9, 950–960. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Y.; Wu, J.R.; Williams, G.R.; Niu, S.W.; Qian, Q.Q.; Zhu, L.M. Functionalized MoS2-nanosheets for targeted drug delivery and chemo-photothermal therapy. Colloids Surf. B 2019, 173, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Wu, N.; Yu, Y.D.; Li, T.; Ji, X.J.; Jiang, L.; Zong, J.J.; Huang, H. Investigating the influence of MoS2 nanosheets on E. coli from metabolomics level. PLoS ONE 2016, 11, e0167245. [Google Scholar] [CrossRef] [Green Version]
- Zhou, R.H.; Gao, H.J. Cytotoxicity of graphene: Recent advances and future perspective. WIREs Nanomed. Nanobiotechnol. 2014, 6, 452–474. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Liu, Z. 2D MoS2 nanostructures for biomedical applications. Adv. Healthcare Mater. 2018, 7, 1701158. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.J.; Cai, R.; Zhao, L.N.; Guo, M.Y.; Wang, L.M.; Wang, Y.C.; Liu, Y.; Zhao, Y.L.; Chen, C.Y. Molybdenum derived from nanomaterials incorporates into molybdenum enzymes and affects their activities in vivo. Nat. Nanotechnol. 2021, 16, 708–716. [Google Scholar] [CrossRef]
- Li, J.L.; Chen, C.Y.; Xia, T. Understanding nanomaterial–liver interactions to facilitate the development of safer nanoapplications. Adv. Mater. 2022, 34, 2106456. [Google Scholar] [CrossRef] [PubMed]
- Baimanov, D.; Wu, J.G.; Chu, R.X.; Cai, R.; Wang, B.; Cao, M.J.; Tao, Y.; Liu, J.M.; Feng, W.Y.; Wang, L.M.; et al. Immunological responses induced by blood protein coronas on two-dimensional MoS2 nanosheets. ACS Nano 2020, 14, 5529–5542. [Google Scholar] [CrossRef]
- Shah, P.; Narayanan, T.N.; Li, C.Z.; Alwarappan, S. Probing the biocompatibility of MoS2 nanosheets by cytotoxicity assay and electrical impedance spectroscopy. Nanotechnology 2015, 26, 315102. [Google Scholar] [CrossRef]
- Moore, C.; Movia, D.; Smith, R.J.; Hanlon, D.; Lebre, F.; Lavelle, E.C.; Byrne, H.J.; Coleman, J.N.; Volkov, Y.; McIntyre, J. Industrial grade 2D molybdenum disulphide (MoS2): An in vitro exploration of the impact on cellular uptake, cytotoxicity, and inflammation. 2D Mater. 2017, 4, 025065. [Google Scholar] [CrossRef] [Green Version]
- Appel, J.H.; Li, D.O.; Podlevsky, J.D.; Debnath, A.; Green, A.A.; Wang, Q.H.; Chae, J. Low cytotoxicity and genotoxicity of two-dimensional MoS2 and WS2. ACS Biomater. Sci. Eng. 2016, 2, 361–367. [Google Scholar] [CrossRef]
- Ozboyaci, M.; Kokh, D.B.; Corni, S.; Wade, R.C. Modeling and simulation of protein-surface interactions: Achievements and challenges. Q. Rev. Biophys. 2016, 49, e4. [Google Scholar] [CrossRef] [Green Version]
- Heinz, H.; Ramezani-Dakhel, H. Simulations of inorganic-bioorganic interfaces to discover new materials: Insights, compar-isons to experiment, challenges, and opportunities. Chem. Soc. Rev. 2016, 45, 412–448. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, S.; Scheicher, R.H.; Pandey, R.; Karna, S.P. Sensitivity of boron nitride nanotubes toward biomolecules of different polarities. J. Phys. Chem. Lett. 2016, 2, 2442–2447. [Google Scholar] [CrossRef]
- Isidro-Llobet, A.; Alvarez, M.; Albericio, F. Amino acid-protecting groups. Chem. Rev. 2009, 109, 2455–2504. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Wang, Z.G.; Liu, L.; Klausen, L.H.; Wang, Y.; Mi, J.L.; Dong, M.D. Modulation the electronic property of 2D monolayer MoS2 by amino acid. Appl. Mater. Today 2019, 14, 151–158. [Google Scholar] [CrossRef]
- Huyen, T.L.; Lee, C.H.; Cheng, S.J.; Yang, C.K. Interaction between peptides and an MoS2 monolayer containing a nanopore: First-principles calculations. Chin. J. Phys. 2022, 1, 1. [Google Scholar] [CrossRef]
- Dalle-Donne, I.; Giustarini, D.; Colombo, R.; Rossi, R.; Milzani, A. Protein carbonylation in human diseases. Trends Mol. Med. 2003, 9, 169–176. [Google Scholar] [CrossRef]
- Kapurniotu, A. Enlightening amyloid fibrils linked to type 2 diabetes and cross-interactions with Aβ. Nat. Struct. Mol. Biol. 2020, 27, 1006–1008. [Google Scholar] [CrossRef]
- Wu, R.R.; Ou, X.W.; Zhang, L.W.; Song, X.L.; Wang, Z.K.; Dong, M.D.; Liu, L. Electric field effect on inhibiting the co-fibrillation of amyloid peptides by modulating the aggregation pathway. Langmuir 2022, 38, 12346–12355. [Google Scholar] [CrossRef] [PubMed]
- Bu, X.L.; Xiang, Y.; Jin, W.S.; Wang, J.; Shen, L.L.; Huang, Z.L.; Zhou, H.D.; Zhou, X.F.; Song, W.; Wang, Y.J. Blood-derived amyloid-β protein induces Alzheimer’s disease pathologies. Mol. Psychiatry 2018, 23, 1948–1956. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.R.; Ou, X.W.; Zhang, L.W.; Wang, F.H.; Liu, L. Interfacial interactions within amyloid protein corona based on 2D MoS2 nanosheets. ChemBioChem 2022, 23, e202100581. [Google Scholar] [CrossRef]
- Xiao, M.Y.; Wei, S.; Li, Y.X.; Jasensky, J.; Chen, J.; Brooks, C.L.; Chen, Z. Molecular interactions between single layered MoS2 and biological molecules. Chem. Sci. 2018, 9, 1769–1773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, Y.; Gu, Z.L.; Kang, S.G.; Luo, J.D.; Zhou, R.H. Structural damage of a β-sheet protein upon adsorption onto molybdenum disulfide nanotubes. J. Phys. Chem. C. 2016, 120, 6796–6803. [Google Scholar] [CrossRef]
- Hsu, H.J.; Sheu, S.Y.; Tsay, R.Y. Preferred orientation of albumin adsorption on a hydrophilic surface from molecular simulation. Colloids Surf. B 2008, 67, 183–191. [Google Scholar] [CrossRef]
- Xiao, M.Y.; Wei, S.; Chen, J.J.; Tian, J.Y.; Brooks Iii, C.L.; Marsh, E.N.G.; Chen, Z. Molecular mechanisms of interactions between monolayered transition metal dichalcogenides and biological molecules. J. Am. Chem. Soc. 2019, 141, 9980–9988. [Google Scholar] [CrossRef]
- Chen, X.; Berner, N.C.; Backes, C.; Duesberg, G.S.; McDonald, A.R. Functionalization of two-dimensional MoS2: On the reaction between MoS2 andorganic thiols. Angew. Chem. Int. Ed. 2016, 55, 5803–5808. [Google Scholar] [CrossRef]
- Fan, H.J.; Zhao, D.H.; Li, Y.T.; Zhou, J. Lysozyme orientation and conformation on MoS2 surface: Insights from molecular sim-ulations. Biointerphases 2017, 12, 416. [Google Scholar] [CrossRef]
- Mudedla, S.K.; Murugan, N.A.; Subramanian, V.; Agren, H. Destabilization of amyloid fibrils on interaction with MoS2-based nanomaterials. RSC Adv. 2019, 9, 1613–1624. [Google Scholar] [CrossRef] [Green Version]
- Gu, Z.L.; Plant, L.D.; Meng, X.Y.; Perez-Aguilar, J.M.; Wang, Z.; Dong, M.D.; Logothetis, D.E.; Zhou, R.H. Exploring the nano-toxicology of MoS2: A study on the interaction of MoS2 nanoflakes and K+ channels. ACS Nano 2018, 12, 705–717. [Google Scholar] [CrossRef]
- Gu, Z.L.; Song, W.; Liu, S.T.; Li, B.Y.; Plant, L.D.; Meng, X.Y. Potential blockade of the human voltage-dependent anion channel by MoS2 nanoflakes. Phys. Chem. Chem. Phys. 2019, 21, 9520–9530. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, J.; Liang, T.; Ma, C.Y.; Zhang, Y.Y.; Chen, H.Z.; Hanagata, N.; Su, H.X.; Xu, M.S. Antibacterial activity of two-dimensional MoS2 sheets. Nanoscale 2014, 6, 10126–10133. [Google Scholar] [CrossRef] [PubMed]
- Hirano, A.; Uda, K.; Maeda, Y.; Akasaka, T.; Shiraki, K. One-dimensional protein-based nanoparticles induce lipid bilayer disruption: Carbon nanotube conjugates and amyloid fibrils. Langmuir 2010, 26, 17256–17259. [Google Scholar] [CrossRef]
- Gilbertson, L.M.; Albalghiti, E.M.; Fishman, Z.S.; Perreault, F.O.; Corredor, C.; Posner, J.D.; Elimelech, M.; Pfefferle, L.D.; Zimmerman, J.B. Shape-dependent surface reactivity and antimicrobial activity of nano-cupric oxide. Environ. Sci. Technol. 2016, 50, 3975–3984. [Google Scholar] [CrossRef] [PubMed]
- Moghadam, B.Y.; Hou, W.C.; Corredor, C.; Westerhoff, P.; Posner, J.D. Role of nanoparticle surface functionality in the disruption of model cell membranes. Langmuir 2012, 28, 16318–16326. [Google Scholar] [CrossRef]
- Zucker, I.; Werber, J.R.; Fishman, Z.S.; Hashmi, S.M.; Gabinet, U.R.; Lu, X.L.; Osuji, C.O.; Pfefferle, L.D.; Elimelech, M. Loss of phospholipid membrane integrity induced by two-dimensional nanomaterials. Environ. Sci. Technol. Lett. 2017, 4, 404–409. [Google Scholar] [CrossRef] [Green Version]
- Tu, Y.S.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z.R.; Fan, C.H.; Fang, H.P.; Zhou, R.H. Destructive extraction of phospholipids from Esche-richia coli membranes by graphene nanosheets. Nat. Nanotechnol. 2013, 8, 594–601. [Google Scholar] [CrossRef]
- Wu, R.R.; Ou, X.W.; Tian, R.R.; Zhang, J.; Jin, H.S.; Dong, M.D.; Li, J.Y.; Liu, L. Membrane destruction and phospholipid extraction by using two-dimensional MoS2 nanosheets. Nanoscale 2018, 10, 20162–20170. [Google Scholar] [CrossRef]
- Zhou, X.F.; Jia, J.B.; Luo, Z.; Su, G.X.; Yue, T.T.; Yan, B. Remote induction of cell autophagy by 2D MoS2 nanosheets via per-turbing cell surface receptors and mTOR pathway from outside of cells. ACS Appl. Mater. Interfaces 2019, 11, 6829–6839. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, Y.Z.; Huynh, T.; Yang, Y.Q.; Yang, X.Q.; Zhou, R.H. Directional extraction and penetration of phosphorene nanosheets to cell membranes. Nanoscale 2020, 12, 2810–2819. [Google Scholar] [CrossRef] [PubMed]
- Garaj, S.; Hubbard, W.; Reina, A.; Kong, J.; Branton, D.; Golovchenko, J.A. Graphene as a subnanometre trans-electrode membrane. Nature 2010, 467, 190–193. [Google Scholar] [CrossRef] [Green Version]
- Lv, W.; Liu, S.; Li, X.; Wu, R.A. Spatial blockage of ionic current for electrophoretic translocation of DNA through a graphene nanopore. Electrophoresis 2014, 35, 1144–1151. [Google Scholar] [CrossRef] [Green Version]
- Qiu, H.; Sarathy, A.; Leburton, J.; Schulten, K. Intrinsic stepwise translocation of stretched ssDNA in graphene nanopores. Nano Lett. 2015, 15, 8322–8330. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Sarathy, A.; Schulten, K.; Leburton, J.P. Detection and mapping of DNA methylation with 2D material nanopores. Npj 2D Mater. Appl. 2017, 1, 3. [Google Scholar] [CrossRef]
- Luan, B.Q.; Zhou, R.H. Spontaneous transport of single-stranded DNA through graphene-MoS2 heterostructure nanopores. ACS Nano 2018, 12, 3886–3891. [Google Scholar] [CrossRef]
- Kiriya, D.; Tosun, M.; Zhao, P.D.; Kang, J.S.; Javey, A. Air-stable surface charge transfer doping of MoS2 by benzyl vi-ologen. J. Am. Chem. Soc. 2014, 136, 7853–7856. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, D.; Liu, W.; Xie, X.; Anselmo, A.C.; Mitragotri, S.; Banerjee, K. MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 2014, 8, 3992–4003. [Google Scholar] [CrossRef]
- Reiner, J.E.; Balijepalli, A.; Robertson, J.W.F.; Campbell, J.; Suehle, J.; Kasianowicz, J.J. Disease detection and manage-ment via single nanopore-based sensors. Chem. Rev. 2012, 112, 6431–6451. [Google Scholar] [CrossRef] [PubMed]
- Freedman, K.J.; Bastian, A.R.; Chaiken, I.; Kim, M.J. Solid-state nanopore detection of protein complexes: Applications in healthcare and protein kinetics. Small 2013, 9, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, H.; Nakamura, Y.; Tezuka, S.; Seki, T.; Yatsu, K.; Narimatsu, T.; Nakata, Y.; Hayamizu, Y.H. Self-assembled GA-repeated peptides as a biomolecular scaffold for biosensing with MoS2 electrochemical transistors. ACS Appl. Mater. Interfaces 2023, 15, 14058–14066. [Google Scholar] [CrossRef]
- Si, W.; Yuan, R.Y.; Wu, G.S.; Kan, Y.J.; Sha, J.J.; Chen, Y.F.; Zhang, Y.; Shen, Y. Navigated delivery of peptide to the nanopore using in-plane heterostructures of MoS2 and SnS2 for protein sequencing. J. Phys. Chem. Lett. 2022, 13, 3863–3872. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.Q.; Shim, J.W. Single molecule sensing by nanopores and nanopore devices. Analyst 2010, 135, 441–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosen, C.B.; Rodriguez-Larrea, D.; Bayley, H. Single-molecule site-specific detection of protein phosphorylation with a nanopore. Nat. Biotechnol. 2014, 32, 179–181. [Google Scholar] [CrossRef] [Green Version]
- Kukkar, M.; Sharma, A.; Kumar, P.; Kim, K.H.; Deep, A. Application of MoS2 modified screen-printed electrodes for highly sensitive detection of bovine serum albumin. Anal. Chim. Acta 2016, 939, 101–107. [Google Scholar] [CrossRef]
- Gogoi, S.; Khan, R. Fluorescence immunosensor for cardiac troponin T based on forster resonance energy transfer (FRET) between carbon dot and MoS2 nano-couple. Phys. Chem. Chem. Phys. 2018, 20, 16501–16509. [Google Scholar] [CrossRef]
- Lee, J.; Dak, P.; Lee, Y.; Park, H.; Choi, W.; Alam, M.A.; Kim, S. Two-dimensional layered MoS2 biosensors enable highly sensitive detection of biomolecules. Sci. Rep. 2014, 4, 7352. [Google Scholar] [CrossRef] [Green Version]
- Sajid, M.; Osman, A.; Siddiqui, G.U.; Kim, H.B.; Kim, S.W.; Ko, J.B.; Choi, K.H. All-printed highly sensitive 2D MoS2 based multi-reagent immunosensor for smartphone based point-of-care diagnosis. Sci. Rep. 2017, 7, 5802. [Google Scholar] [CrossRef] [Green Version]
- Giordano, B.C.; Ferrance, J.; Swedberg, S.; Huhmer, A.F.R.; Landers, J.P. Polymerase chain reaction in polymeric micro-chips: DNA amplification in less than 240 seconds. Anal. Biochem. 2001, 291, 124–132. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, B.; Zhu, C.F.; Zhang, X.; Tan, C.L.; Li, H.; Chen, B.; Yang, J.; Chen, J.Z.; Huang, Y.; et al. Single-layer transi-tion metal dichalcogenide nanosheet-based nanosensors for rapid, sensitive, and multiplexed detection of DNA. Adv. Mater. 2015, 27, 935–939. [Google Scholar] [CrossRef]
- Zhang, W.; Dai, Z.C.; Liu, X.; Yang, J.M. High-performance electrochemical sensing of circulating tumor DNA in peripheral blood based on poly-xanthurenic acid functionalized MoS2 nanosheets. Biosens. Bioelectron. 2018, 105, 116–120. [Google Scholar] [CrossRef]
- Wang, T.Y.; Zhu, R.Z.; Zhuo, J.Q.; Zhu, Z.W.; Shao, Y.H.; Li, M.X. Direct detection of DNA below ppb level based on thio-nin-functionalized layered MoS2 electrochemical sensors. Anal. Chem. 2014, 86, 12064–12069. [Google Scholar] [CrossRef]
- Li, F.; Cui, X.T.; Zheng, Y.L.; Wang, Q.; Zhou, Y.L.; Yin, H.S. Photoelectrochemical biosensor for DNA formylation based on WS2 nanosheets@polydopamine and MoS2 nanosheets. Biosens. Bioelectron. X 2022, 10, 100104. [Google Scholar] [CrossRef]
- Oudeng, G.; Au, M.T.; Shi, J.Y.; Wen, C.Y.; Yang, M. One-step in situ detection of miRNA-21 expression in single cancer cells based on biofunctionalized MoS2 nanosheets. ACS Appl. Mater. Interfaces 2018, 10, 350–360. [Google Scholar] [CrossRef]
- Wasfi, A.; Awwad, F.; Atef, M. DNA bases detection via MoS2 field effect transistor with a nanopore: First-principles modeling. Analog Integr. Circuits Signal Process. 2023, 114, 253–264. [Google Scholar] [CrossRef]
- Xiao, M.S.; Chandrasekaran, A.R.; Ji, W.; Li, F.; Man, T.T.; Zhu, C.F.; Shen, X.Z.; Pei, H.; Li, Q.; Li, L. Affinity-modulated molec-ular beacons on MoS2 nanosheets for microRNA detection. ACS Appl. Mater. Interfaces 2018, 10, 35794–35800. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Feng, J.D.; Kis, A.; Radenovic, A. Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano 2014, 8, 2504–2511. [Google Scholar] [CrossRef]
- Chakraborty, R.; Xiong, M.Y.; Athreya, N.; Tabatabaei, S.K.; Milenkovic, O.; Leburton, J.P. Solid-state MoS2 nanopore membranes for discriminating among the lengths of RNA tails on a double-stranded DNA: A new simulation-based differentiating algorithm. ACS Appl. Nano Mater. 2023, 6, 4651–4660. [Google Scholar] [CrossRef]
- Gu, C.M.; Yu, Z.B.; Li, X.J.; Zhu, X.; Jin, C.H.; Cao, Z.; Dong, S.R.; Luo, J.K.; Ye, Z.; Liu, Y. Experimental study on single biomolecule sensing using MoS2–graphene heterostructure nanopores. Nanoscale 2023, 15, 266–272. [Google Scholar] [CrossRef]
- Roy, S.; Mondal, A.; Yadav, V.; Sarkar, A.; Banerjee, R.; Sanpui, P.; Jaiswal, A. Mechanistic insight into the antibacterial activity of chitosan exfoliated MoS2 nanosheets: Membrane damage, meta-bolic inactivation, and oxidative stress. ACS Appl. Bio Mater. 2019, 2, 2738–2755. [Google Scholar] [CrossRef]
- Yin, W.Y.; Yu, J.; Lv, F.T.; Yan, L.; Zheng, L.R.; Gu, Z.J.; Zhao, Y. Functionalized anano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano 2016, 10, 11000–11011. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Zhang, X.; Yin, W.Y.; Ma, D.Q.; Xie, C.J.; Zheng, L.R.; Dong, X.H.; Mei, L.Q.; Yu, J.; Wang, C.Z.; et al. Functionalized MoS2 nanovehicle with near-infrared laser-mediated nitric oxide release and photothermal activities for advanced bacteria-Infected wound therapy. Small 2018, 14, 1802290. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Haloi, P.; Choudhary, R.; Chawla, S.; Kumari, M.; Konkimalla, V.B.; Jaiswal, A. Quaternary pullulan-functionalized 2D MoS2 glycosheets: A potent bactericidal nanoplatform for efficient wound disinfection and healing. ACS Appl. Mater. Interfaces 2023, 15, 24209–24227. [Google Scholar] [CrossRef]
- Teo, W.Z.; Chng, E.L.K.; Sofer, Z.; Pumera, M. Cytotoxicity of exfoliated transition-metal dichalcogenides (MoS2, WS2, and WSe2) is lower than that of graphene and its analogues. Chem. Eur. J. 2014, 20, 9627–9632. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.J.; Li, Y.F.; Nguyen, H.N.; Yao, Y.; Rodrigues, D.F. Toxicity of exfoliated-MoS2 and annealed exfoliated-MoS2 to-wards planktonic cells, biofilms, and mammalian cells in the presence of electron donor. Environ. Sci.-Nano 2015, 2, 370–379. [Google Scholar] [CrossRef]
- Chng, E.L.K.; Sofer, Z.; Pumera, M. MoS2 exhibits stronger toxicity with increased exfoliation. Nanoscale 2014, 6, 14412–14418. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.H.; Yang, R.; Song, B.M.; Han, Q.S.; Li, J.Y.; Zhang, Y.; Fang, Y.; Tenne, R.; Wang, C. Biocompatible inorganic fullerene-like molybdenum disulfide nanoparticles produced by pulsed laser ablation in water. ACS Nano 2011, 5, 1276–1281. [Google Scholar] [CrossRef]
- Wu, B.; Chen, L.; Wu, X.M.; Hou, H.; Wang, Z.Z.; Liu, S. Differential influence of molybdenum disulfide at the nanometer and micron scales in the intestinal metabolome and mi-crobiome of mice. Environ. Sci. Nano 2019, 6, 1594–1606. [Google Scholar] [CrossRef]
- Hao, J.L.; Song, G.S.; Liu, T.; Yi, X.; Yang, K.; Cheng, L.; Liu, Z. In vivo long-term biodistribution, excretion, and toxicology of PEGylated transition-metal dichalcogenides MS2 (M = Mo, W, Ti) nanosheets. Adv. Sci. 2017, 4, 1600160. [Google Scholar] [CrossRef]
- Wang, S.G.; Li, K.; Chen, Y.; Chen, H.R.; Ma, M.; Feng, J.W.; Zhao, Q.H.; Shi, J.L. Biocompatible PEGylated MoS2 nanosheets: Controllable bottom-up synthesis and highly efficient photothermal regression of tumor. Biomaterials 2015, 39, 206–217. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.G.; Chen, Y.; Li, X.; Gao, W.; Zhang, L.L.; Liu, J.; Zheng, Y.Y.; Chen, H.R.; Shi, J.L. Injectable 2D MoS2-integrated drug delivering implant for highly efficient NIR-triggered synergistic tumor hyperthermia. Adv. Mater. 2015, 27, 7117–7122. [Google Scholar] [CrossRef]
- Chen, L.; Feng, Y.H.; Zhou, X.J.; Zhang, Q.Q.; Nie, W.; Wang, W.Z.; Zhang, Y.Z.; He, C.L. One-pot synthesis of MoS2 nanoflakes with desirable degradability for photothermal cancer therapy. ACS Appl. Mater. Interfaces 2017, 9, 17347–17358. [Google Scholar] [CrossRef]
- Chen, L.; Feng, W.; Zhou, X.J.; Qiu, K.X.; Miao, Y.K.; Zhang, Q.Q.; Qin, M.; Li, L.; Zhang, Y.Z.; He, C.L. Facile synthesis of novel albumin-functionalized flower-like MoS2 nanoparticles for in vitro chemo-photothermal synergistic therapy. RSC Adv. 2016, 6, 13040–13049. [Google Scholar] [CrossRef]
- Pang, B.; Yang, H.R.; Wang, L.Y.; Chen, J.Q.; Jin, L.H.; Shen, B.J. Aptamer modified MoS2 nanosheets application in targeted photothermal therapy for breast cancer. Colloids Surf. A 2021, 608, 125506. [Google Scholar] [CrossRef]
- Wu, J.R.; Bremner, D.H.; Niu, S.W.; Wu, H.L.; Wu, J.Z.; Wang, H.J.; Li, H.Y.; Zhu, L.M. Functionalized MoS2 nanosheet-capped periodic mesoporous organosilicas as a multifunctional platform for synergistic targeted chemo-photothermal therapy. Chem. Eng. J 2018, 342, 90–102. [Google Scholar] [CrossRef] [Green Version]
- Li, B.L.; Setyawati, M.I.; Chen, L.Y.; Xie, J.P.; Ariga, K.; Lim, C.T.; Garaj, S.; Leong, D.T. Directing assembly and disassembly of 2D MoS2 nanosheets with DNA for drug delivery. ACS Appl. Mater. Interfaces 2017, 9, 15286–15296. [Google Scholar] [CrossRef]
- Song, I.; Park, C.; Choi, H.C. Synthesis and properties of molybdenum disulphide: From bulk to atomic layers. RSC Adv. 2015, 5, 7495–7514. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.; Tao, B.L.; He, Y.; Liu, J.; Lin, C.C.; Shen, X.K.; Ding, Y.; Yu, Y.L.; Mu, C.Y.; Liu, P.; et al. Biocompatible MoS2/PDA-RGD coating on titanium implant with antibacterial property via intrinsic ROS-independent oxidative stress and NIR irradiation. Biomaterials 2019, 217, 119290. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Bunekar, N.; Dutt, S.; Reddy, P.G.; Gupta, A.K.; Aadil, K.R.; Mishra, V.K.; Singh, S.; Sarkar, C. 2D advanced functional nanomaterials for cancer therapy. 2D Funct. Nanomater. 2021, 1, 199–233. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, R.; Dong, M.; Liu, L. Nano–Bio Interface of Molybdenum Disulfide for Biological Applications. Coatings 2023, 13, 1122. https://doi.org/10.3390/coatings13061122
Wu R, Dong M, Liu L. Nano–Bio Interface of Molybdenum Disulfide for Biological Applications. Coatings. 2023; 13(6):1122. https://doi.org/10.3390/coatings13061122
Chicago/Turabian StyleWu, Rongrong, Mingdong Dong, and Lei Liu. 2023. "Nano–Bio Interface of Molybdenum Disulfide for Biological Applications" Coatings 13, no. 6: 1122. https://doi.org/10.3390/coatings13061122
APA StyleWu, R., Dong, M., & Liu, L. (2023). Nano–Bio Interface of Molybdenum Disulfide for Biological Applications. Coatings, 13(6), 1122. https://doi.org/10.3390/coatings13061122