Advanced Electrochemical Degradation of Organic Pollutants from Water Using Sb-Doped SnO2/Ti Anode and Assisted by Granular Activated Carbon
Abstract
:1. Introduction
2. Materials and Methods
2.1. DSA Electrode Synthesis
2.2. Physicochemical Characterization
2.3. Electrochemical Characterization and Degradation
3. Results and Discussion
3.1. Morphostructural Characterization
3.2. Electrochemical Characterization
3.3. Electrochemical Oxidation of DOX
3.4. Activated Carbon-Based Sorption-Assisted Electrochemical Oxidation of DOX Using Ti/SnSb-S2
3.5. Comparative Simultaneous Mineralization of DOX, Capecitabine (CCB) and Humic Acid (HA) by EO and EF
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sirés, I.; Brillas, E. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review. Environ. Int. 2012, 40, 212–229. [Google Scholar] [CrossRef]
- Oturan, M.A.; Aaron, J.J. Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2577–2641. [Google Scholar] [CrossRef]
- Varma, K.S.; Tayade, R.J.; Shah, K.J.; Joshi, P.A.; Shukla, A.D.; Gandhi, V.G. Photocatalytic degradation of pharmaceutical and pesticide compounds (PPCs) using doped TiO2 nanomaterials: A review. Water-Energy Nexus 2020, 3, 46–61. [Google Scholar] [CrossRef]
- Sun, W.; Sun, Y.; Shah, K.J.; Chiang, P.C.; Zheng, H. Electrocatalytic oxidation of tetracycline by Bi-Sn-Sb/γ-Al2O3 three-dimensional particle electrode. J. Hazard Mater. 2019, 370, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Awad, Y.M.; Abuzaid, N. Electrochemical oxidation of phenol using graphite anodes. Sep. Sci. Technol. 1999, 34, 699–708. [Google Scholar] [CrossRef]
- Montilla, F.; Morallón, E.; Vázquez, J.L. Electrochemical study of benzene on Pt of various surface structures in alkaline and acidic solutions. Electrochim. Acta 2002, 47, 4399–4406. [Google Scholar] [CrossRef]
- Montilla, F.; Michaud, P.A.; Morallón, E.; Vázquez, J.L.; Comninellis, C. Electrochemical oxidation of benzoic acid at boron-doped diamond electrodes. Electrochim. Acta 2002, 47, 3509–3513. [Google Scholar] [CrossRef]
- Trasatti, S. Electrocatalysis: Understanding the success of DSA. Electrochim. Acta 2000, 45, 2377–2385. [Google Scholar] [CrossRef]
- Kariman, A.; Marshall, A.T. Improving the stability of DSA electrodes by the addition of TiO2 nanoparticles. J. Electrochem. Soc. 2019, 166, E248–E251. [Google Scholar] [CrossRef]
- Cao, F.; Tan, J.; Zhang, S.; Wang, H.; Yao, C.; Li, Y. Preparation and recent developments of Ti/SnO2-Sb Electrodes. J. Chem. Hindawi 2021, 2021, 2107939. [Google Scholar] [CrossRef]
- Ruparelia, J.P.; Soni, B.D. Application of Ti/RuO2-SnO2-Sb2O5 anode for degradation of reactive black-5 dye. Int. J. Chem. Mol. Eng. 2012, 6, 715–721. [Google Scholar] [CrossRef]
- Machado, C.F.C.; Gomes, M.A.; Silva, R.S.; Salazar-Band, G.R.; Eguiluz, K.I.B. Time and calcination temperature influence the electrocatalytic efficiency of Ti/SnO2: Sb (5%), Gd(2%) electrodes towards the electrochemical oxidation of naphthalene. J. Electroanal. Chem. 2018, 816, 232–241. [Google Scholar] [CrossRef]
- Shao, D.; Li, X.; Xu, H.; Yan, W.A. Simply improved Ti/Sb-SnO2 electrode with stable and high performance in electrochemical oxidation process. RSC Adv. 2014, 4, 21230–21237. [Google Scholar] [CrossRef]
- Maharana, D.; Niu, J.; Gao, D.; Xu, Z.; Shi, J. Electrochemical degradation of rhodamine B over Ti/SnO2-Sb electrode. Water Environ. Res. 2015, 87, 304–311. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, X.; Du, S.; Wang, J.; Tan, M.; Dong, J.; Wu, D. Facile synthesis of highly active Ti/Sb-SnO2 electrode by sol-gel spinning technique for landfill leachate treatment. Water Sci. Technol. 2021, 84, 1366–1378. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Yang, S.; Quispe-Cardenas, E.; Hoffmann, M.R. Application of heterojunction Ni−Sb−SnO2 anodes for electrochemical water treatment. ACS EST Eng. 2021, 1, 1236–1245. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, Y.; Chen, J.; Xu, L.; Huang, H.; Niu, J. High-efficiency electrochemical degradation of antiviral drug abacavir using a penetration flux porous Ti/SnO2–Sb anode. Chemosphere 2019, 225, 304–310. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, S.; Mao, Z.; Lin, Z.; Ren, X.; Yu, Z. High electrochemical activity of a Ti/SnO2–Sb electrode electrodeposited using deep eutectic solvent. Chemosphere 2020, 239, 124715. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, P.; Akkera, H.S.; Kumar Reddy, T.R.; Bitla, Y.; Ganesh, V.; Kumar, P.M.; Reddy, G.S.; Poloju, M. Effect of Ti doping on structural, optical, and electrical properties of SnO2 transparent conducting thin films deposited by sol-gel spin coating. Opt. Mater. 2021, 113, 110845. [Google Scholar] [CrossRef]
- Elangovan, E.; Shivashankar, S.A.; Ramamurthi, K. Studies on structural and electrical properties of sprayed SnO2: Sb films. J. Cryst. Growth 2005, 276, 215–222. [Google Scholar] [CrossRef]
- Ma, J.; Gao, M.; Shi, H.; Ni, J.; Xu, Y.; Wang, Q. Progress in research and development of particle electrodes for three-dimensional electrochemical treatment of wastewater: A review. Environ. Sci. Pollut. R 2021, 28, 47800–47824. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, Y.; Li, Y.; Hu, Z.; Zhou, L.; Zhou, M. Three-dimensional electrochemical process for wastewater treatment: A general review. Chem. Eng. J. 2013, 228, 455–467. [Google Scholar] [CrossRef]
- Gedam, N.; Neti, N.R. Carbon attrition during continuous electrolysis in carbon bed based three-phase three-dimensional electrode reactor: Treatment of recalcitrant chemical industry wastewater. J. Environ. Chem. Eng. 2014, 2, 1527–1532. [Google Scholar] [CrossRef]
- Alighardashi, A.; Aghta, R.S.; Ebrahimzadeh, H. Improvement of carbamazepine degradation by a three-dimensional electrochemical (3-EC) process. Int. J. Environ. Res. 2018, 12, 451–458. [Google Scholar] [CrossRef]
- Lei, S.; Song, Y. Comparative study on electrochemical treatment of cyanide wastewater. Front. Chem. 2021, 9, 598228. [Google Scholar] [CrossRef]
- Sowmiya, S.; Gandhimathi, R.; Ramesh, S.T.; Nidheesh, P.V. Granular activated carbon as a particle electrode in three-dimensional electrochemical treatment of reactive black b from aqueous solution. Environ. Prog. Sustain. Energy 2016, 35, 1616–1622. [Google Scholar] [CrossRef]
- McQuillan, R.V.; Stevens, G.W.; Mumford, K.A. The electrochemical regeneration of granular activated carbons: A review. J. Hazard Mater. 2018, 355, 34–49. [Google Scholar] [CrossRef]
- Norra, G.F.; Radjenovic, J. Removal of persistent organic contaminants from wastewater using a hybrid electrochemical-granular activated carbon (GAC) system. J. Hazard Mater. 2021, 415, 125557. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.; Li, Z.; Yu, G.; Pan, X.; Wang, J.; Zhu, W.; Han, X.; Wang, Y. Enhanced treatment of pharmaceutical wastewater by combining three-dimensional electrochemical process with ozonation to in situ regenerate granular activated carbon particle electrodes. Sep. Purif. Technol. 2019, 208, 12–18. [Google Scholar] [CrossRef]
- Neti, N.R.; Misra, R. Efficient degradation of Reactive Blue 4 in carbon bed electrochemical reactor. Chem. Eng. J. 2012, 184, 23–32. [Google Scholar] [CrossRef]
- Orha, C.; Bandas, C.; Lazau, C.; Popescu, M.I.; Baciu, A.; Manea, F. Advanced electrodegradation of doxorubicin in water using a 3-D Ti/SnO2 anode. Water 2022, 14, 821. [Google Scholar] [CrossRef]
- Comninellis, C.; Pulgarin, C. Anodic oxidation of phenol for wastewater treatment. J. Appl. Electrochem. 1991, 21, 703–708. [Google Scholar] [CrossRef]
- Yang, B.; Wang, J.; Jiang, C.; Li, J.; Yu, G.; Deng, S.; Lu, S.; Zhang, P.; Zhu, C.; Zhuo, Q. Electrochemical mineralization of perfluorooctane sulfonate by novel F and Sb co-doped Ti/SnO2 electrode containing Sn-Sb interlayer. Chem. Eng. J. 2017, 316, 296–304. [Google Scholar] [CrossRef]
- Bi, Q.; Guan, W.; Gao, Y.; Cui, Y.; Ma, S.; Xue, J. Study of the mechanisms underlying the effects of composite intermediate layers on the performance of Ti/SnO2-Sb-La electrodes. Electrochim. Acta 2019, 306, 667–679. [Google Scholar] [CrossRef]
- Li, D.; Liu, H.; Feng, L. A review on advanced FeNi-based catalysts for water splitting reaction. Energy Fuel 2020, 34, 13491–13522. [Google Scholar] [CrossRef]
- Li, J.; Li, M.; Li, D.; Wen, Q.; Chen, Z. Electrochemical pretreatment of coal gasification wastewater with Bi-doped PbO2 electrode: Preparation of anode efficiency and mechanism. Chemosphere 2020, 248, 126021. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yan, J.; Zhu, K. Effects of IrO2 interlayer on the electrochemical performance of Ti/Sb-SnO2 electrodes. J. Electroanal. Chem. 2020, 878, 114471. [Google Scholar] [CrossRef]
- Guo, H.; Xu, Z.; Wang, D.; Chen, S.; Qiao, D.; Wan, D.; Xu, H.; Yan, W.; Jin, X. Evaluation of diclofenac degradation effect in “active” and “non-active” anodes: A new consideration about mineralization inclination. Chemosphere 2022, 286, 131580. [Google Scholar] [CrossRef]
- Martinez-Huitle, C.A.; Brillas, E. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review. Appl. Catal. B Environ. 2009, 87, 105–145. [Google Scholar] [CrossRef]
- Panizza, M.; Cerisola, G. Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 2009, 109, 6541–6569. [Google Scholar] [CrossRef] [PubMed]
- Chin, C.J.M.; Chen, T.Y.; Lee, M.; Chang, C.F.; Liu, Y.T.; Kuo, Y.T. Effective anodic oxidation of naproxen by platinum nanoparticles coated FTO glass. J. Hazard Mater. 2014, 277, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Panizza, M.; Michaud, P.A.; Cerisola, G.; Comninellis, C. Anodic oxidation of 2-naphthol at boron-doped diamond electrodes. J. Electroanal. Chem. 2001, 507, 206–214. [Google Scholar] [CrossRef]
- Zhu, X.; Ni, J.; Xing, X.; Li, H.; Jiang, Y. Synergies between electrochemical oxidation and activated carbon adsorption in three-dimensional boron-doped diamond anode system. Electrochim. Acta 2011, 56, 1270–1274. [Google Scholar] [CrossRef]
- Asgari, G.; Seid-mohammadi, A.; Rahmani, A.; Samadi, M.T.; Salari, M.; Alizadeh, S.; Nematollahi, D. Diuron degradation using three-dimensional electro-peroxone (3D/E-peroxone) process in the presence of TiO2/GAC: Application for real wastewater and optimization using RSM-CCD and ANN-GA approaches. Chemosphere 2021, 266, 129179. [Google Scholar] [CrossRef]
- Samarghandi, M.R.; Dargahi, A.; Rahmani, A.; Shabanloo, A.; Ansari, A.; Nematollahi, D. Application of a fluidized three-dimensional electrochemical reactor with Ti/SnO2–Sb/β-PbO2 anode and granular activated carbon particles for degradation and mineralization of 2,4-dichlorophenol: Process optimization and degradation pathway. Chemosphere 2021, 279, 130640. [Google Scholar] [CrossRef]
- García, E.A.; Agullo-Barcelo, M.; Bond, P.; Keller, J.; Gernjak, W.; Radjenovic, J. Hybrid electrochemical-granular activated carbon system for the treatment of greywater. Chem. Eng. J. 2018, 352, 405–411. [Google Scholar] [CrossRef]
- Wang, T.; Song, Y.; Ding, H.; Liu, Z.; Baldwin, A.; Wong, I.; Li, H.; Zhao, C. Insight into synergies between ozone and in-situ regenerated granular activated carbon particle electrodes in a three-dimensional electrochemical reactor for highly efficient nitrobenzene degradation. Chem. Eng. J. 2020, 394, 124852. [Google Scholar] [CrossRef]
- Ghanbarlou, H.; Pedersen, N.L.; Fini, M.N.; Muff, J. Synergy optimization for the removal of dye and pesticides from drinking water using granular activated carbon particles in a 3D electrochemical reactor. Environ. Sci. Pollut. Res. 2020, 27, 22206–22213. [Google Scholar] [CrossRef]
- Ratiu, C.; Manea, F.; Lazau, C.; Grozescu, I.; Radovan, C.; Schoonman, J. Electrochemical oxidation of p-aminophenol from water with boron-doped diamond anodes and assisted photocatalytically by TiO2-supported zeolite. Desalination 2010, 260, 51–56. [Google Scholar] [CrossRef]
Electrode | Supporting Electrolyte | EO2/V vs. SCE | Current Densities, mA·cm−2 | Mineralization Degree (ƞTOC), % | DOX Degradation Degree (ηDOX), % | |||
---|---|---|---|---|---|---|---|---|
λ = 486 nm | λ = 290 nm | λ = 253 nm | λ = 232 nm | |||||
Ti/SnSb-S0 | 0.1 M Na2SO4 | 1.75 | 2.2 | 5 | 70 | 23 | 12 | 9.5 |
0.05 M Na2SO4 + 0.05 M NaCl | 1.72 | 1.4 | 4 | 80 | - * | 9.4 | 7.07 | |
Ti/SnSb-S1 | 0.1 M Na2SO4 | 1.80 | 2.9 | 16 | 90 | 44 | 64 | 67 |
0.05M Na2SO4 + 0.05 M NaCl | 1.77 | 3.1 | 28 | 93 | - * | 74 | 47 | |
Ti/SnSb-S2 | 0.1 M Na2SO4 | 1.65 | 7.7 | 42 | 99 | 88 | 95 | 96 |
0.05M Na2SO4 + 0.05 M NaCl | 1.58 | 6.1 | 67 | 98 | - * | 98 | 87 |
Supporting Electrolyte | Time, (sec) | kd, (m·s−1)·106 | jlim, mA·cm−2 | MCE, % | ETOC, mg TOC/C·cm2 | Wsp, kWh·dm−3 | SEC, kWh·g−1 TOC Removed |
---|---|---|---|---|---|---|---|
0.05 M Na2SO4 + 0.05 M NaCl | 600 | 34.2 | 0.364 | 6.9 | 0.960 | 0.525 | 0.434 |
1200 | 5.1 | 0.840 | 1.10 | 0.582 | |||
1800 | 3.4 | 0.501 | 1.80 | 0.887 | |||
3600 | 1.5 | 0.233 | 4.35 | 1.98 | |||
0.1 M Na2SO4 | 600 | 10.5 | 0.112 | 1.7 | 0.159 | 0.35 | 1.75 |
1200 | 1.9 | 0.178 | 0.62 | 1.56 | |||
1800 | 1.3 | 0.123 | 1.12 | 2.25 | |||
3600 | 1.3 | 0.116 | 2.61 | 2.37 |
Supporting Electrolyte | Time, (sec) | kd, (m·s−1)·106 | jlim, mA·cm−2 | MCE, % | ETOC, mg TOC/C·cm2 | Wsp, Wh·dm−3 | SEC, Wh·g−1 TOC Removed |
---|---|---|---|---|---|---|---|
0.1 M Na2SO4 | 600 | 19.1 | 0.203 | 7.1 | 0.980 | 0.515 | 0.420 |
1200 | 5.5 | 0.870 | 1.05 | 0.610 | |||
1800 | 6.5 | 0.518 | 1.32 | 0.840 | |||
3600 | 5.6 | 0.590 | 3.25 | 1.16 |
Process | Parameter | k, min−1 | R2 | k’E, C−1 | R2 |
---|---|---|---|---|---|
S | λDOX = 486 nm | 0.004 | 0.937 | - | - |
λDOX = 290 nm | 0.0011 | 0.911 | - | - | |
λDOX = 253 nm | 0.0018 | 0.969 | - | - | |
λDOX = 232 nm | 0.0015 | 0.966 | - | - | |
TOC, mg·L−1 | 0.0011 | 0.95 | - | - | |
EO | λDOX = 486 nm | 0.07 | 0.998 | 4.724 | 0.99 |
λDOX = 290 nm | 0.02 | 0.999 | 1.524 | 0.999 | |
λDOX = 253 nm | 0.034 | 0.999 | 2.535 | 0.999 | |
λDOX = 232 nm | 0.032 | 0.999 | 2.545 | 0.999 | |
TOC, mg·L−1 | 0.0084 | 0.96 | 0.555 | 0.999 | |
EF | λDOX = 486 nm | 0.04 | 0.976 | 3.01 | 0.993 |
λDOX = 290 nm | 0.02 | 0.952 | 0.55 | 0.944 | |
λDOX = 253 nm | 0.021 | 0.967 | 1.461 | 0.998 | |
λDOX = 232 nm | 0.023 | 0.966 | 1.624 | 0.991 | |
TOC, mg·L−1 | 0.02 | 0.900 | 2.721 | 0.986 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baciu, A.; Orha, C.; Nicolae, R.; Nicolaescu, M.; Ilies, S.; Manea, F. Advanced Electrochemical Degradation of Organic Pollutants from Water Using Sb-Doped SnO2/Ti Anode and Assisted by Granular Activated Carbon. Coatings 2023, 13, 1127. https://doi.org/10.3390/coatings13061127
Baciu A, Orha C, Nicolae R, Nicolaescu M, Ilies S, Manea F. Advanced Electrochemical Degradation of Organic Pollutants from Water Using Sb-Doped SnO2/Ti Anode and Assisted by Granular Activated Carbon. Coatings. 2023; 13(6):1127. https://doi.org/10.3390/coatings13061127
Chicago/Turabian StyleBaciu, Anamaria, Corina Orha, Radu Nicolae, Mircea Nicolaescu, Sorina Ilies, and Florica Manea. 2023. "Advanced Electrochemical Degradation of Organic Pollutants from Water Using Sb-Doped SnO2/Ti Anode and Assisted by Granular Activated Carbon" Coatings 13, no. 6: 1127. https://doi.org/10.3390/coatings13061127
APA StyleBaciu, A., Orha, C., Nicolae, R., Nicolaescu, M., Ilies, S., & Manea, F. (2023). Advanced Electrochemical Degradation of Organic Pollutants from Water Using Sb-Doped SnO2/Ti Anode and Assisted by Granular Activated Carbon. Coatings, 13(6), 1127. https://doi.org/10.3390/coatings13061127