Kinetic Modelling of Powder-Pack Boronized 4Cr5MoSiV1 Steel by Two Distinct Approaches
Abstract
:1. Introduction
2. Diffusion Models
2.1. Bilayer Diffusion Model
2.2. The Approach Based on the Dimensional Analysis
3. Calculation Results and Discussions
3.1. Evaluation of Diffusion Coefficients of Boron in FeB and Fe2B Using the Bilayer Model
3.2. Prediction of Layers’ Thicknesses with the Base Dimensional Analysis Model
4. Conclusions
- (1)
- The bilayer model based on the principle of mass conservation at each phase front was used to assess the diffusion coefficients of boron in FeB and Fe2B.
- (2)
- The calculation from the bilayer model shows that the values of the two dimensionless parameters (ξ ≈ 0.053 and η ≈ 0.1259) were nearly constant within the considered temperature range. This outcome confirms the parabolic character during the layers’ growth.
- (3)
- The calculation results from the bilayer model were fitted with Arrhenius relations to derive the values of activation energies in both phases (FeB and Fe2B), which were, respectively, 164.92 and 153.39 kJ mol−1.
- (4)
- The obtained activations energies with the bilayer model were very comparable to the values derived from the classical parabolic growth law, which were 169.44 kJ mol−1 for FeB and 157.32 kJ mol−1 for Fe2B.
- (5)
- The based dimensional analysis model and the bilayer model were capable of predicting the layers’ thicknesses, whose values were concordant with the experimental results taken from the literature.
- (6)
- Two dimensionless groups were derived during the establishment of the kinetic model based on the dimensional analysis. The experimental results were fitted according to the power laws to express the interdependence of the two dimensionless parameters.
- (7)
- The kinetic approach based on dimensional analysis showed its versatility and capability of analyzing the boronizing kinetics of 4Cr5MoSiV1 steel.
- (8)
- In future works, both kinetics approaches could be potentially used to model the diffusion phenomenon of interstitial elements such as boron or nitrogen in a multi-phase system (ferrous or non-ferrous alloys).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Campos-Silva, I.E.; Rodríguez-Castro, G.A. Boriding to Improve the Mechanical Properties and Corrosion Resistance of Steels, Thermochemical Surface Engineering of Steels, 1st ed.; Mittemeijer, E.J., Somers, M.A.J., Eds.; Woodhead-Elsevier Publishing: Cambridge, UK, 2015; pp. 651–697. [Google Scholar]
- Kulka, M. Current Trends in Boriding: Techniques; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Pashechko, M.; Dziedzic, K.; Jozwik, J. Analysis of Wear Resistance of Borided Steel C45. Materials 2020, 23, 5529. [Google Scholar] [CrossRef]
- Allaoui, L.A.; Allaoui, O. Corrosion resistance of borided layers obtained on XC38 steel. Indian J. Eng. Mater. Sci. 2018, 25, 421–424. [Google Scholar]
- Kartal, G.; Kahvecioglu, O.; Timur, S. Investigating the morphology and corrosion behavior of electrochemically borided steel. Surf. Coat. Technol. 2006, 200, 3590–3593. [Google Scholar] [CrossRef]
- Salyi, Z.; Kaptay, G.; Koncz-Horvath, D.; Somlyai-Sipos, L.; Zoltan Kovacs, P.; Lukacs, A.; Marton, B. Boride Coatings on Steel Protecting it Against Corrosion by a Liquid Lead-Free Solder Alloy. Metall. Mater. Trans. B 2022, 53, 730–743. [Google Scholar] [CrossRef]
- Campos, I.; Oseguera, J.; Figueroa, U.; García, J.A.; Bautista, O.; Kelemenis, G. Kinetic study of boron diffusion in the paste-boriding process. Mater. Sci. Eng. A 2003, 352, 261–265. [Google Scholar] [CrossRef]
- Ortiz-Domínguez, M.; Gómez-Vargas, O.A.; Bárcenas-Castañeda, M.; Castellanos-Escamilla, V.A. Comparison and Analysis of Diffusion Models: Growth Kinetics of Diiron Boride Layers on ASTM A283 Steel. Materials 2022, 23, 8420. [Google Scholar] [CrossRef] [PubMed]
- Smol’nikov, E.A.; Sarmanova, L.M. Study of the possibility of liquid boriding of high-speed steels. Met. Sci. Heat Treat. 1982, 24, 785–788. [Google Scholar] [CrossRef]
- Kulka, M.; Makuch, N.; Piasecki, A. Nanomechanical characterization and fracture toughness of FeB and Fe2B iron borides produced by gas boriding of Armco iron. Surf. Coat. Technol. 2017, 325, 515–532. [Google Scholar] [CrossRef]
- Sikorski, K.; Wierzchoń, T.; Bielinski, P. X-ray microanalysis and properties of multicomponent plasma-borided layers on steels. J. Mater. Sci. 1998, 33, 811–815. [Google Scholar] [CrossRef]
- Gunes, I.; Ulker, S.; Taktak, S. Plasma paste boronizing of AISI 8620, 52100 and 440C steels. Mater. Des. 2011, 32, 2380–2386. [Google Scholar] [CrossRef]
- Jain, V.; Sundararajan, G. Influence of the pack thickness of the boronizing mixture on the boriding of steel. Surf. Coat. Technol. 2002, 149, 21–26. [Google Scholar] [CrossRef]
- Barkat, A.; Hammou, A.D.; Allaoui, O. Effect of Boriding on the Fatigue Resistance of C20 Carbon Steel. Acta Phys. Pol. A 2017, 132, 813–815. [Google Scholar] [CrossRef]
- Morgado-González, I.; Ortiz-Dominguez, M.; Keddam, M. Characterization of Fe2B layers on ASTM A1011 steel and modeling of boron diffusion. Mater. Testing. 2022, 64, 55–66. [Google Scholar] [CrossRef]
- Campos, I.; Islas, M.; González, E.; Ponce, P.; Ramírez, G. Use of fuzzy logic for modeling the growth of Fe2B boride layers during boronizing. Surf. Coat. Technol. 2006, 201, 2717–2723. [Google Scholar] [CrossRef]
- Campos, I.; Islas, M.; Ramírez, G.; VillaVelázquez, C.; Mota, C. Growth kinetics of borided layers: Artificial neural network and least square approaches. Appl. Surf. Sci. 2007, 253, 6226–6231. [Google Scholar] [CrossRef]
- Ramdan, R.D.; Takaki, T.; Yashiro, K.; Tomita, Y. The Effects of Structure Orientation on the Growth of Fe2B Boride by Multi-Phase-Field Simulation. Mater. Trans. 2010, 51, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Nait Abdellah, Z.; Keddam, M.; Chegroune, R.; Bouarour, B.; Lillia, H.; Elias, A. Simulation of the boriding kinetics of Fe2B layers on iron substrate by two approaches. Matériaux Tech. 2012, 100, 581–588. [Google Scholar] [CrossRef]
- Kouba, R.; Keddam, M.; Kulka, M. Modelling of the paste boriding process. Surf. Eng. 2015, 31, 563–569. [Google Scholar] [CrossRef]
- Castillo-Vela, L.E.; Mejía-Caballero, I.; Rosales-Lopez, J.L.; Olivares-Luna, M.; Contreras-Hernández, A.; Keddam, M. The influence of a pulsed-DC field on the growth of the Fe2B layer and the electrical behavior of the boriding media. Vacuum 2023, 210, 111846. [Google Scholar] [CrossRef]
- Ortiz Domínguez, M.; Keddam, M.; Gómez Vargas, O.A.; Ares de Parga, G.; Zuno Silva, J. Bilayer growth kinetics and tribological characterization of boronized AISI M2 steel. Mater. Test. 2022, 64, 473–489. [Google Scholar] [CrossRef]
- Torres, R.; Campos, I.; Ramírez, G.; Bautista, O.; Martínez, J. Dimensional analysis in the growth kinetics of FeB and Fe2B layers during the boriding process. Int. J. Microstruct. Mater. Prop. 2007, 2, 73–83. [Google Scholar]
- Keddam, M.; Kulka, M. Simulation of the growth kinetics of FeB and Fe2B layers on AISI D2 steel by the integral method. Phys. Met. Metallogr. 2018, 119, 842–851. [Google Scholar] [CrossRef]
- Yu, L.; Chen, X.; Khor, K.; Sundararajan, G. FeB/Fe2B phase transformation during SPS pack-boriding: Boride layer growth kinetics. Acta Mater. 2005, 53, 2361–2368. [Google Scholar] [CrossRef]
- Keddam, M.; Chentouf, S.M. A diffusion model for describing the bilayer growth (FeB/Fe2B) during the iron powder-pack boriding. Appl. Surf. Sci. 2005, 252, 393–399. [Google Scholar] [CrossRef]
- Delai, O.; Xia, C.; Shiqiang, L. Growth kinetics of the FeB/Fe2B boride layer on the surface of 4Cr5MoSiV1 steel: Experiments and modelling. J. Mater. Res. Technol. 2021, 11, 1272–1280. [Google Scholar] [CrossRef]
- Keddam, M.; Kulka, M. Simulation of Boriding Kinetics of AISI D2 Steel using Two Different Approaches. Met. Sci. Heat Treat. 2020, 61, 756–763. [Google Scholar] [CrossRef]
- Mebarek, B.; Keddam, M. A fuzzy neural network approach for modeling the growth kinetics of FeB and Fe2B layers during the boronizing process. Matériaux Tech. 2018, 106, 603. [Google Scholar] [CrossRef]
- Roy, U. Phase boundary motion and polyphase diffusion in binary metal-interstitial systems. Acta Metall. 1968, 16, 243–253. [Google Scholar] [CrossRef]
- Okamoto, H. B-Fe (boron-iron). J. Phase Equilibria Diffus. 2004, 25, 297–298. [Google Scholar] [CrossRef]
- Bahman, Z. Dimensional Analysis Beyond the Pi Theorem; Springer: Cham, Switzerland, 2017; p. 266. [Google Scholar]
- Yoon, J.H.; Jee, Y.K.; Lee, S.Y. Plasma paste boronizing treatment of the stainless steel AISI 304. Surf. Coat. Technol. 1999, 112, 71–75. [Google Scholar] [CrossRef]
- Keddam, M.; Chegroune, R.; Kulka, M.; Panfil, D.; Ulker, S.; Taktak, S. Characterization and Diffusion Kinetics of the Plasma Paste Borided AISI 440C Steel. Trans Indian Inst. Met. 2017, 70, 1377–1385. [Google Scholar] [CrossRef]
- Kartal Sireli, G.; Yuce, H.; Arslan, M.; Karimzadehkhoei, M.; Timur, S. Improving the Surface Performance of Discarded AISI T1 Steel by Cathodic Reduction and Thermal Diffusion-Based Boriding. J. Mater. Eng. Perform. 2023, in press. [Google Scholar] [CrossRef]
- Sen, S.; Sen, U.; Bindal, C. An approach to kinetic study of borided steels. Surf. Coat. Technol. 2005, 191, 274–285. [Google Scholar] [CrossRef]
- Campos-Silva, I.; Hernández-Ramirez, E.J.; Contreras-Hernández, A.; Rosales-Lopez, J.L.; Valdez-Zayas, E.; Mejía-Caballero, I.; Martínez-Trinidad, J. Pulsed-DC powder-pack boriding: Growth kinetics of boride layers on an AISI 316 L stainless steel and Inconel 718 superalloy. Surf. Coat. Technol. 2021, 421, 127404. [Google Scholar] [CrossRef]
- Ipek Ayvaz, S.; Aydin, I. Effect of the Microwave Heating on Diffusion Kinetics and Mechanical Properties of Borides in AISI 316L. Trans. Indian Inst. Met. 2020, 73, 2635–2644. [Google Scholar] [CrossRef]
- Karakaş, M.S.; Günen, A.; Kanca, E.; Yilmaz, C. Boride layer growth kinetics of AISI H13 steel borided with nano-sized powders. Arch. Metall. Mater. 2018, 63, 159–165. [Google Scholar]
- Boonplook, Y.; Juijerm, P. Prediction of Boride Thickness on Tool Steels AISI D2 and AISI H13 Using Boriding Kinetics. Adv. Mat. Res. 2014, 931–932, 296–300. [Google Scholar] [CrossRef]
- Nait Abdellah, Z.; Boumaali, B.; Keddam, M. Experimental evaluation and modelling the boronizing kinetics of AISI H13 hot work tool steel. Mater. Test. 2021, 63, 1136–1141. [Google Scholar] [CrossRef]
- Campos, I.; Ramírez, G.; Figueroa, U.; Martínez, J.; Morales, O. Evaluation of boron mobility on the phases FeB, Fe2B and diffusion zone in AISI 1045 and M2 steels. App. Surf. Sci. 2007, 253, 3469–3475. [Google Scholar] [CrossRef]
- Hasan, R.; Liew, J.Z.L.; Halim, N. The effect of groove shape on activation energy of powder pack boronizing in mild steel. J. Tribol. 2019, 22, 123–137. [Google Scholar]
T (K) | (µm s−0.5) | (µm s−0.5) |
---|---|---|
1133 | 0.0905 | 0.2377 |
1173 | 0.1318 | 0.3180 |
1213 | 0.1680 | 0.4237 |
1253 | 0.2169 | 0.5247 |
T (K) | (m2s−1) | (m2s−1) | Parameter | Parameter |
---|---|---|---|---|
1133 | 0.74 | 0.92 | 0.0525 | 0.1238 |
1173 | 1.48 | 1.56 | 0.0542 | 0.1273 |
1213 | 2.48 | 2.85 | 0.0533 | 0.1254 |
1253 | 4.00 | 4.25 | 0.0541 | 0.1272 |
Steel | Boriding Process | Temperature Range (K) | Activation Energy (Kj mol−1) | Method of Calculation | Refs. |
---|---|---|---|---|---|
AISI 304 | Plasma | 1023–1223 | 123 | Parabolic growth law | [33] |
AISI 440C | Plasma paste | 973–1073 | 134.62 | Parabolic growth law | [34] |
AISI T1 | CRTD-Bor | 1123–1323 | 179 | Parabolic growth law | [35] |
AISI D2 | Salt bath | 1223–1273 | 170 | Parabolic growth law | [36] |
AISI 316L | Pulsed DC | 1123–1223 | 162 (FeB), 171 (FeB) | Bilayer model | [37] |
AISI M2 | Paste with different paste thickness | 1193–1273 | 255.76 (FeB), 201.0 (FeB) | Bilayer model | [42] |
AISI 316L | Powder with microwave heating | 1073–1223 | 244.15 | Parabolic growth law | [38] |
AISI H13 | Powder with two mixtures | 1073–1223 | 227.5 with nano-boron 284.2 with Ekabor II | Parabolic growth law | [39] |
AISI H13 | Powder | 1123–1223 | 185.7 | Parabolic growth law | [40] |
AISI H13 | Powder | 1173–1273 | 236.43 (FeB) 233.04 (Fe2B) | Mean Diffusion coefficient method | [41] |
AISI M2 | Powder | 1123–1273 | 220.5 (FeB) 210.90 (Fe2B) | Bilayer model | [22] |
4Cr5MoSiV1 | Powder | 1133–1253 | 205.25 (FeB) 170.915 (Fe2B) | Bilayer model | [27] |
4Cr5MoSiV1 | Powder | 1133–1253 | 164.92 (FeB) 153.39 (Fe2B) | Bilayer model | This work |
4Cr5MoSiV1 | Powder | 1133–1253 | 169.44 (FeB) 157.32 (Fe2B) | Parabolic growth law | This work |
T (K) | for FeB | for FeB | for Fe2B | for Fe2B |
---|---|---|---|---|
1173 | 1.4855 | 0.5483 | 1.9113 | 0.5910 |
1223 | 1.6194 | 0.5649 | 1.2415 | 0.5329 |
1273 | 0.9540 | 0.4929 | 1.7308 | 0.5903 |
1323 | 0.9831 | 0.4975 | 0.8637 | 0.4736 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benyakoub, K.; Keddam, M.; Boumaali, B.; Kulka, M. Kinetic Modelling of Powder-Pack Boronized 4Cr5MoSiV1 Steel by Two Distinct Approaches. Coatings 2023, 13, 1132. https://doi.org/10.3390/coatings13061132
Benyakoub K, Keddam M, Boumaali B, Kulka M. Kinetic Modelling of Powder-Pack Boronized 4Cr5MoSiV1 Steel by Two Distinct Approaches. Coatings. 2023; 13(6):1132. https://doi.org/10.3390/coatings13061132
Chicago/Turabian StyleBenyakoub, Katia, Mourad Keddam, Brahim Boumaali, and Michał Kulka. 2023. "Kinetic Modelling of Powder-Pack Boronized 4Cr5MoSiV1 Steel by Two Distinct Approaches" Coatings 13, no. 6: 1132. https://doi.org/10.3390/coatings13061132
APA StyleBenyakoub, K., Keddam, M., Boumaali, B., & Kulka, M. (2023). Kinetic Modelling of Powder-Pack Boronized 4Cr5MoSiV1 Steel by Two Distinct Approaches. Coatings, 13(6), 1132. https://doi.org/10.3390/coatings13061132