Phase Equilibria in the Fe-Mo-Co System: Experimental Investigation and Thermodynamic Calculation
Abstract
:1. Introduction
2. Literature Date
3. Experimental Procedures
3.1. Equilibrated Alloy Samples Preparation
3.2. Diffusion Couple Alloy Preparation
3.3. Metallographic Examination and Phase Identification
4. Thermodynamic Models
4.1. Pure Elements
4.2. Solution Phases
4.3. Ordered bcc_B2 Phase
4.4. Intermetallic Phases
5. Results and Discussion
5.1. Experimental Results
5.1.1. Isothermal Section at 1350 °C
5.1.2. Isothermal Section at 800 °C
5.2. Thermodynamic Calculation Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, M.K.; Sood, P.K.; Sharma, V.S. Optimization of machining parameters and cutting fluids during nano-fluid based minimum quantity lubrication turning of titanium alloy by using evolutionary techniques. J. Clean. Prod. 2016, 135, 1276–1288. [Google Scholar] [CrossRef]
- Bordin, A.; Sartori, S.; Bruschi, S.; Ghiotti, A. Experimental investigation on the feasibility of dry and cryogenic machining as sustainable strategies when turning Ti6Al4V produced by Additive Manufacturing. J. Clean. Prod. 2017, 142, 4142–4151. [Google Scholar] [CrossRef]
- Niketh, S.; Samuel, G.L. Surface texturing for tribology enhancement and its application on drill tool for the sustainable machining of titanium alloy. J. Clean. Prod. 2017, 167, 253–270. [Google Scholar] [CrossRef]
- Tillmann, W.; Stangier, D.; Meijer, A.; Krebs, E.; Ott, A.; Platt, T.; Lopes Dias, N.F.; Hagen, L.; Biermann, D. Adapting the Surface Integrity of High-Speed Steel Tools for Sheet-Bulk Metal Forming. J. Manuf. Mater. Process. 2022, 6, 37. [Google Scholar] [CrossRef]
- Prasad, K.N.; Syed, I. Surface Texturing and Laser Shock Peening Processes on High-Speed Steel Tool for Sustainable Machining. Arab. J. Sci. Eng. 2021, 47, 8589–8600. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, H.; Gao, S.; Luo, Y. Processing Fundamentals and Performance Investigation of Selective Laser Melting of High-Speed Steel in Reactive N2 Atmosphere. Steel Res. Int. 2023, 94, 2200807. [Google Scholar] [CrossRef]
- Hong, X.D.; Zheng, H.R.; Liang, D. Field emission behavior of titanium alloy nanosheets. Mater. Lett. 2021, 304, 130717. [Google Scholar] [CrossRef]
- Liu, W.; Li, G.; Shao, Z.; Wu, X.; Ma, G.; Wang, F. Advance in experimental research on cutting temperature of titanium alloys. Int. J. Adv. Manuf. Technol. 2023, 126, 1827–1844. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, W.; Dai, H. Overview of titanium alloy cutting based on machine learning. Int. J. Adv. Manuf. Technol. 2023, 126, 4749–4762. [Google Scholar] [CrossRef]
- Schröders, S.; Sandlöbes, S.; Berkels, B.; Korte-Kerzel, S. On the structure of defects in the Fe7Mo6 μ-Phase. Acta Mater. 2019, 167, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Schröders, S.; Sandlöbes, S.; Birke, C.; Loeck, M.; Peters, L.; Tromas, C.; Korte-Kerzel, S. Room temperature deformation in the Fe7Mo6 μ-Phase. Int. J. Plast. 2018, 108, 125–143. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.; He, Y.; Yuan, Z.; Kang, X. Microstructure and high-temperature sliding wear performance of Fe-Co-Mo alloy coating fabricated by plasma cladding. Surf. Coat. Technol. 2022, 444, 128667. [Google Scholar] [CrossRef]
- Yang, G.; Yin, H.; Deng, Z.; Zhang, C.; Zhang, R.; Qu, X. Effect of chemical composition on the microstructure and mechanical properties of MoCoB based cermets. Ceram. Int. 2020, 46, 18046–18055. [Google Scholar] [CrossRef]
- Ren, N.; Zhang, J. Site preference and alloying effect of tungsten in the μ phase of Co7Mo6. Philos. Mag. Lett. 2015, 96, 1–8. [Google Scholar] [CrossRef]
- Sun, Y.; Ganin, A.Y. The Synergistic Effects of Alloying on the Performance and Stability of Co3Mo and Co7Mo6 for the Electrocatalytic Hydrogen Evolution Reaction. Hydrogen 2020, 1, 11–21. [Google Scholar] [CrossRef]
- Peng, Z.Y.; Wang, X.M.; Yin, F.M.; Ouyang, X.M.; Hu, J.X. Phase equilibria of Co-Mo-Zn ternary system. Trans. Nonferrous Met. Soc. China 2020, 30, 417–427. [Google Scholar] [CrossRef]
- Li, P.; Zhang, J.; Ma, S.; Zhang, Y.; Jin, H.; Mao, S. First-principles investigations on structural stability, elastic and electronic properties of Co7M6 (M = W, Mo, Nb) µ phases. Mol. Simul. 2019, 45, 752–758. [Google Scholar] [CrossRef]
- Khimich, M.A.; Ibragimov, E.A.; Tolmachev, A.I.; Chebodaeva, V.V.; Uvarkin, P.V.; Saprykina, N.A.; Saprykin, A.A.; Sharkeev, Y.P. Influence of thermal treatment duration on structure and phase composition of additive Co-Cr-Mo alloy samples. Lett. Mater. 2022, 12, 43–48. [Google Scholar] [CrossRef]
- Geller, Y. Instrumentalniye Staly; Verlag Metallurgia: Moscow, Russia, 1983. [Google Scholar]
- Chen, W.; Hui, Z.; Hao, D.; Xiaocao, H.; George, C.H.; Bingshu, W.; Junfeng, C.; Xigui, C. Effects of B addition on the microstructure and magnetic properties of Fe-Co-Mo alloys. J. Alloys Compd. 2018, 766, 649–655. [Google Scholar]
- Danninger, H.; Rouzbahani, F.; Harold, C.; Ponemayr, H.; Daxelmuller, M.; Simancik, F.; Izdinsky, K. Heat treatment and properties of precipitation hardened carbon-free PM tool steels. Powder Metall. Prog. 2005, 5, 92–103. [Google Scholar]
- Leitner, H.; Schober, M.; Clemens, H.; Caliskanoglu, D.; Danoix, F. Precipitation behaviour of an Fe-Co-Mo-alloy during non-isothermal ageing. Int. J. Mater. Res. 2008, 99, 367–374. [Google Scholar] [CrossRef]
- Okamoto, H.; Massalski, T. Binary Alloy Phase Diagrams; ASM International: Materials Park, OH, USA, 1990; Volume 12. [Google Scholar]
- Guillermet, A.F. An assessment of the Fe-Mo system. Calphad 1982, 6, 127–140. [Google Scholar] [CrossRef]
- Andersson, J.O.; Lange, N. An experimental study and a thermodynamic evaluation of the Fe-Cr-Mo system. Metall. Mater. Trans. A 1988, 6, 1385–1394. [Google Scholar] [CrossRef]
- Houserová, J.; Vřešťál, J.; Šob, M. Phase diagram calculations in the Co-Mo and Fe-Mo systems using first-principles results for the sigma phase. Calphad 2005, 29, 133–139. [Google Scholar] [CrossRef]
- Rajkumar, V.; Kumar, K.H. Thermodynamic modeling of the Fe-Mo system coupled with experiments and ab initio calculations. J. Alloys Compd. 2014, 611, 303–312. [Google Scholar] [CrossRef]
- Pavlů, J.; Vřešťál, J.; Šob, M. Ab initio study of energetics and magnetism of sigma phase in Co–Mo and Fe–Mo systems. Model. Simul. Mater. Sci. Eng. 2016, 24, 025009. [Google Scholar] [CrossRef]
- Brewer, L. Molybdenum: Physico-Chemical Properties of Its Compounds and Alloys; International Atomic Energy Agency: Vienna, Austria, 1980; pp. 1–714. [Google Scholar]
- Birnie, D.; Machlin, E.; Kaufman, L.; Taylor, K. Comparison of pair potential and thermochemical models of the heat of formation of BCC and FCC alloys. Calphad 1982, 6, 93–126. [Google Scholar] [CrossRef]
- Davydov, A.; Kattner, U.R. Thermodynamic assessment of the Co-Mo system. J. Phase Equilibria 1999, 20, 5. [Google Scholar] [CrossRef]
- Davydov, A.; Kattner, U.R. Revised thermodynamic description for the Co-Mo system. J. Phase Equilibria 2003, 1, 7. [Google Scholar] [CrossRef]
- Oikawa, K.; UR, K.; Sato, J.; Omori, T.; Jiang, M.; Anzai, K.; Ishida, K. Experimental determination and thermodynamic assessment of phase equilibria in the Co-Mo system. Mater. Trans. 2012, 53, 1425–1435. [Google Scholar] [CrossRef] [Green Version]
- Fernandez Guillermet, A. Critical evaluation of the thermodynamic properties of the iron-cobalt system. High Temp. High Press. 1987, 19, 477–499. [Google Scholar]
- Ohnuma, I.; Enoki, H.; Ikeda, O.; Kainuma, R.; Ohtani, H.; Sundman, B.; Ishida, K. Phase equilibria in the Fe-Co binary system. Acta Mater. 2002, 50, 379–393. [Google Scholar] [CrossRef]
- Turchanin, M.; Dreval, L.; Abdulov, A.; Agraval, P. Mixing enthalpies of liquid alloys and thermodynamic assessment of the Cu-Fe-Co system. Powder Metall. Met. Ceram. 2011, 50, 98–116. [Google Scholar] [CrossRef]
- Wang, J.; Lu, X.G.; Zhu, N.; Zheng, W. Thermodynamic and diffusion kinetic studies of the Fe-Co system. Calphad 2017, 58, 82–100. [Google Scholar] [CrossRef]
- Dinsdale, A.T. SGTE data for pure elements. Calphad 1991, 15, 317–425. [Google Scholar] [CrossRef]
- Redlich, O.; Kister, A. Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 1948, 40, 345–348. [Google Scholar] [CrossRef]
- Ansara, I.; Dupin, N.; Sundman, B. Reply to the paper: “When is a compound energy not a compound energy? A critique of the 2-sublattice order/disorder model”: Of Nigel Saunders, Calphad 20 491-499. Calphad 1997, 21, 535–542. [Google Scholar] [CrossRef]
- Sundman, B.; Jansson, B.; Andersson, J.O. The thermo-calc databank system. Calphad 1985, 9, 153–190. [Google Scholar] [CrossRef]
- Du, Y.; Schmid-Fetzer, R.; Ohtani, H. Thermodynamic assessment of the V–N system. Int. J. Mater. Res. 2021, 88, 545–556. [Google Scholar] [CrossRef]
Sample | Designed Composition | Phase | Phase Composition (at.%) | ||
---|---|---|---|---|---|
Fe | Co | Mo | |||
A1 | 48Fe-5Co-47Mo | μ | 51.98 | 5.41 | 42.61 |
σ | 43.26 | 1.72 | 55.02 | ||
A2 | 81Fe-3Co-16Mo | Fcc | 82.38 | 3.92 | 13.70 |
R | 63.86 | 1.41 | 34.73 | ||
Bcc | 82.10 | 0.50 | 17.40 | ||
A3 | 50Fe-30Co-20Mo | L | 49.27 | 29.10 | 21.63 |
Fcc | 54.31 | 31.20 | 14.49 | ||
A4 | 47Fe-20Co-33Mo | μ | 44.14 | 18.04 | 37.83 |
Fcc | 59.70 | 24.92 | 15.38 | ||
A5 | 60Fe-8Co-32Mo | μ | 55.60 | 9.28 | 35.12 |
R | 58.91 | 6.06 | 35.03 | ||
Fcc | 73.03 | 11.75 | 15.22 | ||
A6 | 50Fe-25Co-25Mo | L | 50.67 | 26.90 | 22.43 |
Fcc | 58.70 | 26.10 | 15.20 | ||
μ | 42.19 | 20.40 | 37.41 | ||
A7 | 60Fe-5Co-35Mo | μ | 57.27 | 2.15 | 40.58 |
R | 61.03 | 2.40 | 63.43 | ||
A8 | 10Fe-50Co-40Mo | L | 17.62 | 57.19 | 25.19 |
μ | 11.5 | 46.10 | 42.40 | ||
A9 | 10Fe-30Co-60Mo | μ | 13.52 | 41,84 | 44.64 |
σ | 12.4 | 29.90 | 57.70 | ||
A10 | 7Fe-25Co-68Mo | (Mo) | 0.85 | 2.93 | 96.22 |
σ | 7.07 | 26.17 | 66.76 | ||
A11 | 15Fe-25Co-60Mo | μ | 20.28 | 35.35 | 44.37 |
(Mo) | 2.87 | 1.74 | 95.39 | ||
σ | 9.75 | 23.22 | 67.03 |
Sample | Designed Composition | Phase | Phase Composition (at.%) | ||
---|---|---|---|---|---|
Fe | Co | Mo | |||
B1 | 86Fe-8Co-6Mo | μ | 56.09 | 5.13 | 38.78 |
BCC | 90.12 | 8.26 | 1.62 | ||
B2 | 50Fe-25Co-25Mo | μ | 39.43 | 20.99 | 39.58 |
BCC | 66.45 | 32.61 | 0.94 | ||
B3 | 8Fe-31Co-61Mo | Mo | 2.27 | 3.03 | 94.7 |
μ | 10.75 | 42.82 | 46.43 | ||
B4 | 70Fe-5Co-25Mo | μ | 57.36 | 3.88 | 38.76 |
BCC | 92.35 | 5.97 | 1.68 | ||
λ | 66.92 | 2.13 | 30.95 |
Phase Equilibrium | Phase | Compositions (at.%) | ||
---|---|---|---|---|
Fe | Co | Mo | ||
μ + BCC + K | μ | 18.89 | 41.35 | 39.76 |
BCC | 44.99 | 54.82 | 0.19 | |
K | 2.64 | 75.37 | 21.99 | |
μ + BCC | μ | 20.41 | 40.02 | 39.57 |
BCC | 46.14 | 53.45 | 0.41 | |
K + FCC | K | 2.15 | 75.58 | 22.27 |
FCC | 9.71 | 89.41 | 0.88 |
Phase | Model | Thermodynamic Parameters |
---|---|---|
Liquid | (Co,Fe,Mo)1 | |
FCC_A1 | (Co,Fe,Mo)1(Va)1 | |
HCP_A3 | (Co,Fe,Mo)1(Va)0.5 | |
BCC_A2 | (Co,Fe,Mo)1(Va)3 | |
σ | (Co,Fe)8(Mo)4(Co,Fe,Mo)18 | |
R | (Co,Fe)27(Mo)14 (Co,Fe,Mo)12 | |
Co3Mo | (Co,Mo,Fe)3(Co,Mo,Fe)1 |
T (°C) | Reaction | Type |
---|---|---|
1581.40 | Liquid + BCC + C14 ↔ σ | P1 |
1478.99 | Liquid + σ ↔ μ + BCC | U1 |
1473.39 | Liquid + σ ↔ μ + R | U2 |
1461.11 | Liquid + BCC ↔ μ + σ | U3 |
1385.90 | Liquid + BCC ↔ FCC + R | U4 |
1372.79 | Liquid + R ↔ μ + FCC | U5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Peng, Z.; Shang, Y.; Liu, Y. Phase Equilibria in the Fe-Mo-Co System: Experimental Investigation and Thermodynamic Calculation. Coatings 2023, 13, 1215. https://doi.org/10.3390/coatings13071215
Li M, Peng Z, Shang Y, Liu Y. Phase Equilibria in the Fe-Mo-Co System: Experimental Investigation and Thermodynamic Calculation. Coatings. 2023; 13(7):1215. https://doi.org/10.3390/coatings13071215
Chicago/Turabian StyleLi, Minghuan, Zhiyong Peng, Yansong Shang, and Yongxiong Liu. 2023. "Phase Equilibria in the Fe-Mo-Co System: Experimental Investigation and Thermodynamic Calculation" Coatings 13, no. 7: 1215. https://doi.org/10.3390/coatings13071215
APA StyleLi, M., Peng, Z., Shang, Y., & Liu, Y. (2023). Phase Equilibria in the Fe-Mo-Co System: Experimental Investigation and Thermodynamic Calculation. Coatings, 13(7), 1215. https://doi.org/10.3390/coatings13071215