Biocompatible PVTF Coatings on Ti with Improved Bonding Strength
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Ti Metal Surfaces with Physical and Chemical Treatments
2.3. Preparation of PVTF Coatings and Specimens
2.4. Characterization of PVTF Coatings and Ti Metal Surfaces
2.5. Cell Culture
2.6. Cell Vitality Assays
2.7. Statistical Analysis
3. Results and Discussion
3.1. Characterization of PVTF Coatings
3.2. Characterization of Ti Metal Surfaces after Physical and Chemical Treatments
3.3. The Bonding Strength of PVTF Coatings
3.3.1. The Effect of Physical Treatment on Bonding Strength of PVTF Coatings
3.3.2. The Effect of Chemical Treatment on Bonding Strength of PVTF Coatings
3.4. The Possible Mechanism of Bonding Strength of PVTF Coatings
3.5. The Biocompatibility of PVTF Coatings
4. Conclusions
- The lowest roughness on the Ti metal surfaces with physical treatments showed the highest bonding strength of PVTF coatings. The most hydrophilicity on the Ti metal surfaces with chemical treatments showed the highest bonding strength of PVTF coatings;
- The total OH concentrations on the Ti metal surfaces modified by mixed acid treatment were higher than that modified by 5000-grit sandpaper treatment. This might be the underlying mechanism of the higher bonding strength;
- CCK-8 results indicated that PVTF coatings with physical and chemical treatments had good biocompatibility, and showed no significant difference. Biocompatible PVTF coatings on Ti with improved bonding strength exhibit broad application prospects as biomedical materials.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, W.P.; Hench, L.L. Bioactive materials. Ceram. Int. 1996, 22, 493–507. [Google Scholar] [CrossRef]
- Tan, L.; Yu, X.; Wan, P.; Yang, K. Biodegradable materials for bone repairs: A review. J. Mater. Sci. Technol. 2013, 29, 503–513. [Google Scholar] [CrossRef]
- Staiger, M.P.; Pietak, A.M.; Huadmai, J.; Dias, G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 2006, 27, 1728–1734. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Xia, D.D.; Zheng, Y.F.; Zhu, Y.; Liu, Y.S.; Zhou, Y.S. A pure zinc membrane with degradability and osteogenesis promotion for guided bone regeneration: In vitro and in vivo studies. Acta Biomater. 2020, 106, 396–409. [Google Scholar] [CrossRef]
- Golafshan, N.; Willemsen, K.; Kadumudi, F.B.; Vorndran, E.; Dolatshahi-Pirouz, A.; Weinans, H.; van der Wal, B.C.H.; Malda, J.; Castilho, M. 3D-Printed Regenerative Magnesium Phosphate Implant Ensures Stability and Restoration of Hip Dysplasia. Adv. Healthc. Mater. 2021, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Van den Dolder, J.; Farber, E.; Spauwen, P.H.M.; Jansen, J.A. Bone tissue reconstruction using titanium fiber mesh combined with rat bone marrow stromal cells. Biomaterials 2003, 24, 1745–1750. [Google Scholar] [CrossRef]
- Pan, Y.K.; Chen, C.Z.; Wang, D.G.; Lin, Z.Q. Preparation and bioactivity of micro-arc oxidized calcium phosphate coatings. Mater. Chem. Phys. 2013, 141, 842–849. [Google Scholar] [CrossRef]
- Bolelli, G.; Cannillo, V.; Gadow, R.; Killinger, A.; Lusvarghi, L.; Rauch, J. Microstructural and in vitro characterisation of high-velocity suspension flame sprayed (HVSFS) bioactive glass coatings. J. Eur. Ceram. Soc. 2009, 29, 2249–2257. [Google Scholar] [CrossRef]
- Zhang, J.M.; He, X.Z.; Lin, S.Y.; Chen, X.Y.; Dong, L.Q.; Lin, J.; Wang, H.M.; Weng, W.J.; Cheng, K. Accelerated Osteogenesis of Heterogeneous Electric Potential Gradient on CFO/P(VDF-TrFE) Membranes. Adv. Mater. Interfaces 2022, 9, 2102549. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, J.; Zhang, J.; Duan, X.; Lin, W.; Cheng, K.; Weng, W.; Chen, Z. Polarized P(VDF-TrFE) film promotes skin wound healing through controllable surface potential. Colloid. Surf. B Biointerfaces 2023, 221, 112980. [Google Scholar] [CrossRef]
- Uddin, A.M.I.; Lee, D.; Cho, C.; Kim, B. Impact of Multi-Walled CNT Incorporation on Dielectric Properties of PVDF-BaTiO3 Nanocomposites and Their Energy Harvesting Possibilities. Coatings 2022, 12, 77. [Google Scholar] [CrossRef]
- Tong, W.S.; An, Q.; Wang, Z.H.; Li, Y.N.; Tong, Q.W.; Li, H.T.; Zhang, Y.; Zhang, Y.H. Enhanced Electricity Generation and Tunable Preservation in Porous Polymeric Materials via Coupled Piezoelectric and Dielectric Processes. Adv. Mater. 2020, 32, 12. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; He, X.Z.; Duan, X.Y.; Liu, H.Q.; Zhou, Z.Y.; Cheng, K. A Simple Synthesis of P(VDF-TrFE)-Coated-PMMA Janus Membranes for Guided Bone Regeneration. Coatings 2022, 12, 1947. [Google Scholar] [CrossRef]
- Jia, F.; Lin, S.Y.; He, X.Z.; Zhang, J.M.; Shen, S.X.; Wang, Z.Y.; Tang, B.L.; Li, C.; Wu, Y.J.; Dong, L.Q.; et al. Comprehensive Evaluation of Surface Potential Characteristics on Mesenchymal Stem Cells’ Osteogenic Differentiation. ACS Appl. Mater. Interfaces 2019, 11, 22218–22227. [Google Scholar] [CrossRef]
- Tang, B.L.; Zhang, B.; Zhuang, J.J.; Wang, Q.; Dong, L.Q.; Cheng, K.; Weng, W.J. Surface potential-governed cellular osteogenic differentiation on ferroelectric polyvinylidene fluoride trifluoroethylene films. Acta Biomater. 2018, 74, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.Y.; Jeong, H.G.; Kim, S.J.; Kang, B.G.; Jang, K.S. Physical and Chemical Compatibilization Treatment with Modified Aminosilanes for Aluminum/Polyamide Adhesion. ACS Omega 2022, 7, 23865–23874. [Google Scholar] [CrossRef]
- Cerny, J.; Morscher, G. Adhesive bonding of titanium to carbon–carbon composites for heat rejection systems. In Proceedings of the 30th International Conference and Exposition on Advanced Ceramics and Composites, Daytona Beach, FL, USA, 22–26 January 2007; Volume 27, pp. 125–132. [Google Scholar] [CrossRef]
- Park, S.J.; Park, B.J. Electrochemically modified PAN carbon fibers and interfacial adhesion in epoxy-resin composites. J. Mater. Sci. Lett. 1999, 18, 47–49. [Google Scholar] [CrossRef]
- Akram, M.; Jansen, K.M.B.; Ernst, L.J.; Bhowmik, S. Atmospheric pressure plasma surface modification of titanium for high temperature adhesive bonding. Int. J. Adhes. Adhes. 2011, 31, 598–604. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, X.; Zhang, H.; Yang, J.L.; Nia, A.B.; Chai, G.B. Mechanical behaviors of Ti/CFRP/Ti laminates with different surface treatments of titanium sheets. Compos. Struct. 2017, 163, 21–31. [Google Scholar] [CrossRef]
- Su, Y.B.; de Rooij, M.; Grouve, W.; Akkerman, R. The effect of titanium surface treatment on the interfacial strength of titanium-Thermoplastic composite joints. Int. J. Adhes. Adhes. 2017, 72, 98–108. [Google Scholar] [CrossRef]
- Rodriguez-Vidal, E.; Sanz, C.; Lambarri, J.; Renard, J.; Gantchenko, V. Laser joining of different polymer-metal configurations: Analysis of mechanical performance and failure mechanisms. Phys. Procedia 2016, 83, 1110–1117. [Google Scholar] [CrossRef]
- Kim, W.S.; Yun, I.H.; Lee, J.J.; Jung, H.T. Evaluation of mechanical interlock effect on adhesion strength of polymer-metal interfaces using micro-patterned surface topography. Int. J. Adhes. Adhes. 2010, 30, 408–417. [Google Scholar] [CrossRef]
- Rodriguez-Vidal, E.; Sanz, C.; Lambarri, J.; Quintana, I. Experimental investigation into metal micro-patterning by laser on polymer-metal hybrid joining. Opt. Laser Technol. 2018, 104, 73–82. [Google Scholar] [CrossRef]
- Zou, X.; Chen, K.; Yao, H.N.; Chen, C.; Lu, X.P.; Ding, P.; Wang, M.; Hua, X.M.; Shan, A.D. Chemical Reaction and Bonding Mechanism at the Polymer-Metal Interface. ACS Appl. Mater. Interfaces 2022, 14, 27383–27396. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Kimura, F.; Wang, S.; Kajihara, Y. Chemical interaction at the interface of metal-plastic direct joints fabricated via injection molded direct joining. Appl. Surf. Sci. 2021, 540, 8. [Google Scholar] [CrossRef]
- Wang, Z.Y.; He, X.Z.; Tang, B.L.; Chen, X.Y.; Dong, L.Q.; Cheng, K.; Weng, W.J. Polarization behavior of bone marrow-derived macrophages on charged P(VDF-TrFE) coatings. Biomater. Sci. 2021, 9, 874–888. [Google Scholar] [CrossRef]
- Tang, B.L.; Zhuang, J.J.; Wang, L.M.; Zhang, B.; Lin, S.Y.; Jia, F.; Dong, L.Q.; Wang, Q.; Cheng, K.; Weng, W.J. Harnessing Cell Dynamic Responses on Magnetoelectric Nanocomposite Films to Promote Osteogenic Differentiation. ACS Appl. Mater. Interfaces 2018, 10, 7841–7851. [Google Scholar] [CrossRef]
- Lin, J.J.; Malakooti, M.H.; Sodano, H.A. Thermally Stable Poly(vinylidene fluoride) for High-Performance Printable Piezoelectric Devices. ACS Appl. Mater. Interfaces 2020, 12, 21871–21882. [Google Scholar] [CrossRef]
- Han, J.; Li, D.; Zhao, C.M.; Wang, X.Y.; Li, J.; Wu, X.Z. Highly Sensitive Impact Sensor Based on PVDF-TrFE/Nano-ZnO Composite Thin Film. Sensors 2019, 19, 830. [Google Scholar] [CrossRef] [Green Version]
- Long, X.J.; Duan, L.; Weng, W.J.; Cheng, K.; Wang, D.P.; Ouyang, H.W. Light-induced osteogenic differentiation of BMSCs with graphene/TiO2 composite coating on Ti implant. Colloid. Surf. B-Biointerfaces 2021, 207, 9. [Google Scholar] [CrossRef]
- Sousa, S.R.; Moradas-Ferreira, P.; Saramago, B.; Melo, L.V.; Barbosa, M.A. Human serum albumin adsorption on TiO2 from single protein solutions and from plasma. Langmuir 2004, 20, 9745–9754. [Google Scholar] [CrossRef]
- Li, Y.Y.; Zheng, P.; Zhang, M.; Zeng, Z.; Wang, Z.Y.; Ding, A.Q.; Ding, K.K. Hydrophilicity/hydrophobicity of anaerobic granular sludge surface and their causes: An in situ research. Bioresour. Technol. 2016, 220, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Shi, S.; Wang, M.; Ma, H.; Zhou, L.P.; Xu, J. Superhydrophobic SiO2-based nanocomposite modified with organic groups as catalyst for selective oxidation of ethylbenzene. J. Mater. Chem. A 2014, 2, 8126–8134. [Google Scholar] [CrossRef]
- Vakili, H.; Ramezanzadeh, B.; Amini, R. The corrosion performance and adhesion properties of the epoxy coating applied on the steel substrates treated by cerium-based conversion coatings. Corrosion Sci. 2015, 94, 466–475. [Google Scholar] [CrossRef]
- Elsaka, S.E.; Hamouda, I.M.; Elewady, Y.A.; Abouelatta, O.B.; Swain, M.V. Effect of chromium interlayer on the shear bond strength between porcelain and pure titanium. Dent. Mater. 2010, 26, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Al Hussaini, I.; Al Wazzan, K.A. Effect of surface treatment on bond strength of low-fusing porcelain to commercially pure titanium. J. Prosthet. Dent. 2005, 94, 350–356. [Google Scholar] [CrossRef]
- Hong, Y.; Yu, M.F.; Lin, J.; Cheng, K.; Weng, W.J.; Wang, H.M. Surface hydroxyl groups direct cellular response on amorphous and anatase TiO2 nanodots. Colloid Surf. B-Biointerfaces 2014, 123, 68–77. [Google Scholar] [CrossRef]
- Gao, Y.F.; Masuda, Y.; Koumoto, K. Light-excited superhydrophilicity of amorphous TiO2 thin films deposited in an aqueous peroxotitanate solution. Langmuir 2004, 20, 3188–3194. [Google Scholar] [CrossRef]
- Wang, L.M.; Zhou, B.B.; Huang, X.X.; Dong, L.Q.; Cheng, K.; Weng, W.J. Cell responses on a H2Ti3O7 nanowire film. RSC Adv. 2017, 7, 33606–33613. [Google Scholar] [CrossRef]
Treatment | Roughness (nm) |
---|---|
400-grit | 557.4 ± 75.4 |
2000-grit | 320.9 ± 18.2 |
5000-grit | 216.3 ± 76.4 |
HCl | 440.3 ± 51.6 |
HF | 691.9 ± 41.2 |
Mixed acid | 464.2 ± 54.9 |
Treatment | WCA (°) |
---|---|
400-grit | 92.3 ± 3.1 |
2000-grit | 80.5 ± 2.9 |
5000-grit | 78.9 ± 0.9 |
HCl | 54.7 ± 2.7 |
HF | 15.0 ± 2.7 |
Mixed acid | 9.9 ± 1.9 |
Treatment | Bonding Strength (MPa) |
---|---|
No treatment | 0.68 ± 0.20 |
400-grit | 2.10 ± 0.41 |
2000-grit | 4.67 ± 0.34 |
5000-grit | 5.06 ± 0.85 |
HCl | 3.22 ± 0.03 |
HF | 4.98 ± 0.35 |
Mixed acid | 6.88 ± 0.11 |
TiOHB | TiOHT | O22− | Ti-O-Ti | TiOHT/TiOHB | Total OH | |
---|---|---|---|---|---|---|
5000-grit sandpaper | 15.01 | 15.01 | 20.58 | 49.39 | 1.00 | 30.02 |
Mixed acid | 29.63 | 12.87 | 5.21 | 52.28 | 0.43 | 42.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.; He, X.; Guo, X.; Xu, D.; Cheng, K. Biocompatible PVTF Coatings on Ti with Improved Bonding Strength. Coatings 2023, 13, 1224. https://doi.org/10.3390/coatings13071224
Lin W, He X, Guo X, Xu D, Cheng K. Biocompatible PVTF Coatings on Ti with Improved Bonding Strength. Coatings. 2023; 13(7):1224. https://doi.org/10.3390/coatings13071224
Chicago/Turabian StyleLin, Weiming, Xuzhao He, Xiaowei Guo, Dengfeng Xu, and Kui Cheng. 2023. "Biocompatible PVTF Coatings on Ti with Improved Bonding Strength" Coatings 13, no. 7: 1224. https://doi.org/10.3390/coatings13071224
APA StyleLin, W., He, X., Guo, X., Xu, D., & Cheng, K. (2023). Biocompatible PVTF Coatings on Ti with Improved Bonding Strength. Coatings, 13(7), 1224. https://doi.org/10.3390/coatings13071224