Fluorine-Free Compound Water- and Oil-Repellent: Preparation and Its Application in Molded Pulp
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of SA-PEG Oil Repellent
2.3. Preparation of Water Repellent
2.4. Preparation of Compound Water- and Oil-Repellent
2.5. Fabrication of SP/VAPDMS Coated Paper
2.6. Scanning Electron Microscopy (SEM)
2.7. Fourier Transform Infrared (FTIR) Spectra
2.8. Thermogravimetric Analysis (TGA)
2.9. Oil Resistance
2.10. High-Temperature Oil Resistance
2.11. Water Absorption
2.12. Water Vapor Transmittance (WVTR)
2.13. Mechanical Testing of Tensile Strength
2.14. Contact Angles (CAs)
2.15. Repulpability
3. Results
3.1. Fourier Transform Infrared (FTIR) Spectra
3.2. SEM
3.3. Thermogravimetric Analysis (TGA)
3.4. Oil Resistance
3.5. Thermal Oil Resistance
3.6. Water Absorption
3.7. Water Vapor Transmittance (WVTR)
3.8. Water/oil Contact Angles
3.9. The Mechanical Properties
3.10. Repulpability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pålsson, H.; Hellström, D. Packaging logistics in supply chain practice—Current state, trade-offs and improvement potential. Int. J. Logist. Res. Appl. 2016, 19, 351–368. [Google Scholar] [CrossRef]
- Abbas, M.; Buntinx, M.; Deferme, W.; Peeters, R. (Bio)polymer/ZnO nanocomposites for packaging applications: A review of gas barrier and mechanical properties. Nanomaterials 2019, 9, 1494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beitzen-Heineke, E.F.; Balta-Ozkan, N.; Reefke, H. The prospects of zero-packaging grocery stores to improve the social and environmental impacts of the food supply chain. J. Clean. Prod. 2017, 140, 1528–1541. [Google Scholar] [CrossRef] [Green Version]
- Lebreton, L.; Andrady, A. Future scenarios of global plastic waste generation and disposal. Palgrave Commun. 2019, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, S.A.A.; El-Sakhawy, M.; El-Sakhawy, M.A.-M. Polysaccharides, protein and lipid -based natural edible films in food packaging: A review. Carbohydr. Polym. 2020, 238, 116178. [Google Scholar] [CrossRef]
- Gautam, A.M.; Caetano, N. Study, design and analysis of sustainable alternatives to plastic takeaway cutlery and crockery. Energy Procedia 2017, 136, 507–512. [Google Scholar] [CrossRef]
- Yu, H.; Hou, J.; Namin, R.B.; Ni, Y.; Liu, S.; Yu, S.; Liu, Y.; Wu, Q.; Nie, S. Pre-cryocrushing of natural carbon precursors to prepare nitrogen, sulfur co-doped porous microcellular carbon as an efficient ORR catalyst. Carbon 2021, 173, 800–808. [Google Scholar] [CrossRef]
- Mujtaba, M.; Lipponen, J.; Ojanen, M.; Puttonen, S.; Vaittinen, H. Trends and challenges in the development of bio-based barrier coating materials for paper/cardboard food packaging; a review. Sci. Total Environ. 2022, 851, 158328. [Google Scholar] [CrossRef]
- Bastante, C.C.; Silva, N.H.C.S.; Cardoso, L.C.; Serrano, C.M.; Martínez de la Ossa, E.J.; Freire, C.S.R.; Vilela, C. Biobased films of nanocellulose and mango leaf extract for active food packaging: Supercritical impregnation versus solvent casting. Food Hydrocoll. 2021, 117, 106709. [Google Scholar] [CrossRef]
- Wever, R.; Twede, D. The history of molded fiber packaging: A 20th century pulp story. In Proceedings of the 23rd IAPRI Symposium on Packaging, Windsor, UK, 3–5 September 2007. [Google Scholar]
- Zhang, Y.; Duan, C.; Bokka, S.K.; He, Z.; Ni, Y. Molded fiber and pulp products as green and sustainable alternatives to plastics: A mini review. J. Bioresour. Bioprod. 2022, 7, 14–25. [Google Scholar] [CrossRef]
- Lang, C.V.; Jung, J.; Wang, T.; Zhao, Y. Investigation of mechanisms and approaches for improving hydrophobicity of molded pulp biocomposites produced from apple pomace. Food Bioprod. Process. 2022, 133, 1–15. [Google Scholar] [CrossRef]
- Wang, S.; Jing, Y. Effects of formation and penetration properties of biodegradable montmorillonite/chitosan nanocomposite film on the barrier of package paper. Appl. Clay Sci. 2017, 138, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, V.K.; Samyn, P. Bio-based coatings for paper applications. Coatings 2015, 5, 887–930. [Google Scholar] [CrossRef] [Green Version]
- Kansal, D.; Hamdani, S.S.; Ping, R.; Sirinakbumrung, N.; Rabnawaz, M. Food-safe chitosan–zein dual-layer coating for water- and oil-repellent paper substrates. ACS Sustain. Chem. Eng. 2020, 8, 6887–6897. [Google Scholar] [CrossRef]
- Nair, A.; Kansal, D.; Khan, A.; Rabnawaz, M. Oil- and water-resistant paper substrate using blends of chitosan-graft-polydimethylsiloxane and poly(vinyl alcohol). J. Appl. Polym. Sci. 2021, 138, 50494. [Google Scholar] [CrossRef]
- Liu, D.; Duan, Y.; Wang, S.; Gong, M.; Dai, H. Improvement of oil and water barrier properties of food packaging paper by coating with microcrystalline wax emulsion. Polymers 2022, 14, 1786. [Google Scholar] [CrossRef]
- Du, Y.; Zang, Y.-H.; Du, J. Effects of starch on latex migration and on paper coating properties. Ind. Eng. Chem. Res. 2011, 50, 9781–9786. [Google Scholar] [CrossRef]
- Schaider, L.A.; Balan, S.A.; Blum, A.; Andrews, D.Q.; Strynar, M.J.; Dickinson, M.E.; Lunderberg, D.M.; Lang, J.R.; Peaslee, G.F. Fluorinated compounds in U.S. fast food packaging. Environ. Sci. Technol. Lett. 2017, 4, 105–111. [Google Scholar] [CrossRef]
- Kotthoff, M.; Müller, J.; Jürling, H.; Schlummer, M.; Fiedler, D. Perfluoroalkyl and polyfluoroalkyl substances in consumer products. Environ. Sci. Pollut. Res. Int. 2015, 22, 14546–14559. [Google Scholar] [CrossRef] [Green Version]
- Stahl, T.; Mattern, D.; Brunn, H. Toxicology of perfluorinated compounds. Environ. Sci. Eur. 2011, 23, 38–90. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Gao, S.W.; Cai, J.S.; He, C.L.; Mao, J.J.; Zhu, T.X.; Chen, Z.; Huang, J.Y.; Meng, K.; Zhang, K.Q.; et al. Recent progress in fabrication and applications of superhydrophobic coating on cellulose-based substrates. Materials 2016, 9, 124. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Li, J.; He, B.; Zhao, L. Fabrication of hydrophobic biocomposite by combining cellulosic fibers with polyhydroxyalkanoate. Cellulose 2017, 24, 2265–2274. [Google Scholar] [CrossRef]
- Li, Z.; Rabnawaz, M.; Sarwar, M.G.; Khan, B.; Krishna Nair, A.; Sirinakbumrung, N.; Kamdem, D.P. A closed-loop and sustainable approach for the fabrication of plastic-free oil- and water-resistant paper products. Green Chem. 2019, 21, 5691–5700. [Google Scholar] [CrossRef]
- Nakayama, N.; Hayashi, T. Preparation and characterization of poly(l-lactic acid)/TiO2 nanoparticle nanocomposite films with high transparency and efficient photodegradability. Polym. Degrad. Stab. 2007, 92, 1255–1264. [Google Scholar] [CrossRef]
- Buzarovska, A.; Grozdanov, A. Biodegradable poly(L-lactic acid)/TiO2 nanocomposites: Thermal properties and degradation. J. Appl. Polym. Sci. 2012, 123, 2187–2193. [Google Scholar] [CrossRef]
- Khairuddin, K.; Nurhayati, N.; Shodik, I.; Pham, T. Water vapour and grease resistance properties of paper coating based starch-bentonite clay. J. Phys. Conf. Ser. 2019, 1153, 012090. [Google Scholar] [CrossRef]
- Kansal, D.; Hamdani, S.S.; Ping, R.; Rabnawaz, M. Starch and zein biopolymers as a sustainable replacement for PFAS, silicone oil, and plastic-coated paper. Ind. Eng. Chem. Res. 2020, 59, 12075–12084. [Google Scholar] [CrossRef]
- Kansal, D.; Rabnawaz, M. Fabrication of oil-and water-resistant paper without creating microplastics on disposal. J. Appl. Polym. Sci. 2020, 138, 49692. [Google Scholar] [CrossRef]
- Kopacic, S.; Walzl, A.; Zankel, A.; Leitner, E.; Bauer, W. Alginate and chitosan as a functional barrier for paper-based packaging materials. Coatings 2018, 8, 235. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, P.; Hubbe, M.A.; Lucia, L.; Pal, L. High performance nanocellulose-based composite coatings for oil and grease resistance. Cellulose 2018, 25, 3377–3391. [Google Scholar] [CrossRef]
- Aulin, C.; Gällstedt, M.; Lindström, T. Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 2010, 17, 559–574. [Google Scholar] [CrossRef]
- Huntrakul, K.; Yoksan, R.; Sane, A.; Harnkarnsujarit, N. Effects of pea protein on properties of cassava starch edible films produced by blown-film extrusion for oil packaging. Food Package Shelf Life 2020, 24, 100480. [Google Scholar] [CrossRef]
- Li, Z.; Rabnawaz, M. Oil- and water-resistant coatings for porous cellulosic substrates. ACS Appl. Polym. Mater. 2019, 1, 103–111. [Google Scholar] [CrossRef]
- Li, Z.; Rabnawaz, M.; Khan, B. Response surface methodology design for biobased and sustainable coatings for water- and oil-resistant paper. ACS Appl. Polym. Mater. 2020, 2, 1378–1387. [Google Scholar] [CrossRef]
- Xie, J.; Xu, J.; Cheng, Z.; Chen, J.; Zhang, Z.; Chen, T.; Yang, R.; Sheng, J. Facile synthesis of fluorine-free cellulosic paper with excellent oil and grease resistance. Cellulose 2020, 27, 7009–7022. [Google Scholar] [CrossRef]
- Han, J.Y.; Hou, Y.J.; Zuo, Q.; Guo, J.; Wang, Y.Q. Hydrophobic modification of ZSM-5 molecular sieve and its catalytic performance for phenol oxidation with H2O2. Saf. Environ. Eng. 2017, 24, 91–96. (In Chinese) [Google Scholar] [CrossRef]
- Sheng, J.; Li, J.; Zhao, L. Fabrication of grease resistant paper with non-fluorinated chemicals for food packaging. Cellulose 2019, 26, 6291–6302. [Google Scholar] [CrossRef]
- Vrabič-Brodnjak, U.; Tihole, K. Chitosan solution containing zein and essential oil as bio based coating on packaging paper. Coatings 2020, 10, 497. [Google Scholar] [CrossRef]
- Long, Z.; Wu, M.; Peng, H.; Dai, L.; Zhang, D.; Wang, J. Preparation and oil-resistant mechanism of chitosan/cationic starch oil-proof paper. BioResources 2015, 10, 7907–7920. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Liu, D.; Chen, J.; Liu, G.; Kong, Z. Preparation and properties of super hydrophobic films from siloxane-modified two-component waterborne polyurethane and hydrophobic nano SiO2. Prog. Org. Coat. 2019, 127, 80–87. [Google Scholar] [CrossRef]
- Malakhova, Y.N.; Buzin, A.I.; Chvalun, S.N. Linear and cyclolinear polysiloxanes in the bulk and thin films on liquid and solid substrate surfaces. J. Surf. Investig. 2018, 12, 339–349. [Google Scholar] [CrossRef]
- Yin, F.; Tang, C.; Li, X.; Wang, X.B. Effect of moisture on mechanical properties and thermal stability of meta-aramid fiber used in insulating paper. Polymers 2017, 9, 537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weng, X.; Lin, N.; Huang, W.; Liu, M. Fluorine-Free Compound Water- and Oil-Repellent: Preparation and Its Application in Molded Pulp. Coatings 2023, 13, 1257. https://doi.org/10.3390/coatings13071257
Weng X, Lin N, Huang W, Liu M. Fluorine-Free Compound Water- and Oil-Repellent: Preparation and Its Application in Molded Pulp. Coatings. 2023; 13(7):1257. https://doi.org/10.3390/coatings13071257
Chicago/Turabian StyleWeng, Xin, Na Lin, Wenting Huang, and Minghua Liu. 2023. "Fluorine-Free Compound Water- and Oil-Repellent: Preparation and Its Application in Molded Pulp" Coatings 13, no. 7: 1257. https://doi.org/10.3390/coatings13071257
APA StyleWeng, X., Lin, N., Huang, W., & Liu, M. (2023). Fluorine-Free Compound Water- and Oil-Repellent: Preparation and Its Application in Molded Pulp. Coatings, 13(7), 1257. https://doi.org/10.3390/coatings13071257