Effect of Polyethylene-Grafted Maleic Anhydride on the Properties of Flue-Gas Desulfurized Gypsum/Epoxy Resin Composites
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Preparation Method
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, S.; Liu, W.; Jiao, F.; Qin, W.; Yang, C. Production and resource utilization of flue gas desulfurized gypsum in China—A review. Environ. Pollut. 2021, 288, 117799. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wang, W.; Ren, C.; Yao, X.; Yao, Y.; Zhang, Q.; Li, Z. Calcination of calcium sulphoaluminate cement using flue gas desulfurization gypsum as whole calcium oxide source. Constr. Build. Mater. 2019, 228, 116676. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Liang, F.; Jing, X.; Feng, W. Application of flue gas desulfurization gypsum improves multiple functions of saline-sodic soils across China. Chemosphere 2021, 277, 130345. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-G.; Wang, S.-J.; Liu, J.; Zhuo, Y.-Q.; Li, Y.; Zhang, W.-C. Fertility and biochemical activity in sodic soils 17 years after reclamation with flue gas desulfurization gypsum. J. Integr. Agric. 2021, 20, 3312–3322. [Google Scholar] [CrossRef]
- Hamid, A.; Wilson, A.E.; Torbert, H.A.; Wang, D. Sorptive removal of phosphorus by flue gas desulfurization gypsum in batch and column systems. Chemosphere 2023, 320, 138062. [Google Scholar] [CrossRef]
- Kang, J.; Gou, X.; Hu, Y.; Sun, W.; Liu, R.; Gao, Z.; Guan, Q. Efficient utilisation of flue gas desulfurization gypsum as a potential material for fluoride removal. Sci. Total Environ. 2019, 649, 344–352. [Google Scholar] [CrossRef]
- Wansom, S.; Chintasongkro, P.; Srijampan, W. Water resistant blended cements containing flue-gas desulfurization gypsum, Portland cement and fly ash for structural applications. Cem. Concr. Compos. 2019, 103, 134–148. [Google Scholar] [CrossRef]
- Duan, D.; Liao, H.; Wei, F.; Wang, J.; Wu, J.; Cheng, F. Solid waste-based dry-mix mortar using fly ash, carbide slag, and flue gas desulfurization gypsum. J. Mater. Res. Technol. 2022, 21, 3636–3649. [Google Scholar] [CrossRef]
- Li, M.; Gu, K.; Chen, B. Effects of flue gas desulfurization gypsum incorporation and curing temperatures on magnesium oxysulfate cement. Constr. Build. Mater. 2022, 349, 128718. [Google Scholar] [CrossRef]
- Chen, C.; Ma, F.; He, T.; Kang, Z.; Wang, Y.; Shi, C. Improved water and efflorescence resistance of flue gas desulfurization gypsum-based composites by generating hydrophobic coatings. J. Clean. Prod. 2022, 371, 133711. [Google Scholar] [CrossRef]
- Doleželová, M.; Scheinherrová, L.; Krejsová, J.; Keppert, M.; Černý, R.; Vimmrová, A. Investigation of gypsum composites with different lightweight fillers. Constr. Build. Mater. 2021, 297, 123791. [Google Scholar] [CrossRef]
- Tabatabai, H.; Janbaz, M.; Nabizadeh, A. Mechanical and thermo-gravimetric properties of unsaturated polyester resin blended with FGD gypsum. Constr. Build. Mater. 2018, 163, 438–445. [Google Scholar] [CrossRef]
- Guo, H.; Huang, Y.D.; Meng, L.H.; Liu, L.; Fan, D.P.; Liu, D.X. Interface property of carbon fibers/epoxy resin composite improved by hydrogen peroxide in supercritical water. Mater. Lett. 2009, 63, 1531–1534. [Google Scholar] [CrossRef]
- Barbosa, A.Q.; da Silva, L.F.M.; Abenojar, J.; Figueiredo, M.; Öchsner, A. Toughness of a brittle epoxy resin reinforced with micro cork particles: Effect of size, amount and surface treatment. Compos. Part B Eng. 2017, 114, 299–310. [Google Scholar] [CrossRef]
- Ke, J.; Li, X.; Jiang, S.; Wang, J.; Kang, M.; Li, Q.; Zhao, Y. Critical transition of epoxy resin from brittleness to toughness by incorporating CO2-sourced cyclic carbonate. J. CO2 Util. 2018, 26, 302–313. [Google Scholar] [CrossRef]
- Zeng, Y.; Wang, Q.; Xu, P.; Yang, W.; Hoch, M.; Ma, P. Toughening of epoxy resin with balanced performance by in situ constructing interfacial bonding and elastic segments into epoxy network. Mater. Chem. Phys. 2022, 277, 125529. [Google Scholar] [CrossRef]
- Dittanet, P.; Pearson, R.A. Effect of silica nanoparticle size on toughening mechanisms of filled epoxy. Polymer 2012, 53, 1890–1905. [Google Scholar] [CrossRef]
- Hao, X.; Xu, J.; Zhou, H.; Tang, W.; Li, W.; Wang, Q.; Ou, R. Interfacial adhesion mechanisms of ultra-highly filled wood fiber/polyethylene composites using maleic anhydride grafted polyethylene as a compatibilizer. Mater. Des. 2021, 212, 110182. [Google Scholar] [CrossRef]
- Dayma, N.; Satapathy, B.K. Morphological interpretations and micromechanical properties of polyamide-6/polypropylene-grafted-maleic anhydride/nanoclay ternary nanocomposites. Mater. Des. 2010, 31, 4693–4703. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, H.; Li, S.; Wang, G.; Guo, T.; Han, H. Facile fabrication of semi-IPN hydrogel adsorbent based on quaternary cellulose via amino-anhydride click reaction in water. Int. J. Biol. Macromol. 2022, 207, 622–634. [Google Scholar] [CrossRef]
- Ryu, H.K.; Bae, D.Y.; Lim, H.; Lee, E.; Son, K.-S. Ring-opening copolymerization of cyclic epoxide and anhydride using a five-coordinate chromium complex with a sterically demanding amino triphenolate ligand. Polym. Chem. 2020, 11, 3756–3761. [Google Scholar] [CrossRef]
- Bernhard, Y.; Van Guyse, J.F.R.; Purino, M.; Hoogenboom, R. Direct synthesis of poly(N-alkyl acrylamide) (co)polymers with pendant reactive amino groups by organocatalyzed amidation of polymethylacrylate. Eur. Polym. J. 2023, 192, 112077. [Google Scholar] [CrossRef]
- Zhang, S.; Bhagia, S.; Li, M.; Meng, X.; Ragauskas, A.J. Wood-reinforced composites by stereolithography with the stress whitening behavior. Mater. Des. 2021, 206, 109773. [Google Scholar] [CrossRef]
- Laghaei, R.; Hejazi, S.M.; Fashandi, H.; Akbarzadeh, S.; Shaghaghi, S.; Shamaei-Kashani, A.; Jahanara, B.; Shahsavari, E. Reinforcement contribution of cellulose nanocrystals (CNCs) to tensile properties and fracture behavior of triaxial E-glass fabric/epoxy composites. Compos. Part A Appl. Sci. Manuf. 2023, 164, 107258. [Google Scholar] [CrossRef]
- Wang, L.; Tan, Y.; Wang, X.; Xu, T.; Xiao, C.; Qi, Z. Mechanical and fracture properties of hyperbranched polymer covalent functionalized multiwalled carbon nanotube-reinforced epoxy composites. Chem. Phys. Lett. 2018, 706, 31–39. [Google Scholar] [CrossRef]
- Bagheri, R.; Pearson, R.A. Role of particle cavitation in rubber-toughened epoxies: II. Inter-particle distance. Polymer 2000, 41, 269–276. [Google Scholar] [CrossRef]
- Lian, Q.; Chen, H.; Luo, Y.; Li, Y.; Cheng, J.; Liu, Y. Toughening mechanism based on the physical entanglement of branched epoxy resin in the non-phase-separated inhomogeneous crosslinking network: An experimental and molecular dynamics simulation study. Polymer 2022, 247, 124754. [Google Scholar] [CrossRef]
- Lee, T.H.; Park, Y.I.; Noh, S.M.; Kim, J.C. In-situ visualization of the kinetics of low temperature thiol-epoxy crosslinking reactions by using a pH-responsive epoxy resin. Prog. Org. Coat. 2017, 104, 20–27. [Google Scholar] [CrossRef]
- Hourston, D.J.; Lane, J.M. The toughening of epoxy resins with thermoplastics: 1. Trifunctional epoxy resin-polyetherimide blends. Polymer 1992, 33, 1379–1383. [Google Scholar] [CrossRef]
- Zhu, T.; Lu, C.; Lu, X.; Zhi, J.; Song, Y. Curing process optimization and mechanical properties improvement of epoxy resin copolymer modified by epoxy-terminated hyperbranched polyether sulfone. Polymer 2022, 241, 124535. [Google Scholar] [CrossRef]
- Lawry, K.; Bernales, V.; Cogen, J.; Davies, D.; Koh, K.; Kramer, J.; Ren, D.; Rickard, M.; Singh-Rachford, T.; Sun, Y.; et al. Polyethylene crosslinking using the epoxy-anhydride reaction I: A strategy for a curing process with high thermal sensitivity. J. Phys. Org. Chem. 2022, 35, e4414. [Google Scholar] [CrossRef]
- Peterson, T.; Davies, D.; Koh, K.; Ren, D.; Rickard, M.; Singh-Rachford, T.; Sun, Y. Polyethylene crosslinking using the epoxy-anhydride reaction II: Development of a chemorheological model. J. Phys. Org. Chem. 2022, 35, e4417. [Google Scholar] [CrossRef]
Experimental Group | Epoxy Resin wt% | FGD Gypsum wt% | PGM wt% | PA Resin wt% | Defoamer wt% |
---|---|---|---|---|---|
Sample 1 | 50 | 0 | 0 | 40 | 10 |
Sample 2 | 30 | 40 | 0 | 20 | 10 |
Sample 3 | 27 | 40 | 3 | 20 | 10 |
Sample 4 | 24 | 40 | 6 | 20 | 10 |
Sample 5 | 21 | 40 | 9 | 20 | 10 |
Experimental Group | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 |
---|---|---|---|---|---|
Tensile strength (MPa) | 17.77 ± 0.43 | 13.21 ± 2.49 | 13.75 ± 1.97 | 23.09 ± 1.47 | 14.52 ± 0.51 |
Impact strength (kJ/m2) | 6.94 ± 1.73 | 6.66 ± 1.44 | 7.36 ± 1.04 | 10.83 ± 0.72 | 6.89 ± 0.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Li, H.; Die, J.; Zhang, Y.; Li, Y.; Wang, M.; Cao, Y.; Zhang, K.; Tu, J. Effect of Polyethylene-Grafted Maleic Anhydride on the Properties of Flue-Gas Desulfurized Gypsum/Epoxy Resin Composites. Coatings 2023, 13, 1291. https://doi.org/10.3390/coatings13071291
Li F, Li H, Die J, Zhang Y, Li Y, Wang M, Cao Y, Zhang K, Tu J. Effect of Polyethylene-Grafted Maleic Anhydride on the Properties of Flue-Gas Desulfurized Gypsum/Epoxy Resin Composites. Coatings. 2023; 13(7):1291. https://doi.org/10.3390/coatings13071291
Chicago/Turabian StyleLi, Fei, Hai Li, Juncheng Die, Yafeng Zhang, Yi Li, Mingyu Wang, Yang Cao, Kexi Zhang, and Jinchun Tu. 2023. "Effect of Polyethylene-Grafted Maleic Anhydride on the Properties of Flue-Gas Desulfurized Gypsum/Epoxy Resin Composites" Coatings 13, no. 7: 1291. https://doi.org/10.3390/coatings13071291
APA StyleLi, F., Li, H., Die, J., Zhang, Y., Li, Y., Wang, M., Cao, Y., Zhang, K., & Tu, J. (2023). Effect of Polyethylene-Grafted Maleic Anhydride on the Properties of Flue-Gas Desulfurized Gypsum/Epoxy Resin Composites. Coatings, 13(7), 1291. https://doi.org/10.3390/coatings13071291