Comparison and Research Progress of Protein Detection Technology for Cultural Relic Materials
Abstract
:1. Introduction
2. The Role of Protein Analysis in the Protection of Cultural Heritage
2.1. Types of Cultural Heritage Containing Protein
2.2. Characteristics of Protein-Containing Cultural Relics Materials
2.3. The Significance of Protein Analysis for the Protection of Cultural Relics Materials
2.4. Protein Detection Method in Cultural Relics Materials
3. Proteomics Technology
3.1. Protein Extraction
3.2. Mass Spectrometry Analysis
3.3. Biological Information Database Retrieval
3.4. Characteristics of Proteomics Technology
4. ELISA Technology
4.1. The Concept of Enzyme-Linked Immunosorbent Assay
4.2. Application of Early ELISA in Protein Detection of Cultural Relics Materials
4.3. ELISA Detection of Proteins in Cultural Relics Materials in a Complex Environment
4.4. ELISA Detection of Trace Samples
5. The Combination of ELISA and Other Technologies
5.1. Characteristics of Enzyme-Linked Immunosorbent Assay
5.2. Combined Use of Proteomics and ELISA
5.3. Expectation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maria, G.G.; Roberto, M.; Enrica, P. Back to the past: Deciphering cultural heritage secrets by protein identification. Appl. Microbiol. Biotechnol. 2018, 102, 5445–5455. [Google Scholar]
- Xu, L. Study on the Comprehensive Analysis Method of Traditional Mortar Materials. Master’s Thesis, Zhejiang University, Hangzhou, China, 2018. [Google Scholar]
- Hu, W.J. Immunoassays Technology of Binding Media in Precious Ancient Polychrome Cultural Relics. Master’s Thesis, Zhejiang University, Hangzhou, China, 2016. [Google Scholar]
- Chen, H.F.; Gong, D.C.; Huang, W.C.; Liu, B. SDS-PAGE Analysis of Aging Characteristics of Liao Dynasty Silk Unearthed in Yemaotai, Faku, Liaoning. Sci. Conserv. Archaeol. 2010, 22, 9–13. [Google Scholar]
- Wang, K.; Hu, D.B. Hydroxyapatite: Collagen Biomimetic Composite Material in Conservation of Tortoise Shell Relics. JNMCH 2013, 3, 141–152. [Google Scholar]
- Zhang, Y.; Chen, Z.; Liu, X.; Shi, J.; Chen, H.; Gong, Y. SEM, FTIR and DSC Investigation of Collagen Hydrolysate Treated Degraded Leather. J. Cult. Herit. 2021, 48, 205–210. [Google Scholar] [CrossRef]
- Pasian, C.; Secco, M.; Piqué, F.; Artioli, G.; Rickerby, S.; Cather, S. Lime-based injection grouts with reduced water content: An assessment of the effects of the water-reducing agents ovalbumin and ethanol on the mineralogical evolution and properties of grouts. J. Cult. Herit. 2018, 30, 70–80. [Google Scholar]
- Wang, Z.Y. Proteomics Analysis and Ultra-Sensitive Detection of Archaeological Hairs. Master’s Thesis, Zhejiang Sci-Tec University, Hangzhou, China, 2021. [Google Scholar]
- Wang, J.; Li, J.; Chao, X.; Chen, Y.; Huang, Y.; Mai, B.; Li, Y.; Cao, J. The influence of the photothermal aging exerting on the GC-MS identification of the common proteinaceous binding media in polychromy artworks. JNWU 2020, 50, 595–605. [Google Scholar]
- Liu, L.Y. Multi-Analytical Approach to the Study of Pigments and Binding Media in Precious Ancient Polychrome Cultural Relics. Master’s Thesis, Zhejiang University, Hangzhou, China, 2017. [Google Scholar]
- Abelson, P.H. Paleobiochemistry: Organic Constituents of Fossils; Yearbook, No. 531954; Carnegie Institution of Washington: Washington, DC, USA; pp. 97–101.
- Li, J.J.; Zhang, B.J. Research status of binders in ancient painted cultural relics—Based on data analysis of research papers from the Web of Science. Sci. Conserv. Archaeol. 2019, 31, 119–129. [Google Scholar]
- Chen, R.R. Characterization of Ancient Silk Fabrics Based on Proteomics and Immunological Techniques. Master’s Thesis, Zhejiang Sci-Tec University, Hangzhou, China, 2020. [Google Scholar]
- He, Q.J. Study on the Role of Sizing Agent in Ancient Calligraphy & Painting and the Development of Neutral Aluminum Salt Sizing Precipitator. Ph.D. Thesis, Northwest University, Xi’an, China, 2019. [Google Scholar]
- Chi, H.H. Artificial Aging and Consolidation of Silk Painting Colored by Mineral Pigment. Ph.D. Thesis, Zhejiang Sci-Tec University, Hangzhou, China, 2020. [Google Scholar]
- He, Q.J.; Wang, L.Q. Study on application of modern instruments analysis in identification of painting relics binding medium. China Adhes. 2007, 19, 19–22. [Google Scholar]
- Deng, Z.M.; Jiang, Z.H.; Qin, D.C. Evaluation on the moisture-proof performance of bamboo coated by lacquer in hot and humid environment. China For. Prod. Ind. 2015, 42, 14–16. [Google Scholar]
- Wang, C.; Qi, L.X.; Yang, J.; Zhou, W.; Dang, X. Status of research on the conservation of bone and antler relics. Sci. Conserv. Archaeol. 2016, 28, 118–125. [Google Scholar]
- Wang, J. Research on the Phenomenon of Decline in the Solubility of Silk Protein in Silk Cultural Relics and Its Solution. Master’s Thesis, Shandong University, Jinan, China, 2021. [Google Scholar]
- Zhang, B.J.; Hu, W.J.; Zhang, K. Research on the Egg White in Ancient Tabia Mortar by Enzyme-Linked Immunosorbent Assay (ELISA). J. Build. Mater. 2015, 18, 716–720. [Google Scholar]
- Wilson, J.; van Doorn, N.L.; Collins, M.J. Assessing the extent of bone degradation using glutamine deamidation in collagen. Anal. Chem. 2012, 84, 9041–9048. [Google Scholar] [CrossRef]
- Solazzo, C.; Wilson, J.; Dyer, J.M.; Clerens, S.; Plowman, J.E.; Von Holstein, I.; Collins, M.J.; Walton Rogers, P.; Peacock, E.E. Modeling deamidation in sheep α-keratin peptides and application to archeological wool textiles. Anal. Chem. 2014, 86, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Xie, J. Thermal aging Mechanism and Soften Technology of Leather. Master’s Thesis, Zhejiang Sci-Tec University, Hangzhou, China, 2016. [Google Scholar]
- Zhang, M. Study on Collagen Extraction Methods from Degraded Leather Cultural Relics. Master’s Thesis, Shandong University, Jinan, China, 2021. [Google Scholar]
- Pankin, D.; Povolotckaia, А.; Borisov, E.; Rongonen, S.; Mikhailova, А.; Tkachenko, T.; Dovedova, N.; Rylkova, L.; Kurochkin, A. Investigation of wafers used as paper binding in the academician von Struve manuscripts. J. Cult. Herit. 2021, 51, 125–131. [Google Scholar] [CrossRef]
- Zhao, L. Tracing the animal origin of organic cultural relics in the Palace Museum through mitochondrial DNA technology. China Cult. Herit. Sci. Res. 2019, 3, 75–82. (In Chinese) [Google Scholar]
- Paolo, C.; Antonella, C. Enzymes as tools for conservation of works of art. J. Cult. Herit. 2021, 50, 73–87. [Google Scholar]
- Banks, P.N. Paper Cleaning. Restaur. Int. J. Preserv. Libr. Arch. Mater. 1969, 1, 52–66. [Google Scholar] [CrossRef]
- Frantisek, M. Enzymatic consolidation of a painting: Seventeenth century landscape from skokloster palace. Stud. Conserv. 1982, 27, 135–138. [Google Scholar]
- Paolo, A.; Giacomo, Z.; Pamela, A. Art-loving bugs: The resurrection of Spinello Aretino from Pisa’s cemetery. Proteomics 2005, 5, 2453–2459. [Google Scholar]
- Zhou, Y. The Discovery of Silk in the Ritual Pit of Sanxingdui and its Significance. Chin. LH 2021, 12, 37–48. [Google Scholar]
- Su, B.M.; Zhang, A.M.; Hu, Z.M.; Li, Z.X. Application of Chromatographic Method in the Analysis of Cementitious Materials in Ancient Paintings. Dunhuang Res. 2000, 1, 82–86. [Google Scholar]
- Chen, D.M.; Si, C.D.; Long, S.J. Research Progress of Spectral Technologies of Binging Media Used in Paintings. Spectrosc. Spect. Anal. 2020, 40, 961–966. [Google Scholar]
- Zhao, Q.; Zhang, L.H.; Zhang, Y.K. Recent Advances in Proteomics. Chin. J. Appl. Chem. 2018, 35, 977–983. [Google Scholar]
- Candiano, G.; Bruschi, M.; Musante, L.; Santucci, L.; Ghiggeri, G.M.; Carnemolla, B.; Orecchia, P.; Zardi, L.; Righetti, G. Blue silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 2004, 25, 1327–1333. [Google Scholar] [CrossRef]
- Jennifer, A.; Milana, P.; Ei, W.W. Comparison of protein expression levels and proteomically-inferred genotypes using human hair from different body sites. Forensic. Sci. Int.-Gen. 2019, 41, 19–23. [Google Scholar]
- Xin, P.; Kuang, H.-X.; Li, X.-L.; Wang, Y.; Zhang, B.-M.; Bu, H.; Wang, Z.-B.; Meng, Y.-H.; Wang, Y.-H.; Wang, Q.-H. Proteomics and its application to determine mechanism of action of traditional chinese medicine. China J. Chin. Mater. Med. 2018, 43, 904–912. [Google Scholar]
- Yang, Q.; Wang, D.; Chang, L.L.; Sun, Y.; Jin, X.; Yang, X. Progress in Mass Spectrometry and its Application in Proteomics. Chin. Agric. Sci. Bull. 2015, 31, 239–246. [Google Scholar]
- Gong, P.T.; Xu, R.S.; Fang, X.J. Proteogenomics: Progress, Strategy and Problem. Genom. Appl. Biol. 2014, 33, 1169–1180. [Google Scholar]
- Li, N.; Wu, S.-F.; Zhu, Y.-P.; Yang, X.-M. The Progress of Protein Quality Control Methods in Shotgun Proteomics. Prog. Biochem. Biophys. 2009, 36, 668–675. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, H.W.; Tian, E.J. Proteomics Experiment Technologies and Their Applications. Prog. Vet. Med. 2015, 36, 116–120. [Google Scholar]
- Yu, Z.N.; Zhang, Y.; Huang, X.W. Application of proteomics in diagnosis and pathogenesis of genetic metabolic diseases. Chin. J. Lab. Med. 2022, 45, 300–304. [Google Scholar]
- Zhang, W. Progress in Mass Spectrometry Acquisition Approach for Quantitative Proteomics. Chin. J. Anal. Chem. 2014, 42, 1859–1868. [Google Scholar] [CrossRef]
- Radovan, H.; Stepanka, K.; Janka, H. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry as a tool for fast identification of protein binders in color layers of paintings. RCM 2004, 18, 1896–1900. [Google Scholar]
- Proietti, N.; Roselli, G.; Capitani, D.; Pettinari, C.; Pucciarelli, S.; Basileo, S.; Scognamiglio, F. Characterization of handmade papers (13th–15th century) from Camerino and Fabriano (Marche, Italy). J. Cult. Herit. 2020, 42, 8–18. [Google Scholar] [CrossRef]
- Tokarski, C.; Martin, E.; Rolando, C.; Cren-Olivé, C. Identification of proteins in renaissance paintings by proteomics. Anal. Chem. 2006, 78, 1494–1502. [Google Scholar] [CrossRef]
- Leo, G.; Cartechini, L.; Pucci, P.; Sgamellotti, A.; Marino, G.; Birolo, L. Proteomic strategies for the identification of proteinaceous binders in paintings. Anal. Bioanal. Chem. 2009, 395, 2269–2280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvano, C.D.; Rigante, E.C.; Cataldi, T.R.; Sabbatini, L. In situ hydrogel extraction with dual-enzyme digestion of proteinaceous binders: The key for reliable mass spectrometry investigations of artworks. Anal. Chem. 2020, 92, 10257–10261. [Google Scholar] [CrossRef] [PubMed]
- Zilberstein, G.; Maor, U.; Baskin, E.; D’Amato, A.; Righetti, P.G. Unearthing Bulgakov’s trace proteome from the Master i Margarita manuscript. J. Proteom. 2017, 152, 102–108. [Google Scholar] [CrossRef]
- Castellani, L.; Ferrantelli, P.; Sinibaldi, M.; Vigliano, G. Identification of proteinaceous adhesives in the wooden backing of Piero della Francesca’s painting Pala of Saint Bernardino: A gas chromatographic study. J. Cult. Herit. 2001, 2, 209–215. [Google Scholar] [CrossRef]
- Chirco, G.; Portale, E.C.; Caponetti, E.; Renda, V.; Martino, D.F.C. Investigation on four centuripe vases (late 3rd-2nd cent. B.C.) by portable X-ray fluorescence and total reflectance-FTIR. J. Cult. Herit. 2021, 48, 326–335. [Google Scholar] [CrossRef]
- Gomaa, A.M.; Mostafa, A.H.; Hany, A. Analytical techniques used for condition assessment of a late period mummy. J. Cult. Herit. 2005, 48, 83–92. [Google Scholar]
- Edwards; Howell, G.M.; Chalmers, J.M. Raman spectroscopy in archaeology and art history. J. Raman Spectrosc. 2004, 35, 607. [Google Scholar]
- Ying, C.F.; Qing, X.; Shu, Z. Characterization and quantitation study of ancient lacquer objects by NIR spectroscopy and THM-Py-GC/MS. J. Cult. Herit. 2020, 46, 95–101. [Google Scholar]
- Lu, R.; Kamiya, Y.; Miyakoshi, T. Applied analysis of lacquer films based on pyrolysis-gas chromatography/mass spectrometry. Talanta 2006, 70, 370–376. [Google Scholar] [CrossRef]
- Ji, M.C.; Fu, B.; Zhang, Y.J. Recent Progress of Analytical Methods of Proteomics Based on Mass Spectrometry. J Chin. Mass Spectrom. Soc. 2021, 42, 862–877. [Google Scholar]
- Yan, X.Y.; Gao, J.Z. Application of MALDI-TOF MS in early diagnosis of non-small cell lung cancer. J. Med. Theory Pract. 2022, 35, 1478–1481. [Google Scholar]
- Wang, Y. Quantitative Analysis of Three Kings of Mycotoxins in Distillers Dried Grains with Soluble by Ultral-High Performance Liquid Chromatography-Tandem Mass Spectrometry. Master’s Thesis, Jilin University, Jilin, China, 2018. [Google Scholar]
- Li, J.; Ren, Q.L.; Pan, Y.J. Mass Spectrometric Studies on the Addition Reaction of HCCA and Sulfhydryl-Containing Living Substance in MALDI-TOF MS Analysis. J Chin. Mass. Spectrom. Soc. 2022, 43, 133–141. [Google Scholar]
- Stepanka, K.; Radovan, H.; Milan, K. Application of peptide mass mapping on proteins in historical mortars. J. Cult. Herit. 2009, 10, 244–247. [Google Scholar]
- Taniguchi, Y.; Kawahara, K.; Takashima, M.; Cotte, M.; Mazurek, J.; Kumazawa, Y.; Taga, Y.; Nakazawa, T. Organic Materials Used for Giant Buddhas and Wall Paintings in Bamiyan, Afghanistan. Appl. Sci. 2022, 12, 9476. [Google Scholar] [CrossRef]
- Kuckova, S.; Hynek, R.; Kodicek, M. Identification of proteinaceous binders used in artworks by MALDI-TOF mass spectrometry. Anal. Bioanal. Chem. 2007, 388, 201–206. [Google Scholar] [CrossRef]
- Tripković, T.; Charvy, C.; Alves, S.; Lolić, A.; Baošić, R.; Nikolić-Mandić, S.; Tabet, J. Electrospray ionization linear trap quadrupole Orbitrap in analysis of old tempera paintings: Application to nineteenth-century Orthodox icons. Eur. J. Mass. Spectrom. 2015, 21, 679–692. [Google Scholar] [CrossRef]
- Sophie, D.; Monika, K.; Nicolas, G. Identification of animal glue species in artworks using proteomics: Application to a 18th century gilt sample. Anal. Chem. 2011, 83, 9431–9437. [Google Scholar]
- Azémard, C.; Zazzo, A.; Marie, A.; Lepetz, S.; Debaine-Francfort, C.; Idriss, A.; Zirah, S. Animal fibre use in the Keriya valley (Xinjiang, China) during the Bronze and Iron Ages: A proteomic approach. J. Archaeol. Sci. 2019, 110, 104996. [Google Scholar] [CrossRef]
- Yaroslav, D.; Timur, K.; Gavrilenko, L.; Solovyev, N. Targeted proteomics for the analysis of cultural heritage: Application of broadband collision-induced dissociation mass spectrometry. Anal. Bioanal. Chem. 2022, 414, 1723–1737. [Google Scholar]
- Eva, E.; Karin, J.; Peter, P. Enzyme-linked immunosorbent assay. II. Quantitative assay of protein antigen, immunoglobulin G, by means of enzyme-labelled antigen and antibody-coated tubes. BBA-Protein Struct. 1971, 251, 427–434. [Google Scholar]
- Pang, B.; Cheng, J.; Chen, Z. Comparision of Three Methods of Enzyme linked Immunosorbent Assay with A Monoclonal Antibody. Chin. J. Biol. Control 1999, 1, 32–35. [Google Scholar]
- Duan, X.; Huang, X.; Huang, L.F.; Wei, H.; Lai, W.H. Detection of Listeria monocytogenes in Food by Sandwich ELISA. Food Sci. 2010, 31, 272–276. [Google Scholar]
- Liu, J.Y.; Li, X.C.; Chen, D.K.; Zhang, Y.X.; Chen, J.; Wu, F.X. Establishment of indirect ELISA for detection of serum antibodies against canine parvovirus disease. China AHS 2006, 3, 27–29. [Google Scholar]
- Liu, S.Z.; Feng, D.H.; Qian, C.F.; Sergei, A.E. The Residue of Carbaryl in Brassica chinensis and Apple Determined by Method of Antibody Immobilized Direct Competitive ELISA. Chin. J. Pestic. Sci. 2001, 3, 69–73. [Google Scholar]
- Doreen, W.L.; Mohamed, S.; Abdel, R. Alterations in Rat Liver Microsomal Enzymes Following Exposure to Carbaryl and Malathion in Combination. Arch. Environ. Contam. Toxicol. 1985, 14, 451–457. [Google Scholar]
- Bu, G.H.; Zheng, Z.; Zheng, H. Amethod for detecting β-lactoglobulin in cowmilk allergens by indirect competitive enzyme-linked immunosorbent assay. J. China Agric. Univ. 2008, 6, 71–76. [Google Scholar]
- Cattaneo, C.; Gelsthorpe, K.; Phillips, P.; Sokol, R.J.; Smillie, D. Identification of ancient blood and tissue—ELISA and DNA analysis. Antiquity 1991, 65, 878–881. [Google Scholar] [CrossRef]
- Cattaneo, C.; Gelsthorpe, K.; Phillips, P.; Sokol, R.J. Detection of blood proteins in ancient human bone using ELISA: A comparative study of the survival of IgG and albumin. Int. J. Osteoarchaeol. 1992, 2, 103–107. [Google Scholar] [CrossRef]
- Schweitzer, M.; Hill, C.L.; Asara, J.M.; Lane, W.S.; Pincus, S.H. Identification of Immunoreactive Material in Mammoth Fossils. J. Mol. Evol. 2002, 55, 696–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.Y.; Atlasevich, N.; Granzotto, C.; Schultz, J.; Loike, J.; Arslanoglu, J. Development and application of an ELISA method for the analysis of protein-based binding media of artworks. Anal. Methods 2015, 7, 187–196. [Google Scholar] [CrossRef]
- Palmieri, M.; Vagnini, M.; Pitzurra, L.; Rocchi, P.; Brunetti, B.G.; Sgamellotti, A.; Cartechini, L. Development of an analytical protocol for a fast, sensitive and specific protein recognition in paintings by enzyme-linked immunosorbent assay (ELISA). Anal. Bioanal. Chem. 2011, 399, 3011–3023. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, H.; Zhang, B. Identification of organic binders in ancient Chinese paintings by immunological techniques. Microsc. Microanal. 2015, 21, 1278–1287. [Google Scholar] [CrossRef]
- Liu, Y. Micro-Trace-Identification of Ancient Proteinaceou Relics Based on Enzyme-Linked Immunosorbent Assay. Master’s Thesis, Zhejiang Sci-Tec University, Hangzhou, China, 2017. [Google Scholar]
- Wu, M.; Zhang, B.; Sun, G.; Jiang, L. Determination of lacquer contained in samples of cultural relics by enzyme-linked immunosorbent assay. New J. Chem. 2017, 41, 6226–6231. [Google Scholar] [CrossRef]
- Xin, W.; Ming, Z.M.; Bing, J.Z. Detection of early Chinese organic-inorganic composite lime surface from the Lushanmao site, 4300 years ago. J. Cult. Herit. 2021, 52, 128–133. [Google Scholar]
- Liu, L.; Shen, W.; Zhang, B.J. Determination of Proteinaceous Binders for Polychrome Relics of Xumi Mountain Grottoes by Using Enzyme-Linked Immunosorbent Assay and Immunofluorescence Microscopy. Int. J. Conserv. Sci. 2016, 7, 3–14. [Google Scholar]
- Zhang, W. Development of Immunomagctic Bead Double Antibody Sandwich ELISA for the Detection of Trace Fibroin. Master’s Thesis, China Jiliang University, Hangzhou, China, 2020. [Google Scholar]
- Andrea, A.; Francesca, B.; Mariangela, P. Characterization of organic binders in a 13th century painted wooden panel: Comparison of ToF-SIMS and Dot-ELISA results. Int. J. Mass. Spectrom. 2018, 430, 63–68. [Google Scholar]
- Zheng, H.; Yang, H.; Zhou, Y.; Li, T.; Ma, Q.; Wang, B.; Fang, Q.; Chen, H. Rapid Enrichment and Detection of Silk Residues from Tombs by Double-Antibody Sandwich ELISA Based on Immunomagnetic Beads. Anal. Chem. 2021, 93, 14440–14447. [Google Scholar] [CrossRef] [PubMed]
Cultural Heritage Material Composition | Cultural Heritage Category | Protein Containing Part | Protein Type |
---|---|---|---|
Organic | Paper | Glue in paper or silk | Collagen; Soybean protein |
Textile; Fur | Silk products; Wool fabric | Silk protein; Keratin | |
Lacquerware; Woodware; Bambooware | Lacquer artifacts | Glycoprotein | |
Leather | Leather products; Parchment | Collagen | |
Carcass | Mummified corpse; Wax corpse; Wet corpse; | Collagen | |
Bone; antler | Animal bones, teeth, and horns | Collagen | |
Inorganic | Ceramics; bricks | Pottery adhesive | Collagen; Ovalbumin; Casein |
Painted murals | Colored drawing; Mortar | Collagen; Ovalbumin; Casein |
Sample | Country of Sample | Time | Detection Method | Detected Protein | |
---|---|---|---|---|---|
Proteomics | Cementitious Materials in Renaissance Art Painting [46] | Italy | 2006 | MALDI-TOF, nano-LC, nano-ESI, Q-q-TOF-MS, MS | Ovalbumin |
17th Century Painings [62] | Norway | 2007 | MALDI-TOF MS | Egg protein | |
Cathedral dome painting binder [47] | Italy | 2009 | nano-LC-MS/MS; ESI | Casein | |
Mortar sample for Romanesque rotunda [60] | Czech Republic | 2009 | MALDI-TOF-MS | Casein; Collagen; Egg protein | |
18th century church binder [64] | France | 2011 | FTICR-MS, nano-LC, nano-ESI, HR MS, MS/MS | Bovine collagen | |
Orthodox paintings [63] | Serbia | 2015 | LTQ-Orbitra, MALDI-TOF MS/MS | Yolk protein | |
The manuscript of the famous writer Mikhail Bulgakov [49] | Russia | 2017 | LC-MS/MS | Periostein; acetyl-β-glucosaminidase; Norepinephrine | |
Ancient fibers [65] | China | 2019 | ESI-Q-TOF, UHPLC-MS, LC-MS/MS | Goat keratin; Sheep keratin; Sovine keratin | |
Handmade Papers (13th–15th century) [45] | Italy | 2020 | SDS-PAGE | Collagen | |
Handmade Papers (13th–15th century) [45] | Italy | 2020 | SDS-PAGE | Collagen | |
Painted statues [48] | Italy | 2020 | MALDI-TOF/TOF | Casein; Rabbit collagen; Egg yolk immunoglobulin | |
19th-century buildings [66] | Russia | 2021 | HPLC–MS, nano-LC–MS | Collagen | |
Wall Paintings [61] | Afghanistan | 2022 | ESI-MS/MS | Type I collagen Type III collagen | |
ELISA | 13th Century Murals [78] | Italy | 2010 | ELISA | Casein |
Peruvian feather robe from the 12th–13th centuries [77] | Peru | 2015 | ELISA | Arabino-galactose gum | |
Watercolor paintings from the 19th century to the early 20th century [76] | America | 2015 | ELISA | Type I collagen | |
14th-century tempera paintings [77] | Italy | 2015 | ELISA | Type I collagen; Ovalbumin | |
Wool and leather [80] | China | 2016 | ELISA | Type I collagen; Keratin | |
Murals binders [83] | China | 2016 | ELISA, IFM | Egg protein; Collagen | |
Dried lacquer films [81] | China | 2017 | ELISA | Glycoproteins | |
Soil samples [84] | China | 2020 | IMB, ELISA | Silk protein | |
Building mortars 4300 years ago [82] | China | 2021 | ELISA | Collagen | |
Combination of the two methods | Painted wood panels from the 13th century [85] | China | 2018 | ToF-SIMS, Dot-ELISA | Casein; Rabbit collagen; Egg protein |
Silks [13] | China | 2019 | LC–MS/MS, ELISA | Sericin; Silk fibroin | |
Silk residues [86] | China | 2021 | IMB, ELISA, LC−MS/MS | Silk protein |
Proteomics | ELISA | |
---|---|---|
Sample weight | μg, non-destructive sampling | mg |
Pre-treatment process | complex | simple |
Number of samples for single test | more | less |
Instrument | precision | simple |
Operating procedure | complex | simple |
Inspection cost | high cost | low cost |
Sample recovery | recyclable | non-recyclable |
Limit of detection | 1015 (mol/L) | 109 (mol/L) |
Species identification precision | species | genus |
Whether or not false negative | yes | no |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Zhang, B.; Hu, Y. Comparison and Research Progress of Protein Detection Technology for Cultural Relic Materials. Coatings 2023, 13, 1319. https://doi.org/10.3390/coatings13081319
Wu Q, Zhang B, Hu Y. Comparison and Research Progress of Protein Detection Technology for Cultural Relic Materials. Coatings. 2023; 13(8):1319. https://doi.org/10.3390/coatings13081319
Chicago/Turabian StyleWu, Qian, Bingjian Zhang, and Yulan Hu. 2023. "Comparison and Research Progress of Protein Detection Technology for Cultural Relic Materials" Coatings 13, no. 8: 1319. https://doi.org/10.3390/coatings13081319
APA StyleWu, Q., Zhang, B., & Hu, Y. (2023). Comparison and Research Progress of Protein Detection Technology for Cultural Relic Materials. Coatings, 13(8), 1319. https://doi.org/10.3390/coatings13081319