Materials, Structures, and Applications of iTENGs
Abstract
:1. Introduction
Core Triboelectric Layer | Electrode Layer | Encapsulation Layer | Operating Voltage | Power Density | Flexibility | Decomposable | Working Mode | Working Position | References |
---|---|---|---|---|---|---|---|---|---|
PLA, Mg | Mg | PCL | 356.8 mV | - | Inflexible | Biodegradable | Contact- separation | Wound | Xiao et al. [59]. |
PTFE, Ag | Ag | PDMS | 16.7 V | - | Flexible | Non- biodegradable | Free- standing | Vagus nerve | Sun, Y et al. [60]. |
ϰC-Agar, PCL | Mg | ϰC-Agar | ~30 V | 0.15 mW·m−2 | Inflexible | Biodegradable | Contact- separation | Subcutaneous tissue | Kang et al. [61]. |
Cu, Rubber | Cu | Rubber | 3.67 V | - | Flexible | Non- biodegradable | Contact- separation | Patellar ligament of knee | Sheng et al. [57]. |
PVA, PHBV | Mg | PHBV | ~4.1 V | - | Flexible | Biodegradable | Contact- separation | Subcutaneous | Iman, M et al. [62]. |
PTFE, Al | Cu, Al | PDMS | ~20 V | - | Flexible | Non- biodegradable | Contact- separation | Heart | Zhao et al. [63]. |
PTFE, Al | Au, Al | PDMS, Teflon | 65.2 V | - | Flexible | Non- biodegradable | Contact- separation | Heart | Ouyang et al. [56]. |
PLGA, PVA, PCL, PHB/V | Mg | PLGA | ~40 V | - | Inflexible | Biodegradable | Contact- separation | Pleural | Zheng et al. [30]. |
MXene- based MSC | carbon- fiber- embedded | Silicone | ~50 V | 7.8 µW/cm2 | Inflexible | Non- biodegradable | Single- electrode | Skin | Jiang et al. [32]. |
PE | Ni | Steel | 98 V | - | Inflexible | Non- biodegradable | Free- standing | Artificial joint | Liu et al. [64]. |
PTFE/PET | Cu/Cr | Silicone elastomer | 2.2 V | - | Flexible | Non- biodegradable | Free- standing | Diaphragm | Li et al. [65]. |
PTFE/Ag | Ag | Acrylic plate | ~0.5 V | - | Inflexible | Non- biodegradable | Single- electrode | Cochlea | Liu et al. [66]. |
BaTiO3 doped PDMS, Al | Au/Al | PDMS | ~40 V | 97.41 mW·m−2 | Flexible | Non- biodegradable | Contact- separation | Subcutaneous | Shi et al. [67]. |
PFA, PVA-NH2 | Cu/Au | Liquid Silicone Rubber | 136 V | 4.9 μWRMS/cm3 | Inflexible | Non- biodegradable | Contact- separation | Heart | Ryu et al. [68]. |
ZnO/ CNT | CNT | PDMS | 4.9 V | - | Flexible | Non- biodegradable | Contact- separation | Heart | Jin et al. [69]. |
BaTiO3/PVDF-TrFE | steel | steel | 15.24 V | - | Inflexible | Non- biodegradable | Contact- separation | Cochlea | Zheng et al. [70]. |
PLGA/P-PLGA | Mg | PLGA | 6.8 V | - | Flexible | Non- biodegradable | Contact- separation | Bone | Yao et al. [71]. |
TiO2/PDMS/Nitrile | Al | Kapton | ~40 V | - | Inflexible | Non- biodegradable | Contact- separation | Cancer | Zheng et al. [72,73]. |
Al/PDMS | hydrogel | hydrogel | ~10 V | - | Inflexible | Non- biodegradable | Single- electrode | Nerve | Chen et al. [74]. |
2. Materials
2.1. Core Triboelectric Layer
2.2. Electrode Layer
2.3. Encapsulation Layer
2.4. Degradable Material
2.5. Common Materials
3. Structures
3.1. Contact–Separation Mode
3.2. Single-Electrode Mode
3.3. Free-Standing Mode
4. Application
4.1. Different Scope of Application
4.2. Sensing and Power Supply
5. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, F.R.; Tian, Z.Q.; Wang, Z.L. Flexible triboelectric generator! Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Wang, Z.L. Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors. ACS Nano 2013, 7, 9533–9557. [Google Scholar] [CrossRef]
- Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X.M. Fiber-Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications. Adv. Mater. 2014, 26, 5310–5336. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282. [Google Scholar] [CrossRef]
- Wang, Z.L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82. [Google Scholar] [CrossRef]
- Walden, R.; Aazem, I.; Babu, A.; Pillai, S.C. Textile-Triboelectric nanogenerators (T-TENGs) for wearable energy harvesting devices. Chem. Eng. J. 2023, 451, 138741. [Google Scholar] [CrossRef]
- Cao, X.L.; Xiong, Y.; Sun, J.; Xie, X.Y.; Sun, Q.J.; Wang, Z.L. Multidiscipline Applications of Triboelectric Nanogenerators for the Intelligent Era of Internet of Things. Nano-Micro Lett. 2023, 15, 14. [Google Scholar] [CrossRef]
- Mi, Y.J.; Lu, Y.; Shi, Y.L.; Zhao, Z.Q.; Wang, X.Q.; Meng, J.J.; Cao, X.; Wang, N. Biodegradable Polymers in Triboelectric Nanogenerators. Polymers 2023, 15, 222. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Yu, J.R.; Huo, Z.W.; Wang, Y.F.; Sun, Q.J.; Wang, Z.L. Pursuing the tribovoltaic effect for direct-current triboelectric nanogenerators. Energy Environ. Sci. 2023, 16, 983–1006. [Google Scholar] [CrossRef]
- Meng, X.; Cai, C.; Luo, B.; Liu, T.; Shao, Y.; Wang, S.; Nie, S. Rational Design of Cellulosic Triboelectric Materials for Self-Powered Wearable Electronics. Nano-Micro Lett. 2023, 15, 124. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Shi, Q.F.; Lee, C.K. Advanced Implantable Biomedical Devices Enabled by Triboelectric Nanogenerators. Nanomaterials 2022, 12, 1366. [Google Scholar] [CrossRef] [PubMed]
- Li, W.X.; Lv, Y.J.; Luo, D.; Wang, Z.L. Turning trash into treasure: Recent advances in triboelectric nanogenerator based on waste-derived carbonized materials. J. Mater. Chem. A 2023, 11, 9194–9215. [Google Scholar] [CrossRef]
- Hu, C.F.; Wang, F.; Cui, X.H.; Zhu, Y.T. Recent progress in textile-based triboelectric force sensors for wearable electronics. Adv. Compos. Hybrid Mater. 2023, 6, 70. [Google Scholar] [CrossRef]
- Jiang, D.W.; Lian, M.Y.; Xu, M.J.; Sun, Q.; Xu, B.B.; Thabet, H.K.; El-Bahy, S.M.; Ibrahim, M.M.; Huang, M.A.; Guo, Z.H. Advances in triboelectric nanogenerator technology-applications in self-powered sensors, Internet of things, biomedicine, and blue energy. Adv. Compos. Hybrid Mater. 2023, 6, 57. [Google Scholar] [CrossRef]
- Ma, Z.M.; Cao, X.; Wang, N. Biophysical Sensors Based on Triboelectric Nanogenerators. Biosensors 2023, 13, 423. [Google Scholar] [CrossRef]
- Zhang, C.G.; Hao, Y.J.; Yang, J.Y.; Su, W.; Zhang, H.K.; Wang, J.; Wang, Z.L.; Li, X.H. Recent Advances in Triboelectric Nanogenerators for Marine Exploitation. Adv. Energy Mater. 2023, 13, 2300387. [Google Scholar] [CrossRef]
- Shao, Z.C.; Chen, J.S.; Xie, Q.; Mi, L.W. Functional metal/covalent organic framework materials for triboelectric nanogenerator. Coord. Chem. Rev. 2023, 486, 215118. [Google Scholar] [CrossRef]
- Liang, X.; Liu, S.J.; Yang, H.B.; Jiang, T. Triboelectric Nanogenerators for Ocean Wave Energy Harvesting: Unit Integration and Network Construction. Electronics 2023, 12, 225. [Google Scholar] [CrossRef]
- Huo, Z.W.; Yu, J.R.; Li, Y.H.; Wang, Z.L.; Sun, Q.J. 2D tribotronic transistors. J. Phys.-Energy 2023, 5, 012002. [Google Scholar] [CrossRef]
- Zhang, Q.; Xin, C.F.; Shen, F.; Gong, Y.; Zi, Y.L.; Guo, H.Y.; Li, Z.J.; Peng, Y.; Zhang, Q.; Wang, Z.L. Human body IoT systems based on the triboelectrification effect: Energy harvesting, sensing, interfacing and communication. Energy Environ. Sci. 2022, 15, 3688–3721. [Google Scholar] [CrossRef]
- Lone, S.A.; Lim, K.C.; Kaswan, K.; Chatterjee, S.; Fan, K.P.; Choi, D.; Lee, S.; Zhang, H.L.; Cheng, J.; Lin, Z.H. Recent advancements for improving the performance of triboelectric nanogenerator devices. Nano Energy 2022, 99, 107218. [Google Scholar] [CrossRef]
- Panda, S.; Hajra, S.; Mistewicz, K.; In-na, P.; Sahu, M.; Rajaitha, P.M.; Kim, H.J. Piezoelectric energy harvesting systems for biomedical applications. Nano Energy 2022, 100, 107514. [Google Scholar] [CrossRef]
- Guan, Q.B.; Dai, Y.H.; Yang, Y.Q.; Bi, X.Y.; Wen, Z.; Pan, Y. Near-infrared irradiation induced remote and efficient self-healable triboelectric nanogenerator for potential implantable electronics. Nano Energy 2018, 51, 333–339. [Google Scholar] [CrossRef]
- Shen, Z.R.; Liu, F.M.; Huang, S.; Wang, H.; Yang, C.; Hang, T.; Tao, J.; Xia, W.H.; Xie, X. Progress of flexible strain sensors for physiological signal monitoring. Biosens. Bioelectron. 2022, 211, 114298. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Wang, Z.S.; Shao, Y.F.; Xu, J.J.; Wang, X.D.; Hu, J.C.; Zhang, K.Q. A Review of Recent Development of Wearable Triboelectric Nanogenerators Aiming at Human Clothing for Energy Conversion. Polymers 2023, 15, 508. [Google Scholar] [CrossRef]
- Lai, Z.H.; Xu, J.C.; Bowen, C.R.; Zhou, S.X. Self-powered and self-sensing devices based on human motion. Joule 2022, 6, 1501–1565. [Google Scholar] [CrossRef]
- Al-Suhaimi, E.A.; Aljafary, M.A.; Alfareed, T.M.; Alshuyeh, H.A.; Alhamid, G.M.; Sonbol, B.; Almofleh, A.; Alkulaifi, F.M.; Altwayan, R.K.; Alharbi, J.N.; et al. Nanogenerator-Based Sensors for Energy Harvesting from Cardiac Contraction. Front. Energy Res. 2022, 10, 579. [Google Scholar] [CrossRef]
- Sobianin, I.; Psoma, S.D.; Tourlidakis, A. Recent Advances in Energy Harvesting from the Human Body for Biomedical Applications. Energies 2022, 15, 7959. [Google Scholar] [CrossRef]
- Wajahat, M.; Kouzani, A.Z.; Khoo, S.Y.; Mahmud, M.A.P. A review on extrusion-based 3D-printed nanogenerators for energy harvesting. J. Mater. Sci. 2022, 57, 140–169. [Google Scholar] [CrossRef]
- Zheng, Q.; Zou, Y.; Zhang, Y.L.; Liu, Z.; Shi, B.J.; Wang, X.X.; Jin, Y.M.; Ouyang, H.; Li, Z.; Wang, Z.L. Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Sci. Adv. 2016, 2, e1501478. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Jiang, T.; Fan, F.R.; Yu, A.F.; Zhang, C.; Cao, X.; Wang, Z.L. Liquid-Metal Electrode for High-Performance Triboelectric Nanogenerator at an Instantaneous Energy Conversion Efficiency of 70.6%. Adv. Funct. Mater. 2015, 25, 3718–3725. [Google Scholar] [CrossRef]
- Jiang, Q.; Wu, C.S.; Wang, Z.J.; Wang, A.C.; He, J.H.; Wang, Z.L.; Alshareef, H.N. MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit. Nano Energy 2018, 45, 266–272. [Google Scholar] [CrossRef] [Green Version]
- Pyo, S.; Lee, J.; Bae, K.; Sim, S.; Kim, J. Recent Progress in Flexible Tactile Sensors for Human-Interactive Systems: From Sensors to Advanced Applications. Adv. Mater. 2021, 33, 2005902. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.L.; Yi, Z.R.; Yang, B.; Lee, C. Making use of nanoenergy from human—Nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today 2021, 36, 101016. [Google Scholar] [CrossRef]
- Wen, D.L.; Sun, D.H.; Huang, P.; Huang, W.; Su, M.; Wang, Y.; Han, M.D.; Kim, B.; Brugger, J.; Zhang, H.X.; et al. Recent progress in silk fibroin-based flexible electronics. Microsyst. Nanoeng. 2021, 7, 35. [Google Scholar] [CrossRef]
- Li, Z.; Li, C.; Sun, W.; Bai, Y.; Li, Z.; Deng, Y.L. A Controlled Biodegradable Triboelectric Nanogenerator Based on PEGDA/Laponite Hydrogels. ACS Appl. Mater. Interfaces 2023, 15, 12787–12796. [Google Scholar] [CrossRef]
- Niu, Q.Q.; Huang, L.; Lv, S.S.; Shao, H.L.; Fan, S.N.; Zhang, Y.P. Pulse-driven bio-triboelectric nanogenerator based on silk nanoribbons. Nano Energy 2020, 74, 104837. [Google Scholar] [CrossRef]
- Dong, L.; Jin, C.R.; Closson, A.B.; Trase, I.; Richards, H.C.; Chen, Z.; Zhang, J.X.J. Cardiac energy harvesting and sensing based on piezoelectric and triboelectric designs. Nano Energy 2020, 76, 105076. [Google Scholar] [CrossRef]
- Chen, P.; Wang, Q.; Wan, X.; Yang, M.; Liu, C.L.; Xu, C.; Hu, B.; Feng, J.X.; Luo, Z.Q. Wireless electrical stimulation of the vagus nerves by ultrasound-responsive programmable hydrogel nanogenerators for anti-inflammatory therapy in sepsis. Nano Energy 2021, 89, 106327. [Google Scholar] [CrossRef]
- Kim, H.; Choi, S.; Hong, Y.; Chung, J.; Choi, J.; Choi, W.K.; Park, I.W.; Park, S.H.; Park, H.; Chung, W.J.; et al. Biocompatible and biodegradable triboelectric nanogenerators based on hyaluronic acid hydrogel film. Appl. Mater. Today 2021, 22, 100920. [Google Scholar] [CrossRef]
- Fan, F.R.; Lin, L.; Zhu, G.; Wu, W.Z.; Zhang, R.; Wang, Z.L. Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors Based on Micropatterned Plastic Films. Nano Lett. 2012, 12, 3109–3114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, S.M.; Wang, S.H.; Lin, L.; Liu, Y.; Zhou, Y.S.; Hu, Y.F.; Wang, Z.L. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 2013, 6, 3576–3583. [Google Scholar] [CrossRef]
- Wang, Z.L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Hu, Y.P.; Liu, K.Y.; Yu, W.; Li, G.X.; Meng, C.Z.; Guo, S.J. Recent Development of Self-Powered Tactile Sensors Based on Ionic Hydrogels. Gels 2023, 9, 257. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, X.D. Research Update: Materials design of implantable nanogenerators for biomechanical energy harvesting. APL Mater. 2017, 5, 073801. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Wang, Y.L.; Xia, K.L.; Yin, Z.; Wang, H.M.; Zhang, M.C.; Liang, X.P.; Lu, H.J.; Zhu, M.J.; et al. Physical sensors for skin-inspired electronics. Infomat 2020, 2, 184–211. [Google Scholar] [CrossRef]
- Jung, Y.H.; Park, B.; Kim, J.U.; Kim, T.I. Bioinspired Electronics for Artificial Sensory Systems. Adv. Mater. 2019, 31, 1803637. [Google Scholar] [CrossRef]
- Hinchet, R.; Kim, S.W. Wearable and Implantable Mechanical Energy Harvesters for Self-Powered Biomedical Systems. ACS Nano 2015, 9, 7742–7745. [Google Scholar] [CrossRef]
- Jiang, D.J.; Shi, B.J.; Ouyang, H.; Fan, Y.B.; Wang, Z.L.; Li, Z. Emerging Implantable Energy Harvesters and Self-Powered Implantable Medical Electronics. ACS Nano 2020, 14, 6436–6448. [Google Scholar] [CrossRef]
- Song, P.Y.; Kuang, S.Y.; Panwar, N.; Yang, G.; Tng, D.J.H.; Tjin, S.C.; Ng, W.J.; Majid, M.B.; Zhu, G.; Yong, K.T.; et al. A Self-Powered Implantable Drug-Delivery System Using Biokinetic Energy. Adv. Mater. 2017, 29, 1605668. [Google Scholar] [CrossRef]
- Jie, Y.; Jiang, Q.W.; Zhang, Y.; Wang, N.; Cao, X. A structural bionic design: From electric organs to systematic triboelectric generators. Nano Energy 2016, 27, 554–560. [Google Scholar] [CrossRef]
- Tian, J.J.; Shi, R.; Liu, Z.; Ouyang, H.; Yu, M.; Zhao, C.C.; Zou, Y.; Jiang, D.J.; Zhang, J.S.; Li, Z. Self-powered implantable electrical stimulator for osteoblasts’ proliferation and differentiation. Nano Energy 2019, 59, 705–714. [Google Scholar] [CrossRef]
- Liu, G.L.; Chen, J.; Tang, Q.; Feng, L.; Yang, H.M.; Li, J.; Xi, Y.; Wang, X.; Hu, C.G. Wireless Electric Energy Transmission through Various Isolated Solid Media Based on Triboelectric Nanogenerator. Adv. Energy Mater. 2018, 8, 1703086. [Google Scholar] [CrossRef]
- Wu, W.X.; Guo, N.Y.; Li, W.; Tang, C.K.; Zhang, Y.X.; Liu, H.; Chen, M.F. The vitro/vivo anti-corrosion effect of antibacterial irTENG on implantable magnesium alloys. Nano Energy 2022, 99, 107397. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, Y.; Qu, X.C.; Xu, L.L.; Zou, Y.; Shan, Y.Z.; Shao, J.W.; Wang, C.; Liu, Y.; Xue, J.T.; et al. A Self-Powered Optogenetic System for Implantable Blood Glucose Control. Research 2022, 2022, 9864734. [Google Scholar] [CrossRef]
- Ouyang, H.; Liu, Z.; Li, N.; Shi, B.J.; Zou, Y.; Xie, F.; Ma, Y.; Li, Z.; Li, H.; Zheng, Q.; et al. Symbiotic cardiac pacemaker. Nat. Commun. 2019, 10, 1821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheng, F.F.; Zhang, B.; Zhang, Y.H.; Li, Y.Y.; Cheng, R.W.; Wei, C.H.; Ning, C.; Dong, K.; Wang, Z.L. Ultrastretchable Organogel/Silicone Fiber-Helical Sensors for Self-Powered Implantable Ligament Strain Monitoring. ACS Nano 2022, 16, 10958–10967. [Google Scholar] [CrossRef]
- Zheng, Q.; Shi, B.J.; Fan, F.R.; Wang, X.X.; Yan, L.; Yuan, W.W.; Wang, S.H.; Liu, H.; Li, Z.; Wang, Z.L. In Vivo Powering of Pacemaker by Breathing-Driven Implanted Triboelectric Nanogenerator. Adv. Mater. 2014, 26, 5851–5856. [Google Scholar] [CrossRef]
- Xiao, X.; Meng, X.C.; Kim, D.; Jeon, S.; Park, B.J.; Cho, D.S.; Lee, D.M.; Kim, S.W. Ultrasound-Driven Injectable and Fully Biodegradable Triboelectric Nanogenerators. Small Methods 2023, 7, 2201350. [Google Scholar] [CrossRef]
- Sun, Y.; Chao, S.Y.; Ouyang, H.; Zhang, W.Y.; Luo, W.K.; Nie, Q.B.; Wang, J.N.; Luo, C.Y.; Ni, G.A.; Zhang, L.Y.; et al. Hybrid nanogenerator based closed-loop self-powered low-level vagus nerve stimulation system for atrial fibrillation treatment. Sci. Bull. 2022, 67, 1284–1294. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Khusrin, M.S.B.; Kim, Y.J.; Kim, B.; Park, B.J.; Hyun, I.; Imani, I.M.; Choi, B.O.; Kim, S.W. Nature-derived highly tribopositive x-carrageenan-agar composite-based fully biodegradable triboelectric nanogenerators. Nano Energy 2022, 100, 107480. [Google Scholar] [CrossRef]
- Imani, I.M.; Kim, B.; Xiao, X.; Rubab, N.; Park, B.J.; Kim, Y.J.; Zhao, P.; Kang, M.K.; Kim, S.W. Ultrasound-Driven On-Demand Transient Triboelectric Nanogenerator for Subcutaneous Antibacterial Activity. Adv. Sci. 2023, 10, 2204801. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.M.; Gao, Z.B.; Liu, W.; Wang, C.L.; Luo, D.; Chao, S.Y.; Li, S.W.; Li, Z.; Wang, C.Y.; Zhou, J. Promoting maturation and contractile function of neonatal rat cardiomyocytes by self-powered implantable triboelectric nanogenerator. Nano Energy 2022, 103, 107798. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Zhao, W.W.; Liu, G.X.; Bu, T.Z.; Xia, Y.C.; Xu, S.H.; Zhang, C.; Zhang, H.Y. Self-powered artificial joint wear debris sensor based on triboelectric nanogenerator. Nano Energy 2021, 85, 105967. [Google Scholar] [CrossRef]
- Li, J.; Kang, L.; Long, Y.; Wei, H.; Yu, Y.H.; Wang, Y.H.; Ferreira, C.A.; Yao, G.; Zhang, Z.Y.; Carlos, C.; et al. Implanted Battery-Free Direct-Current Micro-Power Supply from in Vivo Breath Energy Harvesting. ACS Appl. Mater. Interfaces 2018, 10, 42030–42038. [Google Scholar] [CrossRef]
- Liu, Y.D.; Zhu, Y.X.; Liu, J.Y.; Zhang, Y.; Liu, J.; Zhai, J.Y. Design of Bionic Cochlear Basilar Membrane Acoustic Sensor for Frequency Selectivity Based on Film Triboelectric Nanogenerator. Nanoscale Res. Lett. 2018, 13, 191. [Google Scholar] [CrossRef] [Green Version]
- Shi, B.J.; Zheng, Q.; Jiang, W.; Yan, L.; Wang, X.X.; Liu, H.; Yao, Y.; Li, Z.; Wang, Z.L. A Packaged Self-Powered System with Universal Connectors Based on Hybridized Nanogenerators. Adv. Mater. 2016, 28, 846–852. [Google Scholar] [CrossRef]
- Ryu, H.; Park, H.M.; Kim, M.K.; Kim, B.; Myoung, H.S.; Kim, T.Y.; Yoon, H.J.; Kwak, S.S.; Kim, J.; Hwang, T.H.; et al. Self-rechargeable cardiac pacemaker system with triboelectric nanogenerators. Nat. Commun. 2021, 12, 4374. [Google Scholar] [CrossRef]
- Jin, C.R.; Dong, L.; Xu, Z.; Closson, A.; Cabe, A.; Gruslova, A.; Jenney, S.; Escobedo, D.; Elliott, J.; Zhang, M.; et al. Skin-like Elastomer Embedded Zinc Oxide Nanoarrays for Biomechanical Energy Harvesting. Adv. Mater. Interfaces 2021, 8, 2100094. [Google Scholar] [CrossRef]
- Zheng, J.Q.; Yu, Z.H.; Wang, Y.M.; Fu, Y.; Chen, D.; Zhou, H.M. Acoustic Core-Shell Resonance Harvester for Application of Artificial Cochlea Based on the Piezo-Triboelectric Effect. ACS Nano 2021, 15, 17499–17507. [Google Scholar] [CrossRef] [PubMed]
- Yao, G.; Kang, L.; Li, C.C.; Chen, S.H.; Wang, Q.; Yang, J.Z.; Long, Y.; Li, J.; Zhao, K.N.; Xu, W.N.; et al. A self-powered implantable and bioresorbable electrostimulation device for biofeedback bone fracture healing. Proc. Natl. Acad. Sci. USA 2021, 118, e2100772118. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.J.; Yao, S.C.; Zhao, Y.C.; Wan, X.Y.; Hu, Q.H.; Tang, C.Y.; Jiang, Z.H.; Wang, S.B.; Liu, Z.R.; Li, L.L. Self-Driven Electrical Stimulation-Promoted Cancer Catalytic Therapy and Chemotherapy Based on an Implantable Nanofibrous Patch. ACS Appl. Mater. Interfaces 2023, 15, 7855–7866. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.B.; Wen, C.Y.; Zhang, S.L.; Wang, Z.L.; Zhang, Z.B. Artificial tactile peripheral nervous system supported by self-powered transducers. Nano Energy 2021, 82, 105680. [Google Scholar] [CrossRef]
- Tai, H.L.; Wang, S.; Duan, Z.H.; Jiang, Y.D. Evolution of breath analysis based on humidity and gas sensors: Potential and challenges. Sens. Actuators B-Chem. 2020, 318, 128104. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, Q.; Wang, Z.L.; Li, Z. Nanogenerator-Based Self-Powered Sensors for Wearable and Implantable Electronics. Research 2020, 2020, 8710686. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.Q.; Wang, R.; Wang, L.N.; Wang, Z.B.; Ye, A.S. Towards a Robust Deep Neural Network Against Adversarial Texts: A Survey. IEEE Trans. Knowl. Data Eng. 2023, 35, 3159–3179. [Google Scholar] [CrossRef]
- Tat, T.; Libanori, A.; Au, C.; Yau, A.; Chen, J. Advances in triboelectric nanogenerators for biomedical sensing. Biosens. Bioelectron. 2021, 171, 112714. [Google Scholar] [CrossRef]
- Wang, Z.; Yao, S.C.; Wang, S.B.; Liu, Z.R.; Wan, X.Y.; Hu, Q.H.; Zhao, Y.C.; Xiong, C.; Li, L.L. Self-powered energy harvesting and implantable storage system based on hydrogel-enabled all-solid-state supercapacitor and triboelectric nanogenerator. Chem. Eng. J. 2023, 463, 142427. [Google Scholar] [CrossRef]
- Shlomy, I.; Divald, S.; Tadmor, K.; Leichtmann-Bardoogo, Y.; Arami, A.; Maoz, B. Restoring Tactile Sensation Using a Triboelectric Nanogenerator. ACS Nano 2021, 15, 11087–11098. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Qi, J.Y.; Fan, H.; Chen, P.; Li, B.R.; Zhao, L.Y.; Bai, Z.K.; Zhang, R.Q.; Tao, Y.Z. Conductive, Injectable, and Spinnable Aniline Tetramer-Modified Polysaccharide Hydrogels for Self-Powered Electrically Responsive Drug Release. ACS Appl. Polym. Mater. 2022, 4, 9206–9220. [Google Scholar] [CrossRef]
- Yao, S.C.; Zheng, M.J.; Wang, Z.; Zhao, Y.C.; Wang, S.B.; Liu, Z.R.; Li, Z.; Guan, Y.Q.; Wang, Z.L.; Li, L.L. Self-Powered, Implantable, and Wirelessly Controlled NO Generation System for Intracranial Neuroglioma Therapy. Adv. Mater. 2022, 34, 2205881. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Wang, L.; Li, R.Y.; Zhang, Z.C.; Wang, Q.; Yang, J.L.; Guo, C.F.; Pan, T.R. First Decade of Interfacial Iontronic Sensing: From Droplet Sensors to Artificial Skins. Adv. Mater. 2021, 33, 2003464. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.H.; Mo, J.L.; Fu, Q.; Lu, Y.X.; Zhang, N.; Wang, S.F.; Nie, S.X. Enhancement of Triboelectric Charge Density by Chemical Functionalization. Adv. Funct. Mater. 2020, 30, 2004714. [Google Scholar] [CrossRef]
- Liu, L.; Guo, X.G.; Lee, C. Promoting smart cities into the 5G era with multi-field Internet of Things (IoT) applications powered with advanced mechanical energy harvesters. Nano Energy 2021, 88, 106304. [Google Scholar] [CrossRef]
- Fu, H.L.; Mei, X.T.; Yurchenko, D.; Zhou, S.X.; Theodossiades, S.; Nakano, K.; Yeatman, E.M. Rotational energy harvesting for self-powered sensing. Joule 2021, 5, 1074–1118. [Google Scholar] [CrossRef]
- Jin, X.F.; Liu, C.H.; Xu, T.L.; Su, L.; Zhang, X.J. Artificial intelligence biosensors: Challenges and prospects. Biosens. Bioelectron. 2020, 165, 112412. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.G.; Wang, L.L.; Xia, Y.F.; Qiu, R.D.; Liu, W.Q.; Wu, M.; Zhu, Y.; Zhu, S.L.; Jia, C.Y.; Zhu, M.M.; et al. Flexible High-Resolution Triboelectric Sensor Array Based on Patterned Laser-Induced Graphene for Self-Powered Real-Time Tactile Sensing. Adv. Funct. Mater. 2021, 31, 2100709. [Google Scholar] [CrossRef]
- Zhang, D.Z.; Wang, D.Y.; Xu, Z.Y.; Zhang, X.X.; Yang, Y.; Guo, J.Y.; Zhang, B.; Zhao, W.H. Diversiform sensors and sensing systems driven by triboelectric and piezoelectric nanogenerators. Coord. Chem. Rev. 2021, 427, 213597. [Google Scholar] [CrossRef]
- Mathew, A.A.; Chandrasekhar, A.; Vivekanandan, S. A review on real-time implantable and wearable health monitoring sensors based on triboelectric nanogenerator approach. Nano Energy 2021, 80, 105566. [Google Scholar] [CrossRef]
- Huang, T.; Zhang, Y.J.; He, P.; Wang, G.; Xia, X.X.; Ding, G.Q.; Tao, T.H. “Self-Matched” Tribo/Piezoelectric Nanogenerators Using Vapor-Induced Phase-Separated Poly(vinylidene fluoride) and Recombinant Spider Silk. Adv. Mater. 2020, 32, 1907336. [Google Scholar] [CrossRef]
- Khandelwal, G.; Raj, N.; Kim, S.J. Triboelectric nanogenerator for healthcare and biomedical applications. Nano Today 2020, 33, 100882. [Google Scholar] [CrossRef]
- Zhu, M.M.; Lou, M.N.; Yu, J.Y.; Li, Z.L.; Ding, B. Energy autonomous hybrid electronic skin with multi-modal sensing capabilities. Nano Energy 2020, 78, 105208. [Google Scholar] [CrossRef]
- Rao, J.H.; Chen, Z.T.; Zhao, D.N.; Ma, R.; Yi, W.Y.; Zhang, C.X.; Liu, D.; Chen, X.; Yang, Y.H.; Wang, X.F.; et al. Tactile electronic skin to simultaneously detect and distinguish between temperature and pressure based on a triboelectric nanogenerator. Nano Energy 2020, 75, 105073. [Google Scholar] [CrossRef]
- Wang, X.Q.; Qin, Q.H.; Lu, Y.; Mi, Y.J.; Meng, J.J.; Zhao, Z.Q.; Wu, H.; Cao, X.; Wang, N. Smart Triboelectric Nanogenerators Based on Stimulus-Response Materials: From Intelligent Applications to Self-Powered Systems. Nanomaterials 2023, 13, 1316. [Google Scholar] [CrossRef]
- He, T.Y.Y.; Guo, X.G.; Lee, C. Flourishing energy harvesters for future body sensor network: From single to multiple energy sources. Iscience 2021, 24, 101934. [Google Scholar] [CrossRef] [PubMed]
- Gogurla, N.; Roy, B.; Kim, S. Self-powered artificial skin made of engineered silk protein hydrogel. Nano Energy 2020, 77, 105242. [Google Scholar] [CrossRef]
- Jakmuangpak, S.; Prada, T.; Mongkolthanaruk, W.; Harnchana, V.; Pinitsoontorn, S. Engineering Bacterial Cellulose Films by Nanocomposite Approach and Surface Modification for Biocompatible Triboelectric Nanogenerator. ACS Appl. Electron. Mater. 2020, 2, 2498–2506. [Google Scholar] [CrossRef]
- Torres, F.G.; Troncoso, O.P.; De-la-Torre, G.E. Hydrogel-based triboelectric nanogenerators: Properties, performance, and applications. Int. J. Energy Res. 2022, 46, 5603–5624. [Google Scholar] [CrossRef]
- Shi, Q.F.; Sun, Z.D.; Zhang, Z.X.; Lee, C. Triboelectric Nanogenerators and Hybridized Systems for Enabling Next-Generation IoT Applications. Research 2021, 2021, 6849171. [Google Scholar] [CrossRef]
- Gong, H.; Xu, Z.J.; Yang, Y.; Xu, Q.C.; Li, X.Y.; Cheng, X.; Huang, Y.R.; Zhang, F.; Zhao, J.Z.; Li, S.Y.; et al. Transparent, stretchable and degradable protein electronic skin for biomechanical energy scavenging and wireless sensing. Biosens. Bioelectron. 2020, 169, 112567. [Google Scholar] [CrossRef]
- Li, X.Q.; Ding, C.S.; Li, X.M.; Yang, H.G.; Liu, S.R.; Wang, X.H.; Zhang, L.L.; Sun, Q.Q.; Liu, X.Y.; Chen, J.Z. Electronic biopolymers: From molecular engineering to functional devices. Chem. Eng. J. 2020, 397, 125499. [Google Scholar] [CrossRef]
- Liu, J.; Yang, B.; Lu, L.J.; Wang, X.L.; Li, X.Y.; Chen, X.; Liu, J.Q. Flexible and lead-free piezoelectric nanogenerator as self-powered sensor based on electrospinning BZT-BCT/P(VDF-TrFE) nanofibers. Sens. Actuators A-Phys. 2020, 303, 111796. [Google Scholar] [CrossRef]
- Wang, Y.F.; Wang, H.Z.; Xuan, J.; Leung, D.Y.C. Powering future body sensor network systems: A review of power sources. Biosens. Bioelectron. 2020, 166, 112410. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.J.; Kim, S.W. Nanogenerators to Power Implantable Medical Systems. Joule 2020, 4, 1398–1407. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Z.; Xu, L.X.; Gao, F.F.; Zhao, B.; Ouyang, T.; Kang, Z.; Liao, Q.L.; Zhang, Y. Fingerprint-inspired electronic skin based on triboelectric nanogenerator for fine texture recognition. Nano Energy 2021, 85, 106001. [Google Scholar] [CrossRef]
- Rasel, M.S.; Maharjan, P.; Park, J.Y. Hand clapping inspired integrated multilayer hybrid nanogenerator as a wearable and universal power source for portable electronics. Nano Energy 2019, 63, 103816. [Google Scholar] [CrossRef]
- Shi, B.J.; Liu, Z.; Zheng, Q.; Meng, J.P.; Ouyang, H.; Zou, Y.; Jiang, D.J.; Qu, X.C.; Yu, M.; Zhao, L.M.; et al. Body-Integrated Self-Powered System for Wearable and Implantable Applications. ACS Nano 2019, 13, 6017–6024. [Google Scholar] [CrossRef]
- Li, X.J.; Jiang, C.M.; Ying, Y.B.; Ping, J.F. Biotriboelectric Nanogenerators: Materials, Structures, and Applications. Adv. Energy Mater. 2020, 10, 2002001. [Google Scholar] [CrossRef]
- Fu, Q.J.; Cui, C.; Meng, L.; Hao, S.W.; Dai, R.G.; Yang, J. Emerging cellulose-derived materials: A promising platform for the design of flexible wearable sensors toward health and environment monitoring. Mater. Chem. Front. 2021, 5, 2051–2091. [Google Scholar] [CrossRef]
- Yang, H.M.; Fan, F.R.; Xi, Y.; Wu, W.Z. Bio-Derived Natural Materials Based Triboelectric Devices for Self-Powered Ubiquitous Wearable and Implantable Intelligent Devices. Adv. Sustain. Syst. 2020, 4, 2000108. [Google Scholar] [CrossRef]
- Wang, S.; Tai, H.L.; Liu, B.H.; Duan, Z.H.; Yuan, Z.; Pan, H.; Su, Y.J.; Xie, G.Z.; Du, X.S.; Jiang, Y.D. A facile respiration-driven triboelectric nanogenerator for multifunctional respiratory monitoring. Nano Energy 2019, 58, 312–321. [Google Scholar] [CrossRef]
- Huang, L.B.; Xu, W.; Zhao, C.H.; Zhang, Y.L.; Yung, K.L.; Diao, D.F.; Fung, K.H.; Hao, J.H. Multifunctional Water Drop Energy Harvesting and Human Motion Sensor Based on Flexible Dual-Mode Nanogenerator Incorporated with Polymer Nanotubes. ACS Appl. Mater. Interfaces 2020, 12, 24030–24038. [Google Scholar] [CrossRef] [PubMed]
- Ngoc, H.V.; Kang, D.J. Flexible, transparent and exceptionally high power output nanogenerators based on ultrathin ZnO nanoflakes. Nanoscale 2016, 8, 5059–5066. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Long, Y.; Yang, F.; Wang, X.D. Respiration-driven triboelectric nanogenerators for biomedical applications. Ecomat 2020, 2, e12045. [Google Scholar] [CrossRef]
- Cheng, B.L.; Ma, J.X.; Li, G.D.; Bai, S.; Xu, Q.; Cui, X.; Cheng, L.; Qin, Y.; Wang, Z.L. Mechanically Asymmetrical Triboelectric Nanogenerator for Self-Powered Monitoring of In Vivo Microscale Weak Movement. Adv. Energy Mater. 2020, 10, 2000827. [Google Scholar] [CrossRef]
- Hassan, M.; Abbas, G.; Li, N.; Afzal, A.; Haider, Z.; Ahmed, S.; Xu, X.R.; Pan, C.F.; Peng, Z.C. Significance of Flexible Substrates for Wearable and Implantable Devices: Recent Advances and Perspectives. Adv. Mater. Technol. 2022, 7, 2100773. [Google Scholar] [CrossRef]
- Sheng, H.W.; Zhang, X.T.; Liang, J.; Shao, M.J.; Xie, E.Q.; Yu, C.J.; Lan, W. Recent Advances of Energy Solutions for Implantable Bioelectronics. Adv. Healthc. Mater. 2021, 10, 2100199. [Google Scholar] [CrossRef]
- Xie, L.J.; Zhai, N.N.; Liu, Y.N.; Wen, Z.; Sun, X.H. Hybrid Triboelectric Nanogenerators: From Energy Complementation to Integration. Research 2021, 2021, 9143762. [Google Scholar] [CrossRef]
- Lee, D.M.; Rubab, N.; Hyun, I.; Kang, W.; Kim, Y.J.; Kang, M.; Choi, B.O.; Kim, S.W. Ultrasound-mediated triboelectric nanogenerator for powering on-demand transient electronics. Sci. Adv. 2022, 8, eabl8423. [Google Scholar] [CrossRef]
- Zhang, W.L.H.; Zhang, L.L.; Gao, H.L.; Yang, W.Y.; Wang, S.; Xing, L.L.; Xue, X.Y. Self-Powered Implantable Skin-Like Glucometer for Real-Time Detection of Blood Glucose Level In Vivo. Nano-Micro Lett. 2018, 10, 32. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.J.; Zhao, S.L.; Pan, C.F.; Zi, Y.L.; Wang, F.C.; Yang, C.; Wang, Z.L. A method for quantitatively separating the piezoelectric component from the as-received “Piezoelectric” signal. Nat. Commun. 2022, 13, 1391. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Zhang, J.S.; Tian, J.J.; Zhao, C.C.; Li, Z.; Zhang, Y.Z.; Li, Y.S.; Wu, C.G.; Tian, W.; Li, Z. An effective self-powered strategy to endow titanium implant surface with associated activity of anti-biofilm and osteogenesis. Nano Energy 2020, 77, 105201. [Google Scholar] [CrossRef]
- Xia, X.; Liu, Q.; Zhu, Y.Y.; Zi, Y.L. Recent advances of triboelectric nanogenerator based applications in biomedical systems. Ecomat 2020, 2, e12049. [Google Scholar] [CrossRef]
- Chen, J.; Oh, S.K.; Nabulsi, N.; Johnson, H.; Wang, W.J.; Ryou, J.H. Biocompatible and sustainable power supply for self-powered wearable and implantable electronics using III-nitride thin-film-based flexible piezoelectric generator. Nano Energy 2019, 57, 670–679. [Google Scholar] [CrossRef]
- Yang, R.Z.; Benner, M.; Guo, Z.P.; Zhou, C.; Liu, J. High-Performance Flexible Schottky DC Generator via Metal/Conducting Polymer Sliding Contacts. Adv. Funct. Mater. 2021, 31, 2103132. [Google Scholar] [CrossRef]
- Begum, S.R.; Chandrasekhar, A. Solvatochromic Near-Infrared Aggregation-Induced Emission-Active Acrylonitriles by Acceptor Modulation for Low-Power Stimulated Emission Depletion Nanoscopy. ACS Appl. Electron. Mater. 2023, 5, 1347–1375. [Google Scholar] [CrossRef]
- Zhai, Q.F.; Liu, Y.Y.; Wang, R.; Wang, Y.; Lyu, Q.X.; Gong, S.; Wang, O.S.; Simon, G.P.; Cheng, W.L. Intrinsically Stretchable Fuel Cell Based on Enokitake-Like Standing Gold Nanowires. Adv. Energy Mater. 2020, 10, 1903512. [Google Scholar] [CrossRef]
- Lee, S.; Shi, Q.F.; Lee, C. From flexible electronics technology in the era of IoT and artificial intelligence toward future implanted body sensor networks. APL Mater. 2019, 7, 031302. [Google Scholar] [CrossRef]
- Xu, Z.J.; Qiu, W.; Fan, X.W.; Shi, Y.T.; Gong, H.; Huang, J.N.; Patil, A.; Li, X.Y.; Wang, S.T.; Lin, H.B.; et al. Stretchable, Stable, and Degradable Silk Fibroin Enabled by Mesoscopic Doping for Finger Motion Triggered Color/Transmittance Adjustment. ACS Nano 2021, 15, 12429–12437. [Google Scholar] [CrossRef]
- Alluri, N.R.; Raj, N.; Khandelwal, G.; Vivekananthan, V.; Kim, S.J. Aloe vera: A tropical desert plant to harness the mechanical energy by triboelectric and piezoelectric approaches. Nano Energy 2020, 73, 104767. [Google Scholar] [CrossRef]
- Liu, L.; Shi, Q.F.; Lee, C.K. A hybridized electromagnetic-triboelectric nanogenerator designed for scavenging biomechanical energy in human balance control. Nano Res. 2021, 14, 4227–4235. [Google Scholar] [CrossRef]
- Wu, H.; Gao, W.; Yin, Z.P. Materials, Devices and Systems of Soft Bioelectronics for Precision Therapy. Adv. Healthc. Mater. 2017, 6, 1700017. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Qiao, Z.G.; Cui, J.J.; Lian, M.F.; Han, Y.; Zhang, X.; Wang, W.Q.; Yu, X.G.; Yu, H.; Wang, X.D.; et al. A host-coupling bio-nanogenerator for electrically stimulated osteogenesis. Biomaterials 2021, 276, 120997. [Google Scholar] [CrossRef] [PubMed]
- Raj, N.; Alluri, N.R.; Vivekananthan, V.; Chandrasekhar, A.; Khandelwal, G.; Kim, S.J. Sustainable yarn type-piezoelectric energy harvester as an eco-friendly, costeffective battery-free breath sensor. Appl. Energy 2018, 228, 1767–1776. [Google Scholar] [CrossRef]
- Niu, Q.Q.; Huang, X.Y.; Lv, S.S.; Yao, X.; Fan, S.N.; Zhang, Y.P. Natural polymer-based bioabsorbable conducting wires for implantable bioelectronic devices. J. Mater. Chem. A 2020, 8, 25323–25335. [Google Scholar] [CrossRef]
- Li, Z.; Feng, H.Q.; Zheng, Q.; Li, H.; Zhao, C.C.; Ouyang, H.; Noreen, S.; Yu, M.; Su, F.; Liu, R.P.; et al. Photothermally tunable biodegradation of implantable triboelectric nanogenerators for tissue repairing. Nano Energy 2018, 54, 390–399. [Google Scholar] [CrossRef]
- Liu, H.C.; Jian, R.R.; Chen, H.B.; Tian, X.L.; Sun, C.L.; Zhu, J.; Yang, Z.G.; Sun, J.Y.; Wang, C.S. Application of Biodegradable and Biocompatible Nanocomposites in Electronics: Current Status and Future Directions. Nanomaterials 2019, 9, 950. [Google Scholar] [CrossRef] [Green Version]
- Chao, S.Y.; Ouyang, H.; Jiang, D.J.; Fan, Y.B.; Li, Z. Triboelectric nanogenerator based on degradable materials. Ecomat 2021, 3, e12072. [Google Scholar] [CrossRef]
- Cole, T.; Khoshmanesh, K.; Tang, S.Y. Liquid Metal Enabled Biodevices. Adv. Intell. Syst. 2021, 3, 2000275. [Google Scholar] [CrossRef]
- Cui, X.; Zhang, Y.M.; Hu, G.W.; Zhang, L.; Zhang, Y. Dynamical charge transfer model for high surface charge density triboelectric nanogenerators. Nano Energy 2020, 70, 104513. [Google Scholar] [CrossRef]
- Xu, G.Q.; Guan, D.; Yin, X.; Fu, J.J.; Wang, J.; Zi, Y.L. A coplanar-electrode direct-current triboelectric nanogenerator with facile fabrication and stable output. Ecomat 2020, 2, e12037. [Google Scholar] [CrossRef]
- Dai, J.Y.; Li, L.L.; Shi, B.J.; Li, Z. Recent progress of self-powered respiration monitoring systems. Biosens. Bioelectron. 2021, 194, 113609. [Google Scholar] [CrossRef]
- Zhang, X.S.; Han, M.D.; Wang, R.X.; Zhu, F.Y.; Li, Z.H.; Wang, W.; Zhang, H.X. Frequency-Multiplication High-Output Triboelectric Nanogenerator for Sustainably Powering Biomedical Microsystems. Nano Lett. 2013, 13, 1168–1172. [Google Scholar] [CrossRef] [PubMed]
- Meng, B.; Tang, W.; Too, Z.H.; Zhang, X.S.; Han, M.D.; Liu, W.; Zhang, H.X. A transparent single-friction-surface triboelectric generator and self-powered touch sensor. Energy Environ. Sci. 2013, 6, 3235–3240. [Google Scholar] [CrossRef]
- Liu, D.; Liu, J.M.; Yang, M.S.; Cui, N.Y.; Wang, H.Y.; Gu, L.; Wang, L.F.; Qin, Y. Performance enhanced triboelectric nanogenerator by taking advantage of water in humid environments. Nano Energy 2021, 88, 106303. [Google Scholar] [CrossRef]
- Wang, H.; Wu, T.Z.; Zeng, Q.; Lee, C.K. A Review and Perspective for the Development of Triboelectric Nanogenerator (TENG)-Based Self-Powered Neuroprosthetics. Micromachines 2020, 11, 865. [Google Scholar] [CrossRef]
- Su, Y.J.; Chen, G.R.; Chen, C.X.; Gong, Q.C.; Xie, G.Z.; Yao, M.L.; Tai, H.L.; Jiang, Y.D.; Chen, J. Self-Powered Respiration Monitoring Enabled By a Triboelectric Nanogenerator. Adv. Mater. 2021, 33, 2101262. [Google Scholar] [CrossRef]
- Zhao, X.; Askari, H.; Chen, J. Nanogenerators for smart cities in the era of 5G and Internet of Things. Joule 2021, 5, 1391–1431. [Google Scholar] [CrossRef]
- Su, Y.J.; Chen, C.X.; Pan, H.; Yang, Y.; Chen, G.R.; Zhao, X.; Li, W.X.; Gong, Q.C.; Xie, G.Z.; Zhou, Y.H.; et al. Muscle Fibers Inspired High-Performance Piezoelectric Textiles for Wearable Physiological Monitoring. Adv. Funct. Mater. 2021, 31, 2010962. [Google Scholar] [CrossRef]
- Li, Y.H.; Yu, J.R.; Wei, Y.C.; Wang, Y.F.; Feng, Z.Y.; Cheng, L.Q.; Huo, Z.W.; Lei, Y.Q.; Sun, Q.J. Recent Progress in Self-Powered Wireless Sensors and Systems Based on TENG. Sensors 2023, 23, 1329. [Google Scholar] [CrossRef]
- Ma, C.; Ma, M.G.; Si, C.L.; Ji, X.X.; Wan, P.B. Flexible MXene-Based Composites for Wearable Devices. Adv. Funct. Mater. 2021, 31, 2009524. [Google Scholar] [CrossRef]
- Wang, Y.F.; Cao, X.; Wang, N. Recent Progress in Piezoelectric-Triboelectric Effects Coupled Nanogenerators. Nanomaterials 2023, 13, 385. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Zeng, F.; Pu, Z.H.; Fan, J.Y. Conversion Electrode and Drive Capacitance for Connecting Microfluidic Devices and Triboelectric Nanogenerator. Electronics 2023, 12, 522. [Google Scholar] [CrossRef]
- Majhi, S.M.; Mirzaei, A.; Kim, H.W.; Kim, S.S.; Kim, T.W. Recent advances in energy-saving chemiresistive gas sensors: A review. Nano Energy 2021, 79, 105369. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.G.; Kim, D.W.; Tcho, I.W.; Kim, J.K.; Kim, M.S.; Choi, Y.K. Triboelectric Nanogenerator: Structure, Mechanism, and Applications. ACS Nano 2021, 15, 258–287. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.D.; Cheng, Y.; Jie, Y.; Cao, X.; Wang, N.; Wan, Z.L. Energy harvesting and wireless power transmission by a hybridized electromagnetic-triboelectric nanogenerator. Energy Environ. Sci. 2019, 12, 2678–2684. [Google Scholar] [CrossRef]
- Qu, X.C.; Xue, J.T.; Liu, Y.; Rao, W.; Liu, Z.; Li, Z. Fingerprint-shaped triboelectric tactile sensor. Nano Energy 2022, 98, 107324. [Google Scholar] [CrossRef]
- Zhao, D.N.; Zhuo, J.T.; Chen, Z.T.; Wu, J.J.; Ma, R.; Zhang, X.J.; Zhang, Y.F.; Wang, X.; Wei, X.S.; Liu, L.X.; et al. Eco-friendly in-situ gap generation of no-spacer triboelectric nanogenerator for monitoring cardiovascular activities. Nano Energy 2021, 90, 106580. [Google Scholar] [CrossRef]
- Fan, X.; Chen, J.; Yang, J.; Bai, P.; Li, Z.L.; Wang, Z.L. Ultrathin, Rollable, Paper-Based Triboelectric Nanogenerator for Acoustic Energy Harvesting and Self-Powered Sound Recording. ACS Nano 2015, 9, 4236–4243. [Google Scholar] [CrossRef]
- Zhou, M.; Huang, M.K.; Zhong, H.; Xing, C.; An, Y.; Zhu, R.S.; Jia, Z.Y.; Qu, H.D.; Zhu, S.B.; Liu, S.; et al. Contact Separation Triboelectric Nanogenerator Based Neural Interfacing for Effective Sciatic Nerve Restoration. Adv. Funct. Mater. 2022, 32, 2200269. [Google Scholar] [CrossRef]
- Lu, Y.; Jiang, L.L.; Yu, Y.; Wang, D.H.; Sun, W.T.; Liu, Y.; Yu, J.; Zhang, J.; Wang, K.; Hu, H.; et al. Liquid-liquid triboelectric nanogenerator based on the immiscible interface of an aqueous two-phase system. Nat. Commun. 2022, 13, 5316. [Google Scholar] [CrossRef] [PubMed]
- Yue, O.Y.; Wang, X.C.; Hou, M.D.; Zheng, M.H.; Hao, D.Y.; Bai, Z.X.; Zou, X.L.; Cui, B.Q.; Liu, C.L.; Liu, X.H. Smart nanoengineered electronic-scaffolds based on triboelectric nanogenerators as tissue batteries for integrated cartilage therapy. Nano Energy 2023, 107, 108158. [Google Scholar] [CrossRef]
- Zhang, C.L.; Cha, R.T.; Zhang, P.; Luo, H.Z.; Jiang, X.Y. Cellulosic substrate materials with multi-scale building blocks: Fabrications, properties and applications in bioelectronic devices. Chem. Eng. J. 2022, 430, 132562. [Google Scholar] [CrossRef]
- Wu, Y.H.; Luo, Y.; Qu, J.K.; Daoud, W.A.; Qi, T. Nanogap and Environmentally Stable Triboelectric Nanogenerators Based on Surface Self-Modified Sustainable Films. ACS Appl. Mater. Interfaces 2020, 12, 55444–55452. [Google Scholar] [CrossRef]
- Ibrahim, A.; Yamomo, G.; Willing, R.; Towfighian, S. Parametric study of a triboelectric transducer in total knee replacement application. J. Intell. Mater. Syst. Struct. 2021, 32, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.X.; Ma, Z.H.; Tian, Y.; Meng, B.; Peng, Z.C. Progress on Self-Powered Wearable and Implantable Systems Driven by Nanogenerators. Micromachines 2021, 12, 666. [Google Scholar] [CrossRef]
- Chen, Y.D.; Jie, Y.; Wang, N.; Wang, Z.L.; Cao, X. Novel wireless power transmission based on Maxwell displacement current. Nano Energy 2020, 76, 105051. [Google Scholar] [CrossRef]
- Deng, W.L.; Libanori, A.; Xiao, X.; Fang, J.; Zhao, X.; Zhou, Y.H.; Chen, G.R.; Li, S.; Chen, J. Computational investigation of ultrasound induced electricity generation via a triboelectric nanogenerator. Nano Energy 2022, 91, 106656. [Google Scholar] [CrossRef]
- Guo, L.C.; Han, S.T.; Zhou, Y. Electromechanical coupling effects for data storage and synaptic devices. Nano Energy 2020, 77, 105156. [Google Scholar] [CrossRef]
- Shao, Y.C.; Shen, M.L.; Zhou, Y.K.; Cui, X.; Li, L.J.; Zhang, Y. Nanogenerator-based self-powered sensors for data collection. Beilstein J. Nanotechnol. 2021, 12, 680–693. [Google Scholar] [CrossRef]
- Cao, L.L.; Qiu, X.; Jiao, Q.; Zhao, P.Y.; Li, J.J.; Wei, Y.P. Polysaccharides and proteins-based nanogenerator for energy harvesting and sensing: A review. Int. J. Biol. Macromol. 2021, 173, 225–243. [Google Scholar] [CrossRef]
- Zhang, Q.; Liang, Q.J.; Rogers, J.A. Water-soluble energy harvester as a promising power solution for temporary electronic implants. APL Mater. 2020, 8, 120701. [Google Scholar] [CrossRef]
- Kim, H.; Park, J.W.; Hyeon, J.S.; Sim, H.J.; Jang, Y.; Shim, Y.; Huynh, C.; Baughman, R.H.; Kim, S.J. Electrical energy harvesting from ferritin biscrolled carbon nanotube yarn. Biosens. Bioelectron. 2020, 164, 112318. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ma, Y.; Ouyang, H.; Shi, B.J.; Li, N.; Jiang, D.J.; Xie, F.; Qu, D.; Zou, Y.; Huang, Y.; et al. Transcatheter Self-Powered Ultrasensitive Endocardial Pressure Sensor. Adv. Funct. Mater. 2019, 29, 1807560. [Google Scholar] [CrossRef]
- Zhai, Y.M.; Li, W.; Chen, M.F.; Li, Y.K.; Wang, Q.; Wang, Y.S. A self-powered triboelectric nanosensor for detecting the corrosion state of magnesium treated by micro-arc oxidation. RSC Adv. 2019, 9, 10159–10167. [Google Scholar] [CrossRef]
- Zhou, L.P.; Zhang, Y.Z.; Cao, G.; Zhang, C.; Zheng, C.; Meng, G.N.; Lai, Y.Q.; Zhou, Z.; Liu, Z.H.; Liu, Z.H.; et al. Wireless Self-Powered Optogenetic System for Long-Term Cardiac Neuromodulation to Improve Post-MI Cardiac Remodeling and Malignant Arrhythmia. Adv. Sci. 2023, 10, 2205551. [Google Scholar] [CrossRef]
- Lee, S.; Wang, H.; Wang, J.H.; Shi, Q.F.; Yen, S.C.; Thakor, N.V.; Lee, C. Battery-free neuromodulator for peripheral nerve direct stimulation. Nano Energy 2018, 50, 148–158. [Google Scholar] [CrossRef]
- Li, Z.; Li, C.; Deng, Y.L. Bioresorbable Pressure Sensor and Its Applications in Abnormal Respiratory Event Identification. ACS Appl. Electron. Mater. 2023, 5, 1761–1769. [Google Scholar] [CrossRef]
- Yun, S.Y.; Han, J.K.; Lee, S.W.; Yu, J.M.; Jeon, S.B.; Choi, Y.K. Self-aware artificial auditory neuron with a triboelectric sensor for spike-based neuromorphic hardware. Nano Energy 2023, 109, 108322. [Google Scholar] [CrossRef]
- Zhao, C.C.; Shi, Q.; Li, H.; Cui, X.; Xi, Y.; Cao, Y.; Xiang, Z.; Li, F.; Sun, J.Y.; Liu, J.C.; et al. Shape Designed Implanted Drug Delivery System for In Situ Hepatocellular Carcinoma Therapy. ACS Nano 2022, 16, 8493–8503. [Google Scholar] [CrossRef]
- Zhao, C.C.; Feng, H.Q.; Zhang, L.J.; Li, Z.; Zou, Y.; Tan, P.C.; Ouyang, H.; Jiang, D.J.; Yu, M.; Wang, C.; et al. Highly Efficient In Vivo Cancer Therapy by an Implantable Magnet Triboelectric Nanogenerator. Adv. Funct. Mater. 2019, 29, 1808640. [Google Scholar] [CrossRef]
- Wang, B.J.; Li, G.C.; Zhu, Q.Q.; Liu, W.F.; Ke, W.C.; Hua, W.B.; Zhou, Y.M.; Zeng, X.L.; Sun, X.H.; Wen, Z.; et al. Bone Repairment via Mechanosensation of Piezo1 Using Wearable Pulsed Triboelectric Nanogenerator. Small 2022, 18, 2201056. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.; Lee, J.; Jang, J.H.; Choi, H. A Triboelectric-Based Artificial Basilar Membrane to Mimic Cochlear Tonotopy. Adv. Healthc. Mater. 2016, 5, 2481–2487. [Google Scholar] [CrossRef]
- Kar, E.; Barman, M.; Das, S.; Das, A.; Datta, P.; Mukherjee, S.; Tavakoli, M.; Mukherjee, N.; Bose, N. Chicken feather fiber-based bio-piezoelectric energy harvester: An efficient green energy source for flexible electronics. Sustain. Energy Fuels 2021, 5, 1857–1866. [Google Scholar] [CrossRef]
- Li, M.; Qiao, J.; Zhu, C.F.; Hu, Y.M.; Wu, K.J.; Zeng, S.; Yang, W.; Zhang, H.C.; Wang, Y.L.; Wu, Y.L.; et al. Gel-Electrolyte-Coated Carbon Nanotube Yarns for Self-Powered and Knittable Piezoionic Sensors. ACS Appl. Electron. Mater. 2021, 3, 944–954. [Google Scholar] [CrossRef]
- Lu, Y.; Mi, Y.J.; Wu, T.; Cao, X.; Wang, N. From Triboelectric Nanogenerator to Polymer-Based Biosensor: A Review. Biosensors 2022, 12, 323. [Google Scholar] [CrossRef]
- Li, J.; Long, Y.; Wang, X.D. Polymer-based Nanogenerator for Biomedical Applications. Chem. Res. Chin. Univ. 2020, 36, 41–54. [Google Scholar] [CrossRef]
- Liu, X.Z.; Wang, Y.Q.; Wang, G.Y.; Ma, Y.F.; Zheng, Z.H.; Fan, K.K.; Liu, J.C.; Zhou, B.Q.; Wang, G.; You, Z.; et al. An ultrasound-driven implantable wireless energy harvesting system using a triboelectric transducer. Matter 2022, 5, 4315–4331. [Google Scholar] [CrossRef]
- Wei, D.; Yang, F.Y.; Jiang, Z.H.; Wang, Z.L. Flexible iontronics based on 2D nanofluidic material. Nat. Commun. 2022, 13, 4965. [Google Scholar] [CrossRef]
- Rajabi-Abhari, A.; Lee, J.; Tabassian, R.; Kim, J.N.; Lee, H.; Oh, I.K. Antagonistically Functionalized Diatom Biosilica for Bio-Triboelectric Generators. Small 2022, 18, 2107638. [Google Scholar] [CrossRef]
- Hossain, N.A.; Yamomo, G.G.; Willing, R.; Towfighian, S. Characterization of a Packaged Triboelectric Harvester Under Simulated Gait Loading for Total Knee Replacement. IEEE-Asme Trans. Mechatron. 2021, 26, 2967–2976. [Google Scholar] [CrossRef] [PubMed]
- Margaronis, K.; Busolo, T.; Nair, M.; Chalklen, T.; Kar-Narayan, S. Tailoring the triboelectric output of poly-L-lactic acid nanotubes through control of polymer crystallinity. J. Phys. Mater. 2021, 4, 034010. [Google Scholar] [CrossRef]
- Tan, P.C.; Zhao, C.C.; Fan, Y.B.; Li, Z. Research progress of self-powered flexible biomedical sensors. Acta Phys. Sin. 2020, 69. [Google Scholar] [CrossRef]
- Wang, N.N.; Yang, D.; Zhang, W.H.; Feng, M.; Li, Z.B.; Ye, E.Y.; Loh, X.J.; Wang, D.A. Deep Trap Boosted Ultrahigh Triboelectric Charge Density in Nanofibrous Cellulose-Based Triboelectric Nanogenerators. ACS Appl. Mater. Interfaces 2023, 15, 997–1009. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.M.; He, C.X.; Lin, R.Z.; Li, X.J.; Zhao, Q.; Ying, Y.B.; Song, J.Z.; Ping, J.F. Engineering squandered plant protein into eco-friendly triboelectric films for highly efficient energy harvesting. Nano Energy 2022, 101, 107589. [Google Scholar] [CrossRef]
- Yang, H.; Wang, R.; Wu, W. Roadmap on bio-derived materials for wearable triboelectric devices. Mater. Today Sustain. 2022, 20, 100219. [Google Scholar] [CrossRef]
- Shen, Z.R.; Yang, C.D.; Yao, C.J.; Liu, Z.Q.; Huang, X.S.; Liu, Z.J.; Mo, J.S.; Xu, H.H.; He, G.; Tao, J.; et al. Capacitive-piezoresistive hybrid flexible pressure sensor based on conductive micropillar arrays with high sensitivity over a wide dynamic range. Mater. Horiz. 2023, 10, 499–511. [Google Scholar] [CrossRef]
- Shuvo, M.M.H.; Titirsha, T.; Amin, N.; Islam, S.K. Energy Harvesting in Implantable and Wearable Medical Devices for Enduring Precision Healthcare. Energies 2022, 15, 7495. [Google Scholar] [CrossRef]
- Luo, C.; Shao, Y.; Yu, H.; Ma, H.Z.; Zhang, Y.H.; Yin, B.; Yang, M.B. Improving the Output Performance of Bacterial Cellulose-Based Triboelectric Nanogenerators by Modulating the Surface Potential in a Simple Method. ACS Sustain. Chem. Eng. 2022, 10, 13050–13058. [Google Scholar] [CrossRef]
- Gupta, A.K.; Kumar, R.R.; Ghosh, A.; Lin, S.P. Perspective of smart self-powered neuromorphic sensor and their challenges towards artificial intelligence for next-generation technology. Mater. Lett. 2022, 310, 131541. [Google Scholar] [CrossRef]
- Jain, M.; Hossain, N.A.; Towfighian, S.; Willing, R.; Stanacevic, M.; Salman, E. Self-Powered Load Sensing Circuitry for Total Knee Replacement. IEEE Sens. J. 2021, 21, 22967–22975. [Google Scholar] [CrossRef]
- Lee, S.; Wang, H.; Peh, W.Y.X.; He, T.Y.Y.; Yen, S.C.; Thakor, N.V.; Lee, C. Mechano-neuromodulation of autonomic pelvic nerve for underactive bladder: A triboelectric neurostimulator integrated with flexible neural clip interface. Nano Energy 2019, 60, 449–456. [Google Scholar] [CrossRef]
- Kesama, M.R.; Kim, S. DNA-Nanocrystal Assemblies for Environmentally Responsive and Highly Efficient Energy Harvesting and Storage. Adv. Sci. 2023, 10, 2206848. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Wu, Z.Y.; Deng, J.A.; Wang, A.C.; Zou, H.Y.; Chen, C.Y.; Hu, D.M.; Gu, B.H.; Sun, B.Z.; Wang, Z.L. A Stretchable Yarn Embedded Triboelectric Nanogenerator as Electronic Skin for Biomechanical Energy Harvesting and Multifunctional Pressure Sensing. Adv. Mater. 2018, 30, 1804944. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.L.; Wang, D.K.; Wang, J.X.; Li, J.H.; Wang, Z.; Li, B.; Mu, Z.Z.; Niu, S.C.; Zhang, J.Q.; Ba, K.X.; et al. A durable triboelectric nanogenerator with a coaxial counter-rotating design for efficient harvesting of random mechanical energy. Nano Energy 2023, 105, 108006. [Google Scholar] [CrossRef]
- Joshi, S.R.; Pratap, A.; Gogurla, N.; Kim, S. Ultrathin, Breathable, Permeable, and Skin-Adhesive Charge Storage Electronic Tattoos Based on Biopolymer Nanofibers and Carbon Nanotubes. Adv. Electron. Mater. 2022, 2201095. [Google Scholar] [CrossRef]
- Owida, H.A.; Al-Ayyad, M.; Al-Nabulsi, J.I. Emerging Development of Auto-Charging Sensors for Respiration Monitoring. Int. J. Biomater. 2022, 2022, 7098989. [Google Scholar] [CrossRef]
- Lee, S.; Wang, H.; Shi, Q.F.; Dhakar, L.; Wang, J.H.; Thakor, N.V.; Yen, S.C.; Lee, C. Development of battery-free neural interface and modulated control of tibialis anterior muscle via common peroneal nerve based on triboelectric nanogenerators (TENGs). Nano Energy 2017, 33, 1–11. [Google Scholar] [CrossRef]
- Ma, M.Y.; Zhang, Z.; Liao, Q.L.; Yi, F.; Han, L.H.; Zhang, G.J.; Liu, S.; Liao, X.Q.; Zhang, Y. Self-powered artificial electronic skin for high-resolution pressure sensing. Nano Energy 2017, 32, 389–396. [Google Scholar] [CrossRef]
- Xu, C.L.; Zeng, F.; Wu, D.Y.; Wang, P.; Yin, X.L.; Jia, B. Nerve Stimulation by Triboelectric Nanogenerator Based on Nanofibrous Membrane for Spinal Cord Injury. Front. Chem. 2022, 10, 941065. [Google Scholar] [CrossRef]
- Parvin, D.; Hassan, O.; Oh, T.; Islam, S.K. RF Energy Harvester Integrated Self-Powered Wearable Respiratory Monitoring System. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, UK, 17–20 May 2021. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, Y.; Fan, Y.; Li, Z.; Liu, Z. Materials, Structures, and Applications of iTENGs. Coatings 2023, 13, 1407. https://doi.org/10.3390/coatings13081407
Xi Y, Fan Y, Li Z, Liu Z. Materials, Structures, and Applications of iTENGs. Coatings. 2023; 13(8):1407. https://doi.org/10.3390/coatings13081407
Chicago/Turabian StyleXi, Yuan, Yubo Fan, Zhou Li, and Zhuo Liu. 2023. "Materials, Structures, and Applications of iTENGs" Coatings 13, no. 8: 1407. https://doi.org/10.3390/coatings13081407
APA StyleXi, Y., Fan, Y., Li, Z., & Liu, Z. (2023). Materials, Structures, and Applications of iTENGs. Coatings, 13(8), 1407. https://doi.org/10.3390/coatings13081407