Influence of Elution Characteristics of Steelmaking Slags on Major Bacterial Communities in Biofilms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Submersion Test in Ise Bay
2.3. DNA Extraction and Next-Generation Sequencing
2.4. Sequencing Data Analysis
3. Results
3.1. Biofilm Bacterial Composition
3.1.1. Major Bacterial Families
3.1.2. Heatmap Analysis
3.2. Influence of Slag Content on Bacterial Consortiums
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Association, N.S. About Iron and Steel Slag. Available online: https://www.slg.jp/e/slag/index.html (accessed on 14 May 2023).
- Oge, M.; Ozkan, D.; Celik, M.B.; Sabri Gok, M.; Cahit Karaoglanli, A. An Overview of Utilization of Blast Furnace and Steelmaking Slag in Various Applications. Mater. Today: Proc. 2019, 11, 516–525. [Google Scholar] [CrossRef]
- Fisher, L.V.; Barron, A.R. The recycling and reuse of steelmaking slags—A review. Resour. Conserv. Recycl. 2019, 146, 244–255. [Google Scholar] [CrossRef]
- Ogawa, A.; Tanaka, R.; Hirai, N.; Ochiai, T.; Ohashi, R.; Fujimoto, K.; Akatsuka, Y.; Suzuki, M. Investigation of Biofilms Formed on Steelmaking Slags in Marine Environments for Water Depuration. Int. J. Mol. Sci. 2020, 21, 6945. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glockner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Li, P.; Li, X.; Guo, H.; Yan, B.; Chen, D.; Zhao, W.; Seetharaman, S. Understanding reactions between water and steelmaking slags: Iron distribution, hydrogen generation, and phase transformations. Int. J. Hydrogen Energy 2022, 47, 20741–20754. [Google Scholar] [CrossRef]
- Simon, M.; Scheuner, C.; Meier-Kolthoff, J.P.; Brinkhoff, T.; Wagner-Dobler, I.; Ulbrich, M.; Klenk, H.P.; Schomburg, D.; Petersen, J.; Goker, M. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J. 2017, 11, 1483–1499. [Google Scholar] [CrossRef]
- Elifantz, H.; Horn, G.; Ayon, M.; Cohen, Y.; Minz, D. Rhodobacteraceae are the key members of the microbial community of the initial biofilm formed in Eastern Mediterranean coastal seawater. FEMS Microbiol. Ecol. 2013, 85, 348–357. [Google Scholar] [CrossRef]
- Kviatkovski, I.; Minz, D. A member of the Rhodobacteraceae promotes initial biofilm formation via the secretion of extracellular factor(s). Aquat. Microb. Ecol. 2015, 75, 155–167. [Google Scholar] [CrossRef]
- Gavriilidou, A.; Gutleben, J.; Versluis, D.; Forgiarini, F.; van Passel, M.W.J.; Ingham, C.J.; Smidt, H.; Sipkema, D. Comparative genomic analysis of Flavobacteriaceae: Insights into carbohydrate metabolism, gliding motility and secondary metabolite biosynthesis. BMC Genom. 2020, 21, 569. [Google Scholar] [CrossRef] [PubMed]
- Cappello, S.; Yakimov, M.M. Alcanivorax. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K.N., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1737–1748. [Google Scholar]
- Chernikova, T.N.; Bargiela, R.; Toshchakov, S.V.; Shivaraman, V.; Lunev, E.A.; Yakimov, M.M.; Thomas, D.N.; Golyshin, P.N. Hydrocarbon-Degrading Bacteria Alcanivorax and Marinobacter Associated With Microalgae Pavlova lutheri and Nannochloropsis oculata. Front. Microbiol. 2020, 11, 572931. [Google Scholar] [CrossRef] [PubMed]
- Long, B.M.; Rae, B.D.; Rolland, V.; Förster, B.; Price, G.D. Cyanobacterial CO2-concentrating mechanism components: Function and prospects for plant metabolic engineering. Curr. Opin. Plant Biol. 2016, 31, 1–8. [Google Scholar] [CrossRef] [PubMed]
- McBeth, J.M.; Little, B.J.; Ray, R.I.; Farrar, K.M.; Emerson, D. Neutrophilic iron-oxidizing “zetaproteobacteria” and mild steel corrosion in nearshore marine environments. Appl. Environ. Microbiol. 2011, 77, 1405–1412. [Google Scholar] [CrossRef] [PubMed]
- Singer, E.; Emerson, D.; Webb, E.A.; Barco, R.A.; Kuenen, J.G.; Nelson, W.C.; Chan, C.S.; Comolli, L.R.; Ferriera, S.; Johnson, J.; et al. Mariprofundus ferrooxydans PV-1 the first genome of a marine Fe(II) oxidizing Zetaproteobacterium. PLoS ONE 2011, 6, e25386. [Google Scholar] [CrossRef]
- Lee, W.S.; Aziz, H.A.; Tajarudin, H.A. A recent development on iron-oxidising bacteria (IOB) applications in water and wastewater treatment. J. Water Process Eng. 2022, 49, 103109. [Google Scholar] [CrossRef]
- Lopez, A.; Albino, D.; Beraki, S.; Broomell, S.; Canela, R.; Dingmon, T.; Estrada, S.; Fernandez, M.; Savalia, P.; Nealson, K.; et al. Genome Sequence of Mariprofundus sp. Strain EBB-1, a Novel Marine Autotroph Isolated from an Iron-Sulfur Mineral. Microbiol Resour Announc. Resour. Announc. 2019, 8, e00995-19. [Google Scholar] [CrossRef]
- Futatsuka, T.; Shitogiden, K.; Miki, T.; Nagasaka, T.; Hind, M. Dissolution Behavior of Elements in Steelmaking Slag into Artificial Seawater. Tetsu-to-Hagane 2003, 89, 382–387. [Google Scholar] [CrossRef]
- Nakagawa, S.; Saito, H.; Tame, A.; Hirai, M.; Yamaguchi, H.; Sunata, T.; Aida, M.; Muto, H.; Sawayama, S.; Takaki, Y. Microbiota in the coelomic fluid of two common coastal starfish species and characterization of an abundant Helicobacter-related taxon. Sci. Rep. 2017, 7, 8764. [Google Scholar] [CrossRef]
- Vincent, S.G.T.; Jennerjahn, T.; Ramasamy, K. Chapter 1—Source and composition of organic matter and its role in designing sediment microbial communities. In Microbial Communities in Coastal Sediments; Vincent, S.G.T., Jennerjahn, T., Ramasamy, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–45. [Google Scholar]
- Li, H.; Zhang, Y.; Liang, Y.; Chen, J.; Zhu, Y.; Zhao, Y.; Jiao, N. Impacts of maricultural activities on characteristics of dissolved organic carbon and nutrients in a typical raft-culture area of the Yellow Sea, North China. Mar. Pollut. Bull. 2018, 137, 456–464. [Google Scholar] [CrossRef]
- Chattopadhyay, I. Role of microbiome and biofilm in environmental plastic degradation. Biocatal. Agric. Biotechnol. 2022, 39, 102263. [Google Scholar] [CrossRef]
- Liang, X.; Peng, L.H.; Zhang, S.; Zhou, S.; Yoshida, A.; Osatomi, K.; Bellou, N.; Guo, X.P.; Dobretsov, S.; Yang, J.L. Polyurethane, epoxy resin and polydimethylsiloxane altered biofilm formation and mussel settlement. Chemosphere 2019, 218, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Yabuta, K. New Application of Iron and Steelmaking Slag; NKK Technical Report—Japanese Edition; JFE Steel Corporation: Tokyo, Japan, 2002; pp. 43–48. [Google Scholar]
- Tsukidate, H.; Otake, S.; Kato, Y.; Yoshimura, K.; Kitatsuji, M.; Yoshimura, E.; Suzuki, M. Iron Elution from Iron and Steel Slag Using Bacterial Complex Identified from the Seawater. Materials 2021, 14, 1477. [Google Scholar] [CrossRef]
- Kasozi, N.; Tandlich, R.; Fick, M.; Kaiser, H.; Wilhelmi, B. Iron supplementation and management in aquaponic systems: A review. Aquac. Rep. 2019, 15, 100221. [Google Scholar] [CrossRef]
Artificial Slag | |||||
---|---|---|---|---|---|
Mock-1 | Mock-2 | Mock-3 | |||
Contents of raw materials | SiO2 [wt%] | 38.2 | 33.3 | 33.0 | |
CaO [wt%] | 38.3 | 43.2 | 43.2 | ||
Al2O3 [wt%] | 5 | 5 | 5 | ||
MgO [wt%] | 5 | 5 | 5 | ||
FeO [wt%] | 13.5 | 13.5 | 13.4 | ||
CaS [wt%] | 0 | 0 | 1 | ||
Synthetic process | Step 1 | Mixed | Mixed then pressed | ||
Step 2: Melting | Crucible | Alumina | Molybdenum | ||
Temperature | 1600 °C | ||||
Reaction time | 5 h | 1 h | |||
Atmosphere | Deoxidated and dehydrated air | ||||
Step 3: Cooling | 1st step | Slowly cooled down until reaching 20–25 °C | Gradually cooled down to 1350 °C (at −400 °C/h) | ||
2nd step | Transferred onto a copper plate until reaching 20–25 °C |
Sample | [wt%] | Basicity * | |||||||
---|---|---|---|---|---|---|---|---|---|
Total S | Total Fe | CaO | SiO2 | MgO | Al2O3 | MnO | P2O5 | ||
Slag-A | 0.3 | 4.3 | 55.3 | 18.7 | 1.9 | 3.0 | 5.6 | 4.6 | 2.9 |
Slag-F | n.d. | 12.2 | 52.2 | 14.1 | 2.8 | 3.0 | 4.3 | 2.9 | 3.7 |
Slag-5-2 | 0 | 4.7 | 37.6 | 22.6 | 6.5 | 4.2 | 12.0 | 5.4 | 1.7 |
Mock-1 | 0 | 13.5 | 38.3 | 38.2 | 5.0 | 5.0 | 0 | 0 | 1.0 |
Mock-2 | 0 | 13.5 | 43.2 | 33.3 | 5.0 | 5.0 | 0 | 0 | 1.3 |
Mock-3 | 0.4 | 13.4 | 43.2 | 33.0 | 5.0 | 5.0 | 0 | 0 | 1.3 |
Sample | Day 3 [%] | Day 7 [%] |
---|---|---|
Slag-5-2 | 0 | 0 |
Slag-A | 0 | 0 |
Slag-F | 0 | 0 |
Mock-1 | 0 | 0 |
Mock-2 | 0 | 0 |
Mock-3 | 0 | 0 |
Sand | 0.1 | 0 |
Sponge | 0.1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogawa, A.; Mizutani, Y.; Tanaka, R.; Ochiai, T.; Ohashi, R.; Hirai, N.; Suzuki, M. Influence of Elution Characteristics of Steelmaking Slags on Major Bacterial Communities in Biofilms. Coatings 2023, 13, 1537. https://doi.org/10.3390/coatings13091537
Ogawa A, Mizutani Y, Tanaka R, Ochiai T, Ohashi R, Hirai N, Suzuki M. Influence of Elution Characteristics of Steelmaking Slags on Major Bacterial Communities in Biofilms. Coatings. 2023; 13(9):1537. https://doi.org/10.3390/coatings13091537
Chicago/Turabian StyleOgawa, Akiko, Yukino Mizutani, Reiji Tanaka, Tatsuki Ochiai, Ruu Ohashi, Nobumitsu Hirai, and Masanori Suzuki. 2023. "Influence of Elution Characteristics of Steelmaking Slags on Major Bacterial Communities in Biofilms" Coatings 13, no. 9: 1537. https://doi.org/10.3390/coatings13091537
APA StyleOgawa, A., Mizutani, Y., Tanaka, R., Ochiai, T., Ohashi, R., Hirai, N., & Suzuki, M. (2023). Influence of Elution Characteristics of Steelmaking Slags on Major Bacterial Communities in Biofilms. Coatings, 13(9), 1537. https://doi.org/10.3390/coatings13091537