Thermoformable Conductive Compositions for Printed Electronics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Formulating Conductive Inks
2.3. Sheet Resistivity Measurement
2.4. Thermoforming
2.5. Characterization
3. Results and Discussion
3.1. Effect of Solvent on Sheet Resistivity
3.2. The Effects of Polymer and Solvent on Thermoformability
3.3. The Effects of Mold Geometry and Print Thickness on Thermoformability
3.4. Morphology of the Thermoformed Prints
3.5. Demonstration: Thermoformable RFID Circuit
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kallmayer, C.; Schaller, F.; Loher, T.; Haberland, J.; Kayatz, F.; Schult, A. Optimized Thermoforming Process for Conformable Electronics. In Proceedings of the 2018 13th International Congress Molded Interconnect Devices (MID), Würzburg, Germany, 25–26 September 2018; pp. 1–6. [Google Scholar]
- Rusanen, O.; Simula, T.; Niskala, P.; Lindholm, V.; Heikkinen, M. Injection Molded Structural Electronics Brings Surfaces to Life. In Proceedings of the 2019 22nd European Microelectronics and Packaging Conference & Exhibition (EMPC), Pisa, Italy, 16–19 September 2019; pp. 1–7. [Google Scholar]
- Zhang, Y.; Chad Webb, R.; Luo, H.; Xue, Y.; Kurniawan, J.; Cho, N.H.; Krishnan, S.; Li, Y.; Huang, Y.; Rogers, J.A. Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature. Adv. Healthc. Mater. 2016, 5, 119–127. [Google Scholar] [CrossRef]
- Balzereit, S.; Proes, F.; Altstädt, V.; Emmelmann, C. Properties of Copper Modified Polyamide 12-Powders and Their Potential for the Use as Laser Direct Structurable Electronic Circuit Carriers. Addit. Manuf. 2018, 23, 347–354. [Google Scholar] [CrossRef]
- Fischer, A.J.; Meister, S.; Drummer, D. Effect of Fillers on the Metallization of Laser-Structured Polymer Parts. J. Polym. Eng. 2017, 37, 151–161. [Google Scholar] [CrossRef]
- Jiménez, M.; Romero, L.; Domínguez, I.A.; del Espinosa, M.M.; Domínguez, M. Additive Manufacturing Technologies: An Overview about 3D Printing Methods and Future Prospects. Complexity 2019, 2019, 9656938. [Google Scholar] [CrossRef]
- Adams, J.J.; Duoss, E.B.; Malkowski, T.F.; Motala, M.J.; Ahn, B.Y.; Nuzzo, R.G.; Bernhard, J.T.; Lewis, J.A. Conformal Printing of Electrically Small Antennas on Three-Dimensional Surfaces. Adv. Mater. 2011, 23, 1335–1340. [Google Scholar] [CrossRef] [PubMed]
- Jobs, M.; Hjort, K.; Rydberg, A.; Wu, Z. A Tunable Spherical Cap Microfluidic Electrically Small Antenna. Small 2013, 9, 3230–3234. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, F.; Zhang, R.; Liu, J. Suspension 3D Printing of Liquid Metal into Self-Healing Hydrogel. Adv. Mater. Technol. 2017, 2, 1700173. [Google Scholar] [CrossRef]
- Wu, K.; Zhou, Q.; Zou, H.; Leng, K.; Zeng, Y.; Wu, Z. High Precision Thermoforming 3D-Conformable Electronics with a Phase-Changing Adhesion Interlayer. Micromachines 2019, 10, 160. [Google Scholar] [CrossRef]
- Tenchine, L.; Dassonville, O. Randomly Shaped 3D Electronics Using Innovative Combination of Standard Surface Mount Technologies and Polymer Processing. In Proceedings of the 2016 12th International Congress Molded Interconnect Devices (MID), Wuerzburg, Germany, 28–29 September 2016; pp. 1–6. [Google Scholar]
- Chtioui, I.; Bossyut, F.; Bedoui, M.H. Finite Element Simulation of 2.5/3D Shaped and Rigid Electronic Circuits. In Proceedings of the 2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV), Beni Mellal, Morocco, 29 March–1 April 2016; pp. 24–28. [Google Scholar]
- Wu, Z.; Jobs, M.; Rydberg, A.; Hjort, K. Hemispherical Coil Electrically Small Antenna Made by Stretchable Conductors Printing and Plastic Thermoforming. J. Micromech. Microeng. 2015, 25, 027004. [Google Scholar] [CrossRef]
- Tao, H.; Brenckle, M.A.; Yang, M.; Zhang, J.; Liu, M.; Siebert, S.M.; Averitt, R.D.; Mannoor, M.S.; McAlpine, M.C.; Rogers, J.A.; et al. Silk-Based Conformal, Adhesive, Edible Food Sensors. Adv. Mater. 2012, 24, 1067–1072. [Google Scholar] [CrossRef]
- Yang, Y.; Vervust, T.; Dunphy, S.; Van Put, S.; Vandecasteele, B.; Dhaenens, K.; Degrendele, L.; Mader, L.; De Vriese, L.; Martens, T.; et al. 3D Multifunctional Composites Based on Large-Area Stretchable Circuit with Thermoforming Technology. Adv. Electron. Mater. 2018, 4, 1800071. [Google Scholar] [CrossRef]
- Wimmer, A.; Reichel, H.; Schmidt, K. New Standards for 3D-Userinterfaces-Manufactured by a Film Insert Molding Process. In Proceedings of the 2018 13th International Congress Molded Interconnect Devices (MID), Würzburg, Germany, 25–26 September 2018; pp. 1–5. [Google Scholar]
- Thomas, N.; Lähdesmäki, I.; Parviz, B.A. A Contact Lens with an Integrated Lactate Sensor. Sens. Actuators B Chem. 2012, 162, 128–134. [Google Scholar] [CrossRef]
- Lee, C.-L.; Chang, K.-C.; Syu, C.-M. Silver Nanoplates as Inkjet Ink Particles for Metallization at a Low Baking Temperature of 100 °C. Colloids Surfaces A Physicochem. Eng. Asp. 2011, 381, 85–91. [Google Scholar] [CrossRef]
- Park, J.H.; Seo, J.; Kim, C.; Joe, D.J.; Lee, H.E.; Im, T.H.; Seok, J.Y.; Jeong, C.K.; Ma, B.S.; Park, H.K.; et al. Flash-Induced Stretchable Cu Conductor via Multiscale-Interfacial Couplings. Adv. Sci. 2018, 5, 1801146. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Li, L.; Semichaevsky, A.V.; Ryu, J.H.; Johnson, H.T.; Nuzzo, R.G.; Rogers, J.A. Flexible Concentrator Photovoltaics Based on Microscale Silicon Solar Cells Embedded in Luminescent Waveguides. Nat. Commun. 2011, 2, 343. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, R.; Wagner, S.; Yeh-Jiun, T.; Esler, J.R.; Hack, M. Organic LED Pixel Array on a Dome. Proc. IEEE 2005, 93, 1273–1280. [Google Scholar] [CrossRef]
- Axisa, F.; Bossuyt, F.; Missine, J.; Verplancke, R.; Vervust, T.; Vanfleteren, J. Stretchable Engineering Technologies for the Development of Advanced Stretchable Polymeric Systems. In Proceedings of the PORTABLE-POLYTRONIC 2008—2nd IEEE International Interdisciplinary Conference on Portable Information Devices and the 2008 7th IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics, Garmisch-Partenkirchen, Germany, 17–20 August 2008; pp. 1–8. [Google Scholar]
- Huang, Z.; Hao, Y.; Li, Y.; Hu, H.; Wang, C.; Nomoto, A.; Pan, T.; Gu, Y.; Chen, Y.; Zhang, T.; et al. Three-Dimensional Integrated Stretchable Electronics. Nat. Electron. 2018, 1, 473–480. [Google Scholar] [CrossRef]
- Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwödiauer, R.; Graz, I.; Bauer-Gogonea, S.; et al. An Ultra-Lightweight Design for Imperceptible Plastic Electronics. Nature 2013, 499, 458–463. [Google Scholar] [CrossRef]
- Kim, D.-H.; Lu, N.; Ma, R.; Kim, Y.-S.; Kim, R.-H.; Wang, S.; Wu, J.; Won, S.M.; Tao, H.; Islam, A.; et al. Epidermal Electronics. Science 2011, 333, 838–843. [Google Scholar] [CrossRef]
- Yan, Q.; Dong, H.; Su, J.; Han, J.; Song, B.; Wei, Q.; Shi, Y. A Review of 3D Printing Technology for Medical Applications. Engineering 2018, 4, 729–742. [Google Scholar] [CrossRef]
- Ng, L.W.T.; Zhu, X.; Hu, G.; Macadam, N.; Um, D.; Wu, T.; Le Moal, F.; Jones, C.; Hasan, T. Conformal Printing of Graphene for Single- and Multilayered Devices onto Arbitrarily Shaped 3D Surfaces. Adv. Funct. Mater. 2019, 29, 1807933. [Google Scholar] [CrossRef]
- Zhang, Y.; Gui, Y.; Meng, F.; Li, L.; Gao, C.; Zhu, H.; Hao, Y. Graphene Water Transfer Printing for 3D Surface. In Proceedings of the 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), Shanghai, China, 24–28 January 2016; pp. 13–16. [Google Scholar]
- Williams, N.X.; Noyce, S.; Cardenas, J.A.; Catenacci, M.; Wiley, B.J.; Franklin, A.D. Silver Nanowire Inks for Direct-Write Electronic Tattoo Applications. Nanoscale 2019, 11, 14294–14302. [Google Scholar] [CrossRef]
- Ding, S.; Jiu, J.; Gao, Y.; Tian, Y.; Araki, T.; Sugahara, T.; Nagao, S.; Nogi, M.; Koga, H.; Suganuma, K.; et al. One-Step Fabrication of Stretchable Copper Nanowire Conductors by a Fast Photonic Sintering Technique and Its Application in Wearable Devices. ACS Appl. Mater. Interfaces 2016, 8, 6190–6199. [Google Scholar] [CrossRef]
- Cui, H.-W.; Jiu, J.-T.; Sugahara, T.; Nagao, S.; Suganuma, K.; Uchida, H.; Kihara, K. Solidification and Thermal Degradation of Printable, Stretchable Electrical Conductor from Waterborne Polyurethane and Silver Flakes. J. Therm. Anal. Calorim. 2015, 122, 295–305. [Google Scholar] [CrossRef]
- Zulfiqar, S.; Saad, A.A.; Sharif, M.F.M.; Samsudin, Z.; Ali, M.Y.T.; Ani, F.C.; Ahmad, Z.; Abdullah, M.K. Alternative Manufacturing Process of 3-Dimensional Interconnect Device Using Thermoforming Process. Microelectron. Reliab. 2021, 127, 114373. [Google Scholar] [CrossRef]
- Gong, Y.; Cha, K.J.; Park, J.M. Deformation Characteristics and Resistance Distribution in Thermoforming of Printed Electrical Circuits for In-Mold Electronics Application. Int. J. Adv. Manuf. Technol. 2020, 108, 749–758. [Google Scholar] [CrossRef]
- Yi, W.; Zhonghua, C.; Fei, Y. Coalescing Aid Influences on Acrylic Latexes Property and Film Formation Process. Indian J. Mater. Sci. 2016, 2016, 1380791. [Google Scholar] [CrossRef]
- Mark, J.E. Polymer Data Handbook; Oxford University Press: Oxford, UK, 2009; ISBN 9780195181012. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahabadi, S.I.S.; Tan, J.M.R.; Magdassi, S. Thermoformable Conductive Compositions for Printed Electronics. Coatings 2023, 13, 1548. https://doi.org/10.3390/coatings13091548
Shahabadi SIS, Tan JMR, Magdassi S. Thermoformable Conductive Compositions for Printed Electronics. Coatings. 2023; 13(9):1548. https://doi.org/10.3390/coatings13091548
Chicago/Turabian StyleShahabadi, Seyed Ismail Seyed, Joel Ming Rui Tan, and Shlomo Magdassi. 2023. "Thermoformable Conductive Compositions for Printed Electronics" Coatings 13, no. 9: 1548. https://doi.org/10.3390/coatings13091548
APA StyleShahabadi, S. I. S., Tan, J. M. R., & Magdassi, S. (2023). Thermoformable Conductive Compositions for Printed Electronics. Coatings, 13(9), 1548. https://doi.org/10.3390/coatings13091548