Antibacterial Effect of Combinations of Salvia officinalis and Glycyrrhiza glabra Hydroalcoholic Extracts against Enterococcus spp.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plants Extracts
2.2. High-Performance Liquid Chromatography (HPLC) Analyses
2.3. Inoculum Preparation
2.4. Minimum Inhibitory (MIC) and Minimum Bactericidal (MBC) Concentrations
2.5. Combined Extracts’ Synergistic Effects
2.6. Antibiofilm Activity
2.7. Statistical Analysis
3. Results
3.1. High-Performance Liquid Chromatography (HPLC) Analysis
3.1.1. Salvia Officinalis Extract
3.1.2. Glycyrrhiza Glabra Extract
3.2. Minimum Inhibitory (MIC) and Minimum Bactericidal (MBC) Concentrations
3.3. Combined Extracts’ Synergistic Effects
3.4. Combined Extracts’ Antibiofilm Effect
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Persoon, I.F.; Özok, A.R. Definitions and epidemiology of endodontic infections. Curr. Oral Health Rep. 2017, 4, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Zargar, N.; Marashi, M.A.; Ashraf, H.; Hakopian, R.; Beigi, P. Identification of microorganisms in persistent/secondary endodontic infections with respect to clinical and radiographic findings: Bacterial culture and molecular detection. Iran. J. Microbiol. 2019, 11, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Benachinmardi, K.K.; Nagamoti, J.; Kothiwale, S.; Metgud, S.C. Microbial flora in chronic periodontitis: Study at a tertiary health care center from north karnataka. J. Lab. Physicians 2015, 7, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, F.; Derks, J.; Monje, A.; Wang, H.-L. Peri-implantitis. J. Periodontol. 2018, 89 (Suppl. S1), S267–S290. [Google Scholar] [CrossRef]
- Machado, F.P.; Khoury, R.D.; Toia, C.C.; Flores Orozco, E.I.; de Oliveira, F.E.; de Oliveira, L.D.; da Rosa Cardoso, F.G.; Valera, M.C. Primary versus post-treatment apical periodontitis: Microbial composition, lipopolysaccharides and lipoteichoic acid levels, signs and symptoms. Clin. Oral Investig. 2020, 24, 3169–3179. [Google Scholar] [CrossRef]
- Alghamdi, F.; Shakir, M. The Influence of Enterococcus faecalis as a Dental Root Canal Pathogen on Endodontic Treatment: A Systematic Review. Cureus 2020, 12, e7257. [Google Scholar] [CrossRef]
- Wong, J.; Manoil, D.; Näsman, P.; Belibasakis, G.N.; Neelakantan, P. Microbiological aspects of root canal infections and disinfection strategies: An update review on the current knowledge and challenges. Front. Oral Health 2021, 2, 672887. [Google Scholar] [CrossRef]
- Chidambar, C.K.; Shankar, S.M.; Raghu, P.; Gururaj, S.B.; Bushan, K.S. Detection of Enterococcus faecalis in subgingival biofilms of healthy, gingivitis, and chronic periodontitis subjects. J. Indian Soc. Periodontol. 2019, 23, 416–418. [Google Scholar] [CrossRef]
- Sánchez-Sanhueza, G.; González-Rocha, G.; Dominguez, M.; Bello-Toledo, H. Enterococcus spp. isolated from root canals with persistent chronic apical periodontitis in a Chilean population. Braz. J. Oral Sci. 2015, 14, 240–245. [Google Scholar] [CrossRef]
- Bhardwaj, S.B.; Mehta, M.; Sood, S. Enterococci in the oral cavity of periodontitis patients from different urban socioeconomic groups. Dent. Res. J. 2020, 17, 147–151. [Google Scholar] [CrossRef]
- Meccatti, V.M.; Figueiredo-Godoi, L.M.A.; Pereira, T.C.; de Lima, P.M.N.; Abu Hasna, A.; Senna, L.B.; Marcucci, M.C.; Junqueira, J.C.; de Oliveira, L.D. The biocompatibility and antifungal effect of Rosmarinus officinalis against Candida albicans in Galleria mellonella model. Sci. Rep. 2022, 12, 15611. [Google Scholar] [CrossRef]
- de Sá Assis, M.A.; de Paula Ramos, L.; Abu Hasna, A.; de Queiroz, T.S.; Pereira, T.C.; Nagai de Lima, P.M.; Berretta, A.A.; Marcucci, M.C.; Talge Carvalho, C.A.; de Oliveira, L.D. Antimicrobial and Antibiofilm Effect of Brazilian Green Propolis Aqueous Extract against Dental Anaerobic Bacteria. Molecules 2022, 27, 8128. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.A.D.; Ramos, L.P.; Silva, T.A.; Lapena, S.A.B.D.; Santos, C.E.R.; Hasna, A.A.; Bressane, A.; Oliveira, L.D.D. Effect of combining Zingiber officinale and Juglans regia extracts on Propionibacterium acnes, Staphylococcus aureus and Staphylococcus epidermidis: Antibiofilm action and low toxicity. An. Acad. Bras. Ciências 2022, 94, e20201133. [Google Scholar] [CrossRef] [PubMed]
- Marques Meccatti, V.; de Souza Moura, L.; Guerra Pinto, J.; Ferreira-Strixino, J.; Abu Hasna, A.; Alves Figueiredo-Godoi, L.M.; Campos Junqueira, J.; Marcucci, M.C.; de Paula Ramos, L.; Carvalho, C.A.T.; et al. Extract and Photodynamic Therapy are Effective against Candida spp. and Do Not Show Toxicity In Vivo. Int. J. Dent. 2022, 2022, 5837864. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos Liberato, S.F.; da Cruz Vegian, M.R.; Abu Hasna, A.; de Alvarenga, J.A.; Dos Santos, J.G.; Tini, Í.R.P.; Amêndola, I.; Junqueira, J.C.; de Oliveira, L.D. Antibiofilm action of Persea americana glycolic extract over Acinetobacter baumannii and absence of toxicity in Galleria mellonella. J. Complement. Integr. Med. 2021, 19, 905–911. [Google Scholar] [CrossRef]
- Venkatraman, P.D.; Sayed, U.; Parte, S.; Korgaonkar, S. Development of Advanced Textile Finishes Using Nano-Emulsions from Herbal Extracts for Organic Cotton Fabrics. Coatings 2021, 11, 939. [Google Scholar] [CrossRef]
- Sowmya, T.N.; Raveesha, K.A. Polyphenol-Rich Purified Bioactive Fraction Isolated from Terminalia catappa L.: UHPLC-MS/MS-Based Metabolite Identification and Evaluation of Their Antimicrobial Potential. Coatings 2021, 11, 1210. [Google Scholar] [CrossRef]
- de Oliveira, J.R.; Vilela, P.G.d.F.; Almeida, R.B.d.A.; de Oliveira, F.E.; Carvalho, C.A.T.; Camargo, S.E.A.; Jorge, A.O.C.; de Oliveira, L.D. Antimicrobial activity of noncytotoxic concentrations of Salvia officinalis extract against bacterial and fungal species from the oral cavity. Gen. Dent. 2019, 67, 22–26. [Google Scholar]
- Hemeg, H.A.; Moussa, I.M.; Ibrahim, S.; Dawoud, T.M.; Alhaji, J.H.; Mubarak, A.S.; Kabli, S.A.; Alsubki, R.A.; Tawfik, A.M.; Marouf, S.A. Antimicrobial effect of different herbal plant extracts against different microbial population. Saudi J. Biol. Sci. 2020, 27, 3221–3227. [Google Scholar] [CrossRef]
- Fathi, F.; Sadrnia, M.; Arjomandzadegan, M.; Mohajerani, H.R. In vitro and in vivo evaluation of antibacterial and anti-biofilm properties of five ethnomedicinal plants against oral bacteria by TEM. Avicenna J. Phytomed. 2021, 11, 180–189. [Google Scholar] [PubMed]
- Lee, H.-S.; Kim, Y. Antifungal Activity of Salvia miltiorrhiza Against Candida albicans Is Associated with the Alteration of Membrane Permeability and (1,3)-β-D-Glucan Synthase Activity. J. Microbiol. Biotechnol. 2016, 26, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yang, R.; Yuan, B.; Liu, Y.; Liu, C. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm. Sin. B 2015, 5, 310–315. [Google Scholar] [CrossRef]
- Sharma, H.; Yunus, G.Y.; Agrawal, R.; Kalra, M.; Verma, S.; Bhattar, S. Antifungal efficacy of three medicinal plants Glycyrrhiza glabra, Ficus religiosa, and Plantago major against oral Candida albicans: A comparative analysis. Indian J. Dent. Res. 2016, 27, 433–436. [Google Scholar] [CrossRef]
- Meccatti, V.M.; Santos, L.F.; de Carvalho, L.S.; Souza, C.B.; Carvalho, C.A.T.; Marcucci, M.C.; Abu Hasna, A.; de Oliveira, L.D. Antifungal Action of Herbal Plants’ Glycolic Extracts against Candida Species. Molecules 2023, 28, 2857. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.A.; Zampini, I.C.; Isla, M.I. Antifungal, anti-inflammatory and antioxidant activity of bi-herbal mixtures with medicinal plants from Argentinean highlands. J. Ethnopharmacol. 2020, 253, 112642. [Google Scholar] [CrossRef] [PubMed]
- Uță, G.; Manolescu, D.Ș.; Avram, S. Therapeutic Properties of Several Chemical Compounds of Salvia officinalis L. in Alzheimer’s Disease. Mini Rev. Med. Chem. 2021, 21, 1421–1430. [Google Scholar] [CrossRef]
- Rizzato, G.; Scalabrin, E.; Radaelli, M.; Capodaglio, G.; Piccolo, O. A new exploration of licorice metabolome. Food Chem. 2017, 221, 959–968. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, M.; Kim, H.; Lee, Y.; Lee, Y.-I. Phytochemical and pharmacological role of liquiritigenin and isoliquiritigenin from radix glycyrrhizae in human health and disease models. Front. Aging Neurosci. 2018, 10, 348. [Google Scholar] [CrossRef]
- Gaur, R.; Gupta, V.K.; Singh, P.; Pal, A.; Darokar, M.P.; Bhakuni, R.S. Drug Resistance Reversal Potential of Isoliquiritigenin and Liquiritigenin Isolated from Glycyrrhiza glabra Against Methicillin-Resistant Staphylococcus aureus (MRSA). Phytother. Res. 2016, 30, 1708–1715. [Google Scholar] [CrossRef]
- Guneser, M.B.; Akbulut, M.B.; Eldeniz, A.U. Antibacterial effect of chlorhexidine-cetrimide combination, Salvia officinalis plant extract and octenidine in comparison with conventional endodontic irrigants. Dent. Mater. J. 2016, 35, 736–741. [Google Scholar] [CrossRef]
- Güldas, H.E.; Kececi, A.D.; Cetin, E.S.; Ozturk, T.; Kaya, B.Ü. Evaluation of antimicrobial efficacy of cetrimide and Glycyrrhiza glabra L. extract against Enterococcus faecalis biofilm grown on dentin discs in comparison with NaOCl. Dent. Mater. J. 2016, 35, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Tamhankar, K.; Dhaded, N.S.; Kore, P.; Nagmoti, J.M.; Hugar, S.M.; Patil, A.C. Comparative Evaluation of Efficacy of Calcium Hydroxide, Propolis, and Glycyrrhiza glabra as Intracanal Medicaments in Root Canal Treatment. J. Contemp. Dent. Pract. 2021, 22, 707–712. [Google Scholar] [PubMed]
- Chakotiya, A.S.; Tanwar, A.; Srivastava, P.; Narula, A.; Sharma, R.K. Effect of aquo-alchoholic extract of Glycyrrhiza glabra against Pseudomonas aeruginosa in Mice Lung Infection Model. Biomed. Pharmacother. 2017, 90, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Chandra, J.H.; Gunasekaran, H. Screening of phytochemical, antimicrobial and antioxidant activity of Glycyrrhiza glabra root extract. JEB 2017, 38, 161–165. [Google Scholar] [CrossRef]
- Singh, V.; Pal, A.; Darokar, M.P. A polyphenolic flavonoid glabridin: Oxidative stress response in multidrug-resistant Staphylococcus aureus. Free Radic. Biol. Med. 2015, 87, 48–57. [Google Scholar] [CrossRef]
- Marcoux, E.; Lagha, A.B.; Gauthier, P.; Grenier, D. Antimicrobial activities of natural plant compounds against endodontic pathogens and biocompatibility with human gingival fibroblasts. Arch. Oral Biol. 2020, 116, 104734. [Google Scholar] [CrossRef]
- Francisco, V.; Costa, G.; Figueirinha, A.; Marques, C.; Pereira, P.; Miguel Neves, B.; Celeste Lopes, M.; García-Rodríguez, C.; Teresa Cruz, M.; Teresa Batista, M. Anti-inflammatory activity of Cymbopogon citratus leaves infusion via proteasome and nuclear factor-κB pathway inhibition: Contribution of chlorogenic acid. J. Ethnopharmacol. 2013, 148, 126–134. [Google Scholar] [CrossRef]
- Negahdari, R.; Bohlouli, S.; Sharifi, S.; Maleki Dizaj, S.; Rahbar Saadat, Y.; Khezri, K.; Jafari, S.; Ahmadian, E.; Gorbani Jahandizi, N.; Raeesi, S. Therapeutic benefits of rutin and its nanoformulations. Phytother. Res. 2021, 35, 1719–1738. [Google Scholar] [CrossRef]
- Wang, M.; Firrman, J.; Liu, L.; Yam, K. A Review on Flavonoid Apigenin: Dietary Intake, ADME, Antimicrobial Effects, and Interactions with Human Gut Microbiota. Biomed Res. Int. 2019, 2019, 7010467. [Google Scholar] [CrossRef]
- Koo, H.; Schobel, B.; Scott-Anne, K.; Watson, G.; Bowen, W.H.; Cury, J.A.; Rosalen, P.L.; Park, Y.K. Apigenin and tt-farnesol with fluoride effects on S. mutans biofilms and dental caries. J. Dent. Res. 2005, 84, 1016–1020. [Google Scholar] [CrossRef]
Bacteria | Strain | AC | XL | EM | AZ | TC | CI | VA |
---|---|---|---|---|---|---|---|---|
E. faecalis | 1 | S | S | S | S | S | S | S |
2 | S | S | I | S | R | I | I | |
3 | S | S | S | S | R | S | I | |
E. faecium | 1 | S | S | I | R | S | S | S |
2 | S | S | S | S | S | S | S |
Bacterial Strain | S. officinalis MBC (mg/mL) | G. glabra MBC (mg/mL) |
---|---|---|
E. faecalis ATCC | 4.3 | 4.3 |
E. faecalis clinical strain 1 | 2.1 | 4.3 |
E. faecalis clinical strain 2 | 1.0 | 4.3 |
E. faecalis clinical strain 3 | 8.7 | 4.3 |
E. faecium ATCC | 8.7 | 8.7 |
E. faecium clinical strain 1 | 2.1 | 2.1 |
E. faecium clinical strain 2 | 4.3 | 4.3 |
Bacterial Strain | Isolated Extract MBC Value (mg/mL) | Combined Concentrations (mg/mL) | FIC Index | Reduction in MIC | Effect | |||
---|---|---|---|---|---|---|---|---|
S. officinalis | G. glabra | S. officinalis | G. glabra | S. officinalis | G. glabra | |||
E. faecalis ATCC | 4.3 | 4.3 | 2.1 | 2.1 | 0.97 | 2 | 2 | Add |
2.1 | 1.0 | 0.72 | 2 | 4 | Add | |||
2.1 | 0.5 | 0.60 | 2 | 8 | Add | |||
2.1 | 0.2 | 0.53 | 2 | 21 | Add | |||
2.1 | 0.1 | 0.51 | 2 | 43 | Add | |||
2.1 | 0.06 | 0.50 | 2 | 71 | Syn | |||
0.5 | 2.1 | 0.6 | 8 | 2 | Add | |||
0.2 | 2.1 | 0.53 | 21 | 2 | Add | |||
0.1 | 2.1 | 0.51 | 43 | 2 | Add | |||
0.06 | 2.1 | 0.50 | 71 | 2 | Syn | |||
0.03 | 2.1 | 0.49 | 143 | 2 | Syn | |||
0.01 | 2.1 | 0.49 | 430 | 2 | Syn | |||
0.007 | 2.1 | 0.49 | 614 | 2 | Syn | |||
E. faecalis Clinical strain 1 | 2.1 | 4.3 | 1.0 | 1.0 | 0.70 | 2 | 4 | Add |
1.0 | 0.5 | 0.59 | 2 | 8 | Add | |||
1.0 | 0.2 | 0.52 | 2 | 21 | Add | |||
1.0 | 0.1 | 0.49 | 2 | 43 | Syn | |||
1.0 | 0.06 | 0.49 | 2 | 71 | Syn | |||
E. faecium ATCC | 8.7 | 8.7 | 4.3 | 4.3 | 0.98 | 2 | 2 | Add |
4.3 | 2.1 | 0.73 | 2 | 4 | Add | |||
4.3 | 1.0 | 0.60 | 2 | 8 | Add | |||
E. faecium clinical strain 1 | 4.3 | 4.3 | 2.1 | 2.1 | 0.97 | 2 | 2 | Add |
1.0 | 1.0 | 2.1 | 0.72 | 4 | Add |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, T.d.S.A.; Meccatti, V.M.; Pereira, T.C.; Marcucci, M.C.; Hasna, A.A.; Valera, M.C.; de Oliveira, L.D.; Carvalho, C.A.T. Antibacterial Effect of Combinations of Salvia officinalis and Glycyrrhiza glabra Hydroalcoholic Extracts against Enterococcus spp. Coatings 2023, 13, 1579. https://doi.org/10.3390/coatings13091579
Santos TdSA, Meccatti VM, Pereira TC, Marcucci MC, Hasna AA, Valera MC, de Oliveira LD, Carvalho CAT. Antibacterial Effect of Combinations of Salvia officinalis and Glycyrrhiza glabra Hydroalcoholic Extracts against Enterococcus spp. Coatings. 2023; 13(9):1579. https://doi.org/10.3390/coatings13091579
Chicago/Turabian StyleSantos, Thaís da Silva Alves, Vanessa Marques Meccatti, Thaís Cristine Pereira, Maria Cristina Marcucci, Amjad Abu Hasna, Marcia Carneiro Valera, Luciane Dias de Oliveira, and Cláudio Antonio Talge Carvalho. 2023. "Antibacterial Effect of Combinations of Salvia officinalis and Glycyrrhiza glabra Hydroalcoholic Extracts against Enterococcus spp." Coatings 13, no. 9: 1579. https://doi.org/10.3390/coatings13091579
APA StyleSantos, T. d. S. A., Meccatti, V. M., Pereira, T. C., Marcucci, M. C., Hasna, A. A., Valera, M. C., de Oliveira, L. D., & Carvalho, C. A. T. (2023). Antibacterial Effect of Combinations of Salvia officinalis and Glycyrrhiza glabra Hydroalcoholic Extracts against Enterococcus spp. Coatings, 13(9), 1579. https://doi.org/10.3390/coatings13091579