Thermal Cycling, Microstructure, and Mechanical Properties of Al-Mg-Si-Cu Alloy Bobbin Tool Friction Stir Welded Joints Based on Thermal Index
Abstract
:1. Introduction
2. Materials and Methods
2.1. Finite Element Simulation Model
2.2. Experimental Procedures
3. Results
3.1. Thermal Cycles
3.2. Macro- and Microstructure
3.3. Mechanical Properties
4. Conclusions
- The presented model can estimate temperature changes in the BT-FSW of the Al-Mg-Si-Cu alloys with a maximum error of 10.7%. The thermal index is not relevant to the peak joint temperature, but it has some relevance to the peak temperature of TMAZ and HAZ.
- Equiaxed grains appeared in the NZ due to the dynamic recrystallization behavior, but excessive deformation inhibits recrystallization and thus grain growth
- The decreasing trend in the content of high-angle grain boundaries in AS-TMAZ and RS-TMAZ is mainly due to dislocation plugging induced by deformation.
- Good quality joints can be obtained when the thermal index is 1.14, and the tensile strength can reach more than 70% of the strength of the base material.
- When the rotational speed is 750 r/min and the traverse speed is 650 mm/min, the tensile strength of the joint can reach 231 MPa and the yield strength can reach 227 MPa, which are 82.5% and 92.5% of parent material, respectively.
- Excessive deformation caused by dislocation plugging, resulting in increased grain deformation resistance, is the main reason for the increase in yield strength of welded joints.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, B.; Zhang, Z.; Xu, G.; Zeng, X.; Hu, W.; Matsubae, K. Wrought and cast aluminum flows in China in the context of electric vehicle diffusion and automotive lightweighting. Resour. Conserv. Recycl. 2023, 191, 106877. [Google Scholar] [CrossRef]
- Zhan, H.; Zeng, G.; Wang, Q.; Wang, C.; Wang, P.; Wang, Z.; Xu, Y.; Hess, D.; Crepeau, P.; Wang, J. Unified casting (UniCast) aluminum alloy—A sustainable and low-carbon materials solution for vehicle light-weighting. J. Mater. Sci. Technol. 2023, 154, 251–268. [Google Scholar] [CrossRef]
- Loganathan, K.; Vijaya Siva Subramani, S.K. Design and optimization of aluminium alloy wheel rim in automobile industry. Mater. Today Proc. 2023, in press. [CrossRef]
- Shah, Q.M.Z.; Chowdhury, M.A.; Kowser, M.A. The aspect of the corrosion pitting with fretting fatigue on aluminum alloy: An aerospace structural failure or a nuclear safety phenomenon. Results Eng. 2022, 15, 100483. [Google Scholar] [CrossRef]
- Atxaga, G.; Arroyo, A.; Canflanca, B. Hot stamping of aerospace aluminium alloys: Automotive technologies for the aeronautics industry. J. Manuf. Process. 2022, 81, 817–827. [Google Scholar] [CrossRef]
- Senthil, S.M.; Sradeep, M.; Sharan, K.; Selvapravin, P.A. Flexural and crashworthiness studies of friction stir welded aluminum alloy pipes. Mater. Today Proc. 2022, 50, 977–980. [Google Scholar] [CrossRef]
- Gunda, V.R.; Sanke, N. Evaluation of tensile and microstructure properties of AA2014 and AA7075 FSW weldments developed by HSS-10%Co and WC tools. Mater. Today Proc. 2021, 46, 913–918. [Google Scholar]
- Jacquin, D.; Guillemot, G. A review of microstructural changes occurring during FSW in aluminium alloys and their modelling. J. Mater. Process. Technol. 2021, 288, 116706. [Google Scholar] [CrossRef]
- Ahmed, M.M.Z.; Habba, M.I.A.; El-Sayed Seleman, M.M.; Hajlaoui, K.; Ataya, S.; Latief, F.H.; EL-Nikhaily, A.E. Bobbin Tool Friction Stir Welding of Aluminum Thick Lap Joints: Effect of Process Parameters on Temperature Distribution and Joints’ Properties. Materials 2021, 14, 4585. [Google Scholar] [CrossRef]
- Fuse, K.; Badheka, V. Effect of shoulder diameter on bobbin tool friction stir welding of AA 6061-T6 alloy. Mater. Today Proc. 2021, 42, 810–815. [Google Scholar] [CrossRef]
- Chen, J.; Liao, H.; Chen, R.; Tian, Y.; Zhang, Z.; Liu, S.; Song, S. The Correlation of Kissing Bond, Microstructure and Mechanical Properties of the 2195 Al-Li Alloy Friction Stir Welding Joints at Different Welding speeds. Metals 2023, 13, 1326. [Google Scholar] [CrossRef]
- Farhang, M.; Sam-Daliri, O.; Farahani, M.; Vatani, A. Effect of friction stir welding parameters on the residual stress distribution of Al-2024-T6 alloy. J. Mech. Eng. Sci. 2021, 15, 7684–7694. [Google Scholar] [CrossRef]
- Liu, H.; Hou, J.; Guo, H. Effect of welding speed on microstructure and mechanical properties of self-reacting friction stir welded 6061-T6 aluminum alloy. Mater. Des. 2013, 50, 872–878. [Google Scholar] [CrossRef]
- Zhang, W.; Mao, Y.; Yang, P.; Li, N.; Ke, L.; Chen, Y. Effect of Welding Speed on Microstructure Evolution and Mechanical Properties of Friction Stir Welded 2198 Al-Cu-Li Alloy Joints. Materials 2022, 15, 969. [Google Scholar] [CrossRef]
- Ni, Y.; Liu, Y.; Zhang, P.; Huang, J.; Yu, X. Thermal cycles, microstructures and mechanical properties of AA7075-T6 ultrathin sheet joints produced by high speed friction stir welding. Mater. Charact. 2022, 187, 111873. [Google Scholar] [CrossRef]
- Arbegast, W.J.; Hattel, P.J. Friction stir weld technology development at Lockheed Martin Michoud Space System. In Proceedings of the Fifth International Conference on Trends in Welding Research, Pine Mountain, GA, USA, 1–5 June 1998; pp. 541–546. [Google Scholar]
- Ren, S.; Ma, Z.; Chen, L. Effect of welding parameters on tensile properties and fracture behavior of friction stir welded Al–Mg–Si alloy. Scr. Mater. 2007, 56, 69–72. [Google Scholar] [CrossRef]
- Rajendran, C.; Abdulriyazdeen, A.; Abishek, S.; Aatheeshwaran, A.; Akash, A. Prediction of relationship between angular velocity to the pitch line velocity (ω/v) on tensile strength of friction stir welded AA2014-T6 Aluminium alloy joints: Angular velocity to pitch line velocity ratio on FSW joints. Forces Mech. 2021, 4, 100036. [Google Scholar] [CrossRef]
- Abbasi Gharacheh, M.; Kokabi, A.H.; Daneshi, G.H.; Shalchi, B.; Sarrafi, R. The influence of the ratio of “rotational speed/traverse speed”(ω/v) on mechanical properties of AZ31 friction stir welds. Int. J. Mach. Tools Manuf. 2006, 46, 1983–1987. [Google Scholar] [CrossRef]
- Aval, H.J. Smoothed-Particle Hydrodynamics (SPH) Simulation of AA6061-AA5086 Dissimilar Friction Stir Welding. Metals 2023, 13, 906. [Google Scholar] [CrossRef]
- Noh, W.F. CEL: A Time-Dependent, Two-Space-Dimensional, Coupled Eulerian-Lagrange Code; Methods in Computational Physics; Academic Press: New York, NY, USA, 1964; pp. 117–179. [Google Scholar]
- Veljić, D.M.; Perović, M.M.; Sedmak, A.S.; Rakin, M.P.; Trifunović, M.V.; Bajić, N.S.; Bajić, D.R. A coupled thermo-mechanical model of friction stir welding. Therm. Sci. 2012, 16, 527–534. [Google Scholar] [CrossRef]
- Liu, C. Research on Process and Mechanism of 6061 Aluminum Alloy Double Shoulder Friction Stir Welding; Harbin Institute of Technology: Harbin, China, 2015. [Google Scholar]
- Abúndez, A.; Pereyra, I.; Campillo, B.; Serna, S.; Alcudia, E.; Molina, A.; Blanco, A.; Mayén, J. Improvement of ultimate tensile strength by artificial ageing and retrogression treatment of aluminium alloy 6061. Mater. Sci. Eng. A 2016, 668, 201–207. [Google Scholar] [CrossRef]
- Sharghi, E.; Farzadi, A. Simulation of temperature distribution and heat generation during dissimilar friction stir welding of AA6061 aluminum alloy and Al-Mg2Si composite. Int. J. Adv. Manuf. Technol. 2022, 118, 3147–3159. [Google Scholar] [CrossRef]
- Chandran, R.; Santhanam, S.K.V. Submerged Friction Stir Welding of 6061-T6 Aluminium Alloy under Different Water Heads. Mater. Res. 2018, 21, e20171070. [Google Scholar] [CrossRef]
- Liu, L.; Nakayama, H.; Fukumoto, S.; Yamamoto, A.; Tsubakino, H. Microscopic Observations of Friction Stir Welded 6061 Aluminum Alloy. Mater. Trans. 2004, 45, 288–291. [Google Scholar] [CrossRef]
- Choi, J.-W.; Li, W.; Ushioda, K.; Yamamoto, M.; Fujii, H. Effect of applied pressure on microstructure and mechanical properties of linear friction welded AA1050-H24 and AA5052-H34 joints. Sci. Technol. Weld. Join. 2022, 27, 92–102. [Google Scholar] [CrossRef]
- Fuse, K.; Badheka, V. Hybrid Self-Reacting Friction Stir Welding of AA 6061-T6 Aluminium Alloy with Cooling Assisted Approach. Metals 2020, 11, 16. [Google Scholar] [CrossRef]
- Lee, W.-B.; Yeon, Y.-M.; Jung, S.-B. Mechanical Properties Related to Microstructural Variation of 6061 Al Alloy Joints by Friction Stir Welding. Mater. Trans. 2004, 45, 1700–1705. [Google Scholar] [CrossRef]
Temperature/°C | Density/kg/m3 | Conductivity/W· (m·°C)−1 | Specific Heat Capacity/J·(kg·°C)−1 | Thermal Expansion/°C−1 |
---|---|---|---|---|
25 | 2640 | 118 | 924 | -- |
50 | 2630 | 125 | 944 | -- |
100 | 2610 | 132 | 954 | 2.65 × 10−5 |
150 | 2600 | 139 | 984 | -- |
200 | 2600 | 149 | 1004 | 2.75 × 10−5 |
250 | 2640 | 153 | 1014 | -- |
300 | 2590 | 153 | 1024 | 2.88 × 10−5 |
350 | 2590 | 160 | 1074 | -- |
400 | -- | 160 | -- | 2.99 × 10−5 |
527 | -- | 188 | -- | 3.35 × 10−5 |
600 | -- | -- | -- | -- |
Jorhson Cook | A | B | n | m | Melting Point | Transition Temp |
---|---|---|---|---|---|---|
Model | 281 | 244 | 0.42 | 1.34 | 586 | 25 |
Al | Mg | Si | Fe | Zn | Cu | Mn | Cr |
---|---|---|---|---|---|---|---|
al | 1.07 | 0.58 | 0.32 | 0.05 | 0.24 | 0.1 | 1.82 |
Tensile Strength/MPa | Yield Strength/MPa | Elongation Rate/% |
---|---|---|
281 | 244 | 11.84 |
NO. | Rotational Speed/(r·min−1) | Traverse Speed/(mm·min−1) | ω/v |
---|---|---|---|
1 | 375 | 330 | 1.14 |
2 | 475 | 415 | 1.14 |
3 | 600 | 525 | 1.14 |
4 | 750 | 660 | 1.14 |
5 | 950 | 830 | 1.14 |
6 | 1180 | 1035 | 1.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhou, Z.; Yin, L.; Fu, D.; Jiang, H.; Yang, Y.; Lu, J.; Jin, F. Thermal Cycling, Microstructure, and Mechanical Properties of Al-Mg-Si-Cu Alloy Bobbin Tool Friction Stir Welded Joints Based on Thermal Index. Coatings 2023, 13, 1607. https://doi.org/10.3390/coatings13091607
Li Y, Zhou Z, Yin L, Fu D, Jiang H, Yang Y, Lu J, Jin F. Thermal Cycling, Microstructure, and Mechanical Properties of Al-Mg-Si-Cu Alloy Bobbin Tool Friction Stir Welded Joints Based on Thermal Index. Coatings. 2023; 13(9):1607. https://doi.org/10.3390/coatings13091607
Chicago/Turabian StyleLi, Yi, Zhigang Zhou, Li Yin, Dingyao Fu, Haiyi Jiang, Yunxin Yang, Jie Lu, and Fuming Jin. 2023. "Thermal Cycling, Microstructure, and Mechanical Properties of Al-Mg-Si-Cu Alloy Bobbin Tool Friction Stir Welded Joints Based on Thermal Index" Coatings 13, no. 9: 1607. https://doi.org/10.3390/coatings13091607
APA StyleLi, Y., Zhou, Z., Yin, L., Fu, D., Jiang, H., Yang, Y., Lu, J., & Jin, F. (2023). Thermal Cycling, Microstructure, and Mechanical Properties of Al-Mg-Si-Cu Alloy Bobbin Tool Friction Stir Welded Joints Based on Thermal Index. Coatings, 13(9), 1607. https://doi.org/10.3390/coatings13091607