Chitosan-Based Sustainable Coatings for Corrosion Inhibition of Aluminum in Seawater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Chitosan Extraction
2.3. Aluminum Substrates Pretreatment
2.4. Coatings Preparation
2.5. Gravimetric Tests
2.6. Chitosan Characterization Studies: MW and DDA
2.7. Coatings Characterization Studies
3. Results and Discussion
3.1. Chitosan Characterization
3.2. FTIR Analysis
3.3. Contact Angle
3.4. AFM Analysis
3.5. Gravimetric Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Verma, C.; Quraishi, M.A. Chelation capability of chitosan and chitosan derivatives: Recent developments in sustainable corrosion inhibition and metal decontamination applications. Curr. Res. Green Sustain. Chem. 2021, 4, 100184. [Google Scholar] [CrossRef]
- Motlatle, A.M.; Mofokeng, T.G.; Scriba, M.R.; Ojijo, V.; Ray, S.S. The effect of electrically conducting carbon materials on the conductivity and morphology of poly(vinyl butyral) and chitosan blend composite for application in anti-corrosive coatings. Synth. Met. 2021, 281, 116914. [Google Scholar] [CrossRef]
- Asadi, N.; Ramezanzadeh, M.; Bahlakeh, G.; Ramezanzadeh, B. Theoretical MD/DFT computer explorations and surface-electrochemical investigations of the zinc/iron metal cations interactions with highly active molecules from Lemon balm extract toward the steel corrosion retardation in saline solution. J. Mol. Liq. 2020, 310, 113220. [Google Scholar] [CrossRef]
- Koch, G. Cost of corrosion. Trends Oil Gas Corros. Res. Technol. Prod. Transm. 2017, 2017, 3–30. [Google Scholar]
- Godínez, L.A.; Meas, Y.; Ortega-Borges, R.; Corona, A. Corrosion inhibitors. Rev. Metal. 2003, 39, 140–158. [Google Scholar] [CrossRef]
- Harb, S.V.; Trentin, A.; Uvida, M.C.; Hammer, P. Advanced organic nanocomposite coatings for effective corrosion protection. In Corrosion Protection at the Nanoscale; Elsevier: Amsterdam, The Netherlands, 2020; pp. 315–343. [Google Scholar]
- Xhanari, K.; Finšgar, M. Organic corrosion inhibitors for aluminium and its alloys in acid solutions: A review. RSC Adv. R. Soc. Chem. 2016, 6, 62833–62857. [Google Scholar] [CrossRef]
- Eduok, U.; Ohaeri, E.; Szpunar, J. Self-healing composite coatings with protective and anticorrosion potentials: Classification by healing mechanism. In Self-Healing Composite Materials: From Design to Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 123–162. [Google Scholar]
- Sambyal, P.; Ruhi, G.; Dhawan, S.K.; Bisht, B.M.S.; Gairola, S.P. Enhanced anticorrosive properties of tailored poly(aniline-anisidine)/chitosan/SiO2 composite for protection of mild steel in aggressive marine conditions. Prog. Org. Coat. 2018, 119, 203–213. [Google Scholar] [CrossRef]
- Samide, A.; Merisanu, C.; Tutunaru, B.; Iacobescu, G.E. Poly (vinyl butyral-co-vinyl alcohol-co-vinyl acetate) coating performance on copper corrosion in saline environment. Molecules 2020, 25, 439. [Google Scholar] [CrossRef]
- Ma, Z.; Sun, M.; Li, A.; Zhu, G.; Zhang, Y. Anticorrosion behavior of polyvinyl butyral (PVB)/polymethylhydrosiloxane (PMHS)/chitosan (Ch) environment-friendly assembled coatings. Prog. Org. Coat. 2020, 144, 105662. [Google Scholar] [CrossRef]
- Szőke, Á.F.; Szabó, G.S.; Hórvölgyi, Z.; Albert, E.; Gaina, L.; Muresan, L.M. Eco-friendly indigo carmine-loaded chitosan coatings for improved anti-corrosion protection of zinc substrates. Carbohydr. Polym. 2019, 215, 63–72. [Google Scholar] [CrossRef]
- Bahari, H.S.; Ye, F.; Carrillo, E.A.T.; Leliopoulos, C.; Savaloni, H.; Dutta, J. Chitosan nanocomposite coatings with enhanced corrosion inhibition effects for copper. Int. J. Biol. Macromol. 2020, 162, 1566–1577. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, X.Z.; Chu, C.C. Effect of the molecular weight of polyethylene glycol (PEG) on the properties of chitosan-PEG-poly(N-isopropylacrylamide) hydrogels. J. Mater. Sci. Mater. Med. 2008, 19, 2865–2872. [Google Scholar] [CrossRef]
- Verma, C.; Quraishi, M.A.; Alfantazi, A.; Rhee, K.Y. Corrosion inhibition potential of chitosan based Schiff bases: Design, performance and applications. Int. J. Biol. Macromol. 2021, 184, 135–143. [Google Scholar] [CrossRef]
- Kumar, S.; Ye, F.; Dobretsov, S.; Dutta, J. Chitosan nanocomposite coatings for food, paints, and water treatment applications. Appl. Sci. 2019, 9, 2409. [Google Scholar] [CrossRef]
- Ding, X.; Zhao, L.; Khan, I.M.; Yue, L.; Zhang, Y.; Wang, Z. Emerging chitosan grafted essential oil components: A review on synthesis, characterization, and potential application. Carbohydr. Polym. 2022, 297, 120011. [Google Scholar] [CrossRef]
- Gouveia, Z.; Perinpanayagam, H.; Zhu, J. Development of Robust Chitosan-Silica Class II hybrid coatings with antimicrobial properties for titanium implants. Coatings 2020, 10, 534. [Google Scholar] [CrossRef]
- Brou, Y.S.; Coulibaly, N.H.; Diki, N.G.Y.S.; Creus, J.; Trokourey, A. Chitosan biopolymer effect on copper corrosion in 3.5 wt.% NaCL solution: Electrochemical and quantum chemical studies. Int. J. Corros. Scale Inhib. 2020, 9, 182–200. [Google Scholar]
- Ahmed, S.; Ikram, S. Chitosan & its derivatives: Are view in recent innovations. Int. J. Pharm. Sci. Res. 2015, 6, 14–30. [Google Scholar] [CrossRef]
- Gapsari, F.; Hidayatullah, S.; Hadi Setyarini, P.; Madurani, K.A.; Hermawan, H. Effectiveness of a fish scales-derived chitosan coating for corrosion protection of carbon steel. Egypt. J. Pet. 2022, 31, 25–31. [Google Scholar] [CrossRef]
- Ashassi-Sorkhabi, H.; Kazempour, A. Influence of fluid flow on the performance of polyethylene glycol as a green corrosion inhibitor. J. Adhes. Sci. Technol. 2020, 34, 1653–1663. [Google Scholar] [CrossRef]
- Ramasamy, P.; Dubal, S.V.; Jeyachandran, S.; Pitchiah, S.; Kannan, K.; Elangovan, D.; Thangadurai, T.; Paramasivam, S.; Selvin, J. Control and prevention of microbially influenced corrosion using cephalopod chitosan and its derivatives: A review. Int. J. Biol. Macromol. 2023, 242, 124924. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, J.; Tedim, J.; Ferreira, M.G.S. Chitosan as a smart coating for corrosion protection of aluminum alloy 2024: A review. In Progress in Organic Coatings; Elsevier: Amsterdam, The Netherlands, 2015; pp. 348–356. [Google Scholar]
- Ashassi-Sorkhabi, H.; Kazempour, A. Chitosan, its derivatives and composites with superior potentials for the corrosion protection of steel alloys: A comprehensive review. Carbohydr. Polym. 2020, 237, 116110. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Duarte, R.G.; Sánchez-Machado, D.I.; López-Cervantes, J.; Correa-Murrieta, M.A. Adsorption of allura red dye by cross-linked chitosan from shrimp waste. Water Sci. Technol. 2012, 65, 618–623. [Google Scholar] [CrossRef]
- Zhang, D.; Peng, F.; Liu, X. Protection of magnesium alloys: From physical barrier coating to smart self-healing coating. J. Alloys Compd. 2021, 853, 157010. [Google Scholar] [CrossRef]
- Masuelli, M.A. Mark-Houwink Parameters for Aqueous-Soluble Polymers and Biopolymers at Various Temperatures. J. Polym. Biopolym. Phys. Chem. 2014, 2, 37–42. Available online: https://ri.conicet.gov.ar/handle/11336/5693 (accessed on 29 May 2022).
- Umoren, S.A.; AlAhmary, A.A.; Gasem, Z.M.; Solomon, M.M. Evaluation of chitosan and carboxymethyl cellulose as ecofriendly corrosion inhibitors for steel. Int. J. Biol. Macromol. 2018, 117, 1017–1028. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, D.S.; Mouaden, K.E.L.; Quraishi, M.A.; Bazzi, L. Aminotriazolethiol-functionalized chitosan as a macromolecule-based bioinspired corrosion inhibitor for surface protection of stainless steel in 3.5% NaCl. Int. J. Biol. Macromol. 2020, 152, 234–241. [Google Scholar] [CrossRef]
- Chávez Huerta, A.; Rincón, M.C.; Valbuena, A.C.; López, A. Obtenciòn y caracterización de papel de quitosano OBTENCIÓN Y CARACTERIZACIÒN DE PAPEL DE QUITOSANO. Rev. Iberoam. Polim. 2012, 13, 41–51. [Google Scholar]
- Oliveira, J.A.M.; de Santana, R.A.C.; Neto, A.d.O.W. Characterization of the chitosan-tungsten composite coating obtained by electrophoretic deposition. Prog. Org. Coat. 2020, 143, 105631. [Google Scholar] [CrossRef]
- Solano Romero, J.F. Obtención de Quitosano a Partir del Exoesqueleto Del Camarón (Infraorden Caridea). 2017, pp. 1–54. Available online: http://repositorio.utmachala.edu.ec/bitstream/48000/7751/1/Muñoz.pdf (accessed on 22 August 2023).
- Ubaque Beltrán, C.A.; Hernández Pedraza, S.M. Extracción de Quitosano a Partir de Exoesqueleto de Camarón Para Elaborar Recubrimientos Para Alimentos; SENNOVA: Bogotá, Colombia, 2018; pp. 14–51. Available online: http://repositorio.sena.edu.co/handle/11404/5686 (accessed on 30 June 2022).
- Colina, M.; Ayala, A.; Rincón, D.; Molina, J.; Medina, J.; Ynciarte, R.; Vargas, J.; Montilla, B. Evaluación de los procesos para la obtención química de quitina y quitosano a partir de desechos de cangrejos. Escala piloto e industrial. Revista Iberoamericana de polímeros 2022, 15, 21–43. Available online: https://en.observatorioplastico.com/ficheros/articulos/63334929706003432.pdf (accessed on 20 August 2023).
- Ardean, C.; Davidescu, C.M.; Nemeş, N.S.; Negrea, A.; Ciopec, M.; Duteanu, N.; Negrea, P.; Duda-Seiman, D.; Musta, V. Factors Influencing the Antibacterial Activity of Chitosan and Chitosan Modified by Functionalization. Int. J. Mol. Sci. 2021, 22, 7449. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; McClements, D.J.; Jian, L.; Han, Y.; Dai, L.; Mao, L.; Gao, Y. Core-Shell Biopolymer Nanoparticles for Co-Delivery of Curcumin and Piperine: Sequential Electrostatic Deposition of Hyaluronic Acid and Chitosan Shells on the Zein Core. ACS Appl. Mater. Interfaces 2019, 11, 38103–38115. [Google Scholar] [CrossRef] [PubMed]
- Joseph, S.M.; Krishnamoorthy, S.; Paranthaman, R.; Moses, J.A.; Anandharamakrishnan, C. A review on source-specific chemistry, functionality, and applications of chitin and chitosan. Carbohydr. Polym. Technol. Appl. 2021, 2, 100036. [Google Scholar] [CrossRef]
- Gonçalves, C.; Ferreira, N.; Lourenço, L. Production of low molecular weight chitosan and chitooligosaccharides (COS), A review. Polymers 2021, 13, 2466. [Google Scholar] [CrossRef]
- Villegas-Peralta, Y.; López-Cervantes, J.; Madera Santana, T.J.; Sánchez-Duarte, R.G.; Sánchez-Machado, D.I.; Martínez-Macías, M.d.R.; Correa-Murrieta, M.A. Impact of the molecular weight on the size of chitosan nanoparticles: Characterization and its solid-state application. Polym. Bull. 2020, 78, 813–832. [Google Scholar] [CrossRef]
- Mouaden, K.E.L.; Chauhan, D.S.; Quraishi, M.A.; Bazzi, L. Thiocarbohydrazide-crosslinked chitosan as a bioinspired corrosion inhibitor for protection of stainless steel in 3.5% NaCl. Sustain. Chem. Pharm. 2020, 15, 100213. [Google Scholar] [CrossRef]
- Shamsheera, K.O.; Prasad, A.R.; Garvasis, J.; Basheer, S.M.; Joseph, A. Stearic acid grafted chitosan/epoxy blend surface coating for prolonged protection of mild steel in saline environment. J. Adhes. Sci. Technol. 2019, 33, 2250–2264. [Google Scholar] [CrossRef]
- Vaz, J.M.; Taketa, T.B.; Hernandez-Montelongo, J.; Chevallier, P.; Cotta, M.A.; Mantovani, D.; Beppu, M.M. Antibacterial properties of chitosan-based coatings are affected by spacer-length and molecular weight. Appl. Surf. Sci. 2018, 445, 478–487. [Google Scholar] [CrossRef]
- Luckachan, G.E.; Mittal, V. Anti-corrosion behavior of layer by layer coatings of cross-linked chitosan and poly(vinyl butyral) on carbon steel. Cellulose 2015, 22, 3275–3290. [Google Scholar] [CrossRef]
- Mallakpour, S.; Jarahiyan, A. Utilization of ultrasonic irradiation as a green and effective strategy to prepare poly(N-vinyl-2-pyrrolidone)/modified nano-copper (II) oxide nanocomposites. Ultrason. Sonochem. 2017, 37, 128–135. [Google Scholar] [CrossRef]
- Gutiérrez, T.J.; Alvarez, V.A. Nanoparticles for hyperthermia applications. Handb. Nanomater. Ind. Appl. 2018, 4, 563–576. [Google Scholar]
- El-Aassar, M.; Ibrahim, O.M.; Fouda, M.M.; Fakhry, H.; Ajarem, J.; Maodaa, S.N.; Allam, A.A.; Hafez, E.E. Wound dressing of chitosan-based-crosslinked gelatin/polyvinyl pyrrolidone embedded silver nanoparticles, for targeting multidrug resistance microbes. Carbohydr. Polym. 2021, 255, 117484. [Google Scholar] [CrossRef]
- Mohanapriya, S.; Raj, V. Cesium-substituted mesoporous phosphotungstic acid embedded chitosan hybrid polymer membrane for direct methanol fuel cells. Ionics 2018, 24, 2729–2743. [Google Scholar] [CrossRef]
- Kalpakli, A.O.; Arabaci, A.; Kahruman, C.; Yusufoglu, I. Thermal decomposition of ammonium paratungstate hydrate in air and inert gas atmospheres. Int. J. Refract. Met. Hard Mater. 2013, 37, 106–116. [Google Scholar] [CrossRef]
- Pecoraro, C.M.; Santamaria, M.; Bocchetta, P.; Di Quarto, F. Influence of synthesis conditions on the performance of chitosan–Heteropolyacid complexes as membranes for low temperature H2–O2 fuel cell. Int. J. Hydrog. Energy 2015, 40, 14616–14626. [Google Scholar] [CrossRef]
- Fait, M.J.G.; Lunk, H.J.; Feist, M.; Schneider, M.; Dann, J.N.; Frisk, T.A. Thermal decomposition of ammonium paratungstate tetrahydrate under non-reducing conditions: Characterization by thermal analysis, X-ray diffraction and spectroscopic methods. Thermochim. Acta 2008, 469, 12–22. [Google Scholar] [CrossRef]
- Peter, S.; Lyczko, N.; Gopakumar, D.; Maria, H.J.; Nzihou, A.; Thomas, S. Chitin and Chitosan Based Composites for Energy and Environmental Applications: A Review. Waste Biomass Valoriz. 2021, 12, 4777–4804. [Google Scholar] [CrossRef]
- Dabóczi, M.; Albert, E.; Agócs, E.; Kabai-Faix, M.; Hórvölgyi, Z. Bilayered (silica–chitosan) coatings for studying dye release in aqueous media: The role of chitosan properties. Carbohydr. Polym. 2016, 136, 137–145. [Google Scholar] [CrossRef]
- Gatto, M.; Ochi, D.; Yoshida, C.M.P.; da Silva, C.F. Study of chitosan with different degrees of acetylation as cardboard paper coating. Carbohydr. Polym. 2019, 210, 56–63. [Google Scholar] [CrossRef]
- Gunbas, I.D.; Aydemir Sezer, U.; Gülce, I.S.; Deliloǧlu Gürhan, I.; Hasirci, N. Semi-IPN Chitosan/PEG Microspheres and Films for Biomedical Applications: Characterization and Sustained Release Optimization. Ind. Eng. Chem. Res. 2012, 51, 11946–11954. [Google Scholar] [CrossRef]
- Bakmaz, D.; Ulu, A.; Koytepe, S.; Ates, B. Preparation, characterization, and in vitro release study of vincristine sulfate-loaded chitosan–polyethylene glycol–oleic acid composites. Int. J. Polym. Anal. Charact. 2021, 26, 291–308. [Google Scholar] [CrossRef]
- Hu, Y.; Yuan, B.; Cheng, F.; Hu, X. NaOH etching and resin pre-coating treatments for stronger adhesive bonding between CFRP and aluminium alloy. Compos. B Eng. 2019, 178, 107478. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Hou, B.S.; Li, Y.Y.; Zhu, G.Y.; Liu, H.F.; Zhang, G.A. Two novel chitosan derivatives as high efficient eco-friendly inhibitors for the corrosion of mild steel in acidic solution. Corros. Sci. 2020, 164, 108346. [Google Scholar] [CrossRef]
- Srivastava, V.; Chauhan, D.S.; Joshi, P.G.; Maruthapandian, V.; Sorour, A.A.; Quraishi, M.A. PEG-Functionalized Chitosan: A Biological Macromolecule as a Novel Corrosion Inhibitor. ChemistrySelect 2018, 3, 1990–1998. [Google Scholar] [CrossRef]
- Yee, Y.P.; Saud, S.N.; Hamzah, E. Pomelo Peel Extract as Corrosion Inhibitor for Steel in Simulated Seawater and Acidic Mediums. J. Mater. Eng. Perform. 2020, 29, 2202–2215. [Google Scholar] [CrossRef]
- Kotnarowska, D.; Żabińska, A. Influence of aqueous sodium chloride solutions on operational properties of epoxy coatings. Eksploat. Niezawodn. 2022, 24, 629–640. [Google Scholar] [CrossRef]
- Gnus, M. Influence of Chitosan molecular weight and degree of deacetylation on membrane physicochemical and separation properties in ethanol dehydration by the vapour permeation process. Prog. Chem. Appl. Chitin Deriv. 2020, 25, 79–93. [Google Scholar] [CrossRef]
Solution | Solute | Solvent | Coating |
---|---|---|---|
A | HMW-Chi | Acetic acid | HMW-Chi |
B | MMW-Chi | Acetic acid | MMW-Chi |
C | Glu + PEG | Solution A | HMW-Chi/PEG |
D | Glu + PEG | Solution B | MMW-Chi/PEG |
E | Glu + PVP | Solution A | HMW-Chi/PVP |
F | Glu + PVP | Solution B | MMW-Chi/PVP |
G | PTA | Distilled water | HMW-Chi/PTA MMW-Chi/PTA |
High Molecular Weight | Medium Molecular Weight | Reported | References | |
---|---|---|---|---|
Molecular weight (kDa) | 463.49 ± 0.99 | 397.43 ± 0.99 | 5–1500 | [29,30] |
Deacetylation (%) | 81.68 ± 1.16 | 90 ± 2.72 | 50–95 | [31,32] |
Humity (%) | 8.265 ± 0.167 | 5.12 ± 0.245 | 7.6–13.10 | [33,34] |
Ash (%) | 0.497 ± 0.03 | 0.2278 ± 0.09 | 0.2–5.50 | [35] |
Coating Sample | Contact Angle (°) |
---|---|
HMW-Chi | 69.80 ± 3.16 |
HMW-Chi/PTA | 62.97 ± 3.43 |
HMW-Chi/PEG | 73.00 ± 2.04 |
HMW-Chi/PVP | 72.83 ± 3.08 |
MMW-Chi | 72.22 ± 1.04 |
MMW-Chi/PTA | 63.80 ± 3.08 |
MMW-Chi/PEG | 67.92 ± 4.84 |
MMW-Chi/PVP | 70.92 ± 5.08 |
Sample | Ra (nm) |
---|---|
Aluminum | 187.75 ± 25.68 |
HMW-chi | 24.95 ± 3.74 |
HMW-chi/PTA | 42.65 ± 21.50 |
HMW-chi/PEG | 47.94 ± 10.49 |
HMW-chi/PVP | 62.92 ± 26.21 |
MMW-chi | 90.52 ± 10.98 |
MMW-chi/PTA | 61.37 ± 21.60 |
MMW-chi/PEG | 52.95 ± 37.02 |
MMW-chi/PVP | 151.27 ± 33.59 |
Sample | Ra after Immersion (nm) |
---|---|
Aluminum | 417.25 ± 221.81 |
HMW-chi | 147.175 ± 46.00 |
HMW-chi/PTA | 202.02 ± 101.77 |
HMW-chi/PEG | 322.05 ± 113.43 |
HMW-chi/PVP | 113.00 ± 10.31 |
MMW-chi | 223.21 ± 111.02 |
MMW-chi/PTA | 232.21 ± 109.16 |
MMW-chi/PEG | 154.75 ± 44.19 |
MMW-chi/PVP | 269.81 ± 56.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar-Ruiz, A.A.; Dévora-Isiordia, G.E.; Sánchez-Duarte, R.G.; Villegas-Peralta, Y.; Orozco-Carmona, V.M.; Álvarez-Sánchez, J. Chitosan-Based Sustainable Coatings for Corrosion Inhibition of Aluminum in Seawater. Coatings 2023, 13, 1615. https://doi.org/10.3390/coatings13091615
Aguilar-Ruiz AA, Dévora-Isiordia GE, Sánchez-Duarte RG, Villegas-Peralta Y, Orozco-Carmona VM, Álvarez-Sánchez J. Chitosan-Based Sustainable Coatings for Corrosion Inhibition of Aluminum in Seawater. Coatings. 2023; 13(9):1615. https://doi.org/10.3390/coatings13091615
Chicago/Turabian StyleAguilar-Ruiz, Ana Alejandra, Germán Eduardo Dévora-Isiordia, Reyna Guadalupe Sánchez-Duarte, Yedidia Villegas-Peralta, Víctor Manuel Orozco-Carmona, and Jesús Álvarez-Sánchez. 2023. "Chitosan-Based Sustainable Coatings for Corrosion Inhibition of Aluminum in Seawater" Coatings 13, no. 9: 1615. https://doi.org/10.3390/coatings13091615
APA StyleAguilar-Ruiz, A. A., Dévora-Isiordia, G. E., Sánchez-Duarte, R. G., Villegas-Peralta, Y., Orozco-Carmona, V. M., & Álvarez-Sánchez, J. (2023). Chitosan-Based Sustainable Coatings for Corrosion Inhibition of Aluminum in Seawater. Coatings, 13(9), 1615. https://doi.org/10.3390/coatings13091615