Reliability Evaluation of EB-PVD Thermal Barrier Coatings in High-Speed Rotation and Gas Thermal Shock
Abstract
:1. Introduction
2. Reliability Evaluation Method
2.1. Basic Theory
2.2. Monte Carlo Simulation Method
2.3. Sensitivity Factor
3. Failure Modes of EB-PVD TBCs with High-Speed Rotation and Gas Thermal Shock
3.1. Fluid–Structure Interaction
3.1.1. Basic Governing Equations
3.1.2. Geometric Modeling and Parameter Setting
3.2. Result Analysis and Discussion
3.2.1. Analysis of Flow Field Characteristics
3.2.2. Temperature Field of EB-PVD TBCs
3.2.3. Stress Field of EB-PVD TBCs
3.3. Failure Modes of EB-PVD TBCs
4. Reliability Evaluation of EB-PVD TBCs
4.1. Failure Criterion
4.2. Stochastic Characteristics of Parameters
4.3. Analysis of Reliability and Sensitivity
4.3.1. Reliability Analysis
4.3.2. Sensitivity Analysis
5. Conclusions
- (1)
- The main driving force causing the failure of the TBCs is the centrifugal force, followed by the wall shear stress caused by the interaction of high-speed rotation and high-speed airflow. Under the influence of this driving force, the failure mode of EB-PVD TBCs is mainly the self-fracture of the ceramic layer. It shows a unique top-down “step-like” thinning and peeling morphology.
- (2)
- There are three random variables affecting the reliability of high-speed rotating TBCs, namely material parameters (ΓTBC, αTBC, and ρTBC), external loads (T, n), and geometric parameters (h, r). The reliability of TBCs increases with the increase in fracture toughness ΓTBC, coating density ρTBC, and radius of curvature r. It decreases with the increase in thermal expansion coefficient αTBC, temperature T, rotation speed n, and coating thickness h.
- (3)
- Through reliability calculation, the failure probability value at the uppermost left end of the TBCs of the columnar sample is larger, indicating that the coating fails at this location. This is consistent with the experimental results. According to the sensitivity analysis, the most important parameters affecting reliability are n, αTBC, and T, followed by ρTBC, r, and h.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- clear;clc;
- v=0.23;H=0.343;ms=0.134;
- muX=[45;83.3;268e−6;1000;7.3e−6;5500;5e−3];
- sigmaX=[9;1.81;11.46e−6;10;0.37e−6;110;0.2e−3];
- atam=fsolve(@(r)[muX(1)−r(1)*gamma(1+1/r(2));sigmaX(1)^2−r(1)^2*(gamma(1+2/r(2))− (gamma(1+1/r(2)))^2)],[1;1]);
- ewb=atam(1);mwb=atam(2);
- nS=1e8;
- ig=ones(nS,1);
- X=[wblrnd(ewb,mwb,nS,1),normrnd(muX(2),sigmaX(2),nS,1),normrnd(muX(3),sigmaX(3),nS,1),...
- normrnd(muX(4),sigmaX(4),nS,1),normrnd(muX(5),sigmaX(5),nS,1),...
- normrnd(muX(6),sigmaX(6),nS,1),normrnd(muX(7),sigmaX(7),nS,1)];
- g=X(:,1)−((H.*8.*ms.^2.*X(:,2).^2.*X(:,3).*X(:,4).*X(:,5).*(1−v^2.))./((3+v).*X(:,6).*X(:,7).^4.));
- nF=sum(ig(g < 0));
- pF=nF/nS
References
- Liu, L.; Wang, S.Z.; Zhang, B.Q.; Jiang, G.Y.; Liu, H.; Yang, J.Q.; Wang, J.L.; Liu, W. Present status and prospects of nanostructured thermal barrier coatings and their performance improvement strategies: A review. J. Manuf. Processes. 2023, 97, 12–34. [Google Scholar] [CrossRef]
- Kumthekar, A.; Ponnusami, S.A.; van der Zwaag, S.; Turteltaub, S. Uncertainty quantification of the lifetime of self-healing thermal barrier coatings based on surrogate modelling of thermal cyclic fracture and healing. Mater. Design. 2022, 221, 110973. [Google Scholar] [CrossRef]
- Zhu, H.; Li, D.P.; Yang, M.; Ye, D.D. Prediction of microstructure and mechanical properties of atmospheric plasma-sprayed 8ysz thermal barrier coatings using hybrid machine learning approaches. Coatings 2023, 13, 602. [Google Scholar] [CrossRef]
- Pakseresht, A.; Sharifianjazi, F.; Esmaeilkhanian, A.; Bazli, L.; Nafchi, M.R.; Bazli, M.; Kirubaharan, K. Failure mechanisms and structure tailoring of YSZ and new candidates for thermal barrier coatings: A systematic review. Mater. Design. 2022, 222, 111044. [Google Scholar] [CrossRef]
- Zhou, Q.Q.; Yang, L.; Luo, C.; Chen, F.W.; Zhou, Y.C.; Wei, Y.G. Thermal barrier coatings failure mechanism during the interfacial oxidation process under the interaction between interface by cohesive zone model and brittle fracture by phase-field. Int. J. Solids Struct. 2021, 214, 18–34. [Google Scholar] [CrossRef]
- Wan, J.; Zhou, M.; Yang, X.S.; Dai, C.Y.; Zhang, Y.; Mao, W.G.; Lu, C. Fracture characteristics of freestanding 8wt% Y2O3-ZrO2 coatings by single edge notched beam and Vickers indentation tests. Mater. Sci. Eng. A. 2013, 581, 140–144. [Google Scholar] [CrossRef]
- Nordhorn, C.; Mücke, R.; Mack, D.E.; Vaßen, R. Probabilistic lifetime model for atmospherically plasma sprayed thermal barrier coating systems. Mech. Mater. 2016, 93, 199–208. [Google Scholar] [CrossRef]
- Busso, E.P.; Wright, L.; Evans, H.E.; McCartney, L.N.; Saunders, S.R.J.; Osgerby, S.; Nunn, J. A physics-based life prediction methodology for thermal barrier coating systems. Acta Mater. 2007, 55, 1491–1503. [Google Scholar] [CrossRef]
- Dong, H.; Yang, G.J.; Li, C.X.; Luo, X.T.; Li, C.J. Effect of TGO thickness on thermal cyclic lifetime and failure mode of plasma-sprayed TBCs. J. Am. Ceram. Soc. 2014, 97, 1226–1232. [Google Scholar] [CrossRef]
- He, M.Y.; Hutchinson, J.W.; Evans, A.G. Simulation of stresses and delamination in a plasma-sprayed thermal barrier system upon thermal cycling. Mater. Sci. Eng. A. 2003, 345, 172–178. [Google Scholar] [CrossRef]
- Rahimi, J.; Poursaeidi, E.; Montakhabi, F.; Sigaroodi, M.R.J.; Jamalabad, Y.Y. Experimental and numerical life evaluation of TBCs with different BC and diffusion coating under cyclic thermal loading. Int. J. Appl. Ceram. Technol. 2023, 20, 2888–2918. [Google Scholar] [CrossRef]
- Li, B.; Fan, X.L.; Zhou, K.; Wang, T.J. Effect of oxide growth on the stress development in double-ceramic-layer thermal barrier coatings. Ceram. Int. 2017, 43, 14763–14774. [Google Scholar] [CrossRef]
- Mondal, K.; Nuñez, L.; Downey, C.M.; Van Rooyen, I.J. Thermal Barrier Coatings Overview: Design, Manufacturing, and Applications in High-Temperature Industries. Ind. Eng. Chem. Res. 2021, 60, 6061–6077. [Google Scholar] [CrossRef]
- Martena, M.; Botto, D.; Fino, P.; Sabbadini, S.; Gola, M.M.; Badini, C. Modelling of TBC system failure: Stress distribution as a function of TGO thickness and thermal expansion mismatch. Eng. Fail. Anal. 2006, 13, 409–426. [Google Scholar] [CrossRef]
- Guo, J.W.; Yang, L.; Zhou, Y.C.; He, L.M.; Zhu, W.; Cai, C.Y.; Lu, C.S. Reliability assessment on interfacial failure of thermal barrier coatings. Acta Mech. Sin. 2016, 32, 915–924. [Google Scholar] [CrossRef]
- Lopes, P.A.M.; Gomes, H.M.; Awruch, A.M. Reliability analysis of laminated composite structures using finite elements and neural networks. Compos. Struct. 2010, 92, 1603–1613. [Google Scholar] [CrossRef]
- He, J.; Luo, Y. A Bayesian updating method for non-probabilistic reliability assessment of structures with performance test data. Model. Eng. Sci. 2020, 125, 777–800. [Google Scholar] [CrossRef]
- Yang, F.; Ren, J. Reliability analysis based on optimization random forest model and MCMC. Comput. Model. Eng. Sci. 2020, 125, 801–814. [Google Scholar] [CrossRef]
- Wang, Z.P.; Wang, Z.; Zhang, T.; Guo, W.S.; Dai, H.W.; Ding, K.Y. Reliability evaluation of thermal barrier coatings for engine combustion chambers based on Monte-Carlo simulation. Surf. Coat. Technol. 2022, 448, 128923. [Google Scholar] [CrossRef]
- Versteeg, H.K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method; Pearson Education: London, UK, 2007. [Google Scholar]
- Wilcox, D.C. Turbulence Modeling for CFD; DCW Industries: La Canada, CA, USA, 1998. [Google Scholar]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. Aiaa J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Chen, H.Y.; Yan, J.J.; Cao, K.; Liu, Z.Y.; Wu, X.; Yang, L.; Zhou, Y.C. Friction delamination mechanism of EB-PVD thermal barrier coatings in high-temperature and high-speed rotating service environment. J. Eur. Ceram. Soc. 2023, 43, 3637–3646. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Zhu, W.; Yang, L.; Zhou, Y.C. Numerical prediction of thermal insulation performance and stress distribution of thermal barrier coatings coated on a turbine vane. Int. J. Therm. Sci. 2020, 158, 106552. [Google Scholar] [CrossRef]
- Chen, X.; He, M.Y.; Spitsberg, I.; Fleck, N.A.; Hutchinson, J.W.; Evans, A.G. Mechanisms governing the high temperature erosion of thermal barrier coatings. Wear 2004, 256, 735–746. [Google Scholar] [CrossRef]
- Hutchinson, J.W.; Suo, Z.G. Mixed mode cracking in layered materials. Adv. Appl. Mech. 1992, 29, 63–191. [Google Scholar]
- Ghosh, N.C. Thermal effect on the transverse vibration of high-speed rotating anisotropic disk. J. Appl. Mech. 1985, 52, 543–548. [Google Scholar] [CrossRef]
- Ghosh, N.C. Thermal effect on the transverse vibration of spinning disk of variable thickness. J. Appl. Mech. 1975, 358–362. [Google Scholar] [CrossRef]
- Guo, S.Q.; Kagawa, Y. Effect of thermal exposure on hardness and Young’s modulus of EB-PVD yttria-partially-stabilized zirconia thermal barrier coatings. Ceram. Int. 2006, 32, 263–270. [Google Scholar] [CrossRef]
- Bhatnagar, H.S.; Ghosh, S.; Walter, M.E. Parametric studies of failure mechanisms in elastic EB-PVD thermal barrier coatings using FEM. Int. J. Solids Struct. 2006, 43, 4384–4406. [Google Scholar] [CrossRef]
- Kirschner, M.; Wobst, T.; Rittmeister, B.; Mundt, C. Erosion testing of thermal barrier coatings in a high enthalpy wind tunnel. J. Eng. Gas. Turbines Power. 2014, 137, 032101. [Google Scholar] [CrossRef]
- Holland, F.A. A simple method for estimating the parameters of the beta distribution applied to modeling uncertainty in gas turbine inlet temperature. In Proceedings of the ASME Turbo Expo 2002: Power for Land, Sea, and Air, American Society of Mechanical Engineers, Amsterdam, The Netherlands, 3–6 June 2002; pp. 627–633. [Google Scholar]
- Xu, Z.H.; Yang, Y.C.; Huang, P.; Li, X.D. Determination of interfacial properties of thermal barrier coatings by shear test and inverse finite element method. Acta Mater. 2010, 58, 5972–5979. [Google Scholar] [CrossRef]
- Essaa, S.K.; Liu, R.; Yao, M.X. Temperature and exposure-dependent interfacial fracture toughness model for thermal barrier coatings. Surf. Coat. Technol. 2019, 358, 505–510. [Google Scholar] [CrossRef]
- Wang, X.; Wang, C.J.; Atkinson, A. Interface fracture toughness in thermal barrier coatings by cross-sectional indentation. Acta Mater. 2012, 60, 6152–6163. [Google Scholar] [CrossRef]
- Liu, Y.F.; Kagawa, Y.; Evans, A.G. Analysis of a ‘‘barb test’’ for measuring the mixed-mode delamination toughness of coatings. Acta Mater. 2008, 56, 43–49. [Google Scholar] [CrossRef]
- Xiao, Y.Q.; Liu, Z.Y.; Zhu, W.; Peng, X.M. Reliability assessment and lifetime prediction of TBCs on gas turbine blades considering thermal mismatch and interfacial oxidation. Surf. Coat. Technol. 2021, 423, 127572. [Google Scholar] [CrossRef]
- Kyaw, S.; Jones, A.; Hyde, T. Predicting failure within TBC system: Finite element simulation of stress within TBC system as affected by sintering of APS TBC, geometry of substrate and creep of TGO. Eng. Fail. Anal. 2013, 27, 150–164. [Google Scholar] [CrossRef]
- Xiao, Y.Q.; Yang, L.; Zhou, Y.C.; Wei, Y.G.; Wang, N.G. Dominant parameters affecting the reliability of TBCs on a gas turbine blade during erosion by a particle-laden hot gas stream. Wear 2017, 390, 166–175. [Google Scholar] [CrossRef]
- Wu, F.; Jordan, E.H.; Ma, X.; Gell, M. Thermally grown oxide growth behavior and spallation lives of solution precursor plasma spray thermal barrier coatings. Surf. Coat. Technol. 2008, 202, 1628–1635. [Google Scholar] [CrossRef]
- Padture, N.P.; Gell, M.; Jordan, E.H. Thermal barrier coatings for gas-turbine engine applications. Science 2002, 296, 280–284. [Google Scholar] [CrossRef]
- Evans, A.G.; Mumm, D.R.; Hutchinson, J.W.; Meier, G.H.; Pettit, F.S. Mechanisms controlling the durability of thermal barrier coatings. Prog. Mater. Sci. 2001, 46, 505–553. [Google Scholar] [CrossRef]
- Karlsson, A.M.; Hutchinson, J.W.; Evans, A.G. A fundamental model of cyclic instabilities in thermal barrier systems. J. Mech. Phys. Solids. 2002, 50, 1565–1589. [Google Scholar] [CrossRef]
- Busso, E.P.; Lin, J.; Sakurai, S. A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system. Part II: Life prediction model. Acta Mater. 2001, 49, 1529–1536. [Google Scholar]
- Renusch, D.; Schütze, M. Measuring and modeling the TBC damage kinetics by using acoustic emission analysis. Surf. Coat. Technol. 2007, 202, 740–744. [Google Scholar] [CrossRef]
Pg,inlet/MPa | Tg,inlet/K | Pc,inlet/MPa | Tc,inlet/K | Poutlet/MPa | Rp/rpm |
---|---|---|---|---|---|
1.2 | 1273 | 0.8 | 373 | 0.5 | 0/3000/4000/5000 |
Material Parameters | Substrate | YSZ-TBCs |
---|---|---|
Density (kg/m3) | 8700 | 5500 |
Young’s modulus (GPa) | 200 | 100 |
Poisson’s ratio | 0.35 | 0.2 |
Thermal Conductivity (W/(m∙K)) | 88 | 1.65 |
Thermal expansion coefficient (1/°C) | 18 × 10−6 | 12 × 10−6 |
Specific heat capacity (J/(kg∙K)) | 440 | 418 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, W.; Li, C.; Liu, Z.; Cheng, C.; Yang, L. Reliability Evaluation of EB-PVD Thermal Barrier Coatings in High-Speed Rotation and Gas Thermal Shock. Coatings 2024, 14, 136. https://doi.org/10.3390/coatings14010136
Yan W, Li C, Liu Z, Cheng C, Yang L. Reliability Evaluation of EB-PVD Thermal Barrier Coatings in High-Speed Rotation and Gas Thermal Shock. Coatings. 2024; 14(1):136. https://doi.org/10.3390/coatings14010136
Chicago/Turabian StyleYan, Weiliang, Cong Li, Zhiyuan Liu, Chunyu Cheng, and Li Yang. 2024. "Reliability Evaluation of EB-PVD Thermal Barrier Coatings in High-Speed Rotation and Gas Thermal Shock" Coatings 14, no. 1: 136. https://doi.org/10.3390/coatings14010136
APA StyleYan, W., Li, C., Liu, Z., Cheng, C., & Yang, L. (2024). Reliability Evaluation of EB-PVD Thermal Barrier Coatings in High-Speed Rotation and Gas Thermal Shock. Coatings, 14(1), 136. https://doi.org/10.3390/coatings14010136