Revolutionizing Construction Safety with Geopolymer Composites: Unveiling Advanced Techniques in Manufacturing Sandwich Steel Structures Using Formwork-Free Spray Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Research Methods
2.2.1. Particle Size Laser Analysis
2.2.2. Chemical and Mineralogical Composition of Precursors
2.2.3. Compressive and Flexural Strengths
2.2.4. Density Tests
2.2.5. Thermal Conductivity Tests
2.2.6. Accelerated Ageing Tests
2.2.7. Microstructure Research
2.2.8. Analysis of Pore Size
2.2.9. Fire Resistance
3. Results and Discussion
3.1. Particle Size Analysis of Precursors
3.2. Chemical and Phase Compositions
3.3. Mechanical Properties and Structure Observation
3.4. Thermal Conductivity and Pore Size Distribution
3.5. Fire Resistance
3.6. Production Cost
4. Conclusions
- This article underscores the transformative role of GCs in advancing fire protection and insulation within structures, presenting a promising alternative to conventional construction materials;
- The utilization of spray technology, particularly shotcrete, emerges as a pivotal technique for underground construction, emphasizing its adaptability and versatility in diverse construction scenarios;
- The significance of GC coatings for steel protection is highlighted, delving into specific features, such as the setting time, application process, attachment strength, fire testing, and production costs;
- This research employs a comprehensive array of methods, including strength tests, density tests, thermal conductivity tests, accelerated aging tests, microstructure analyses, analyses of pore size, and fire resistance tests, providing a thorough exploration of GC materials;
- The study concludes with noteworthy results on GC coating (GC) foams, showcasing their outstanding thermal insulation capabilities. With a mere 6 mm coating, GC foams provide up to 75 min of fire resistance, reducing uncoated steel temperatures by 150 °C. Key properties such as a density of 670 kg/m3, thermal conductivity of 0.153 W/m·K, and cost efficiency of USD 250 per cubic meter further affirm their efficacy in practical applications.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prałat, K.; Ciemnicka, J.; Koper, A.; Szczypiński, M.M.; Łoś, P.; Nguyen, V.V.; Le, V.S.; Rapiejko, C.; Ercoli, R.; Buczkowska, K.E. Determination of the Thermal Parameters of Geopolymers Modified with Iron Powder. Polymers 2022, 14, 2009. [Google Scholar] [CrossRef] [PubMed]
- Le, V.S.; Louda, P.; Tran, H.N.; Nguyen, P.D.; Bakalova, T.; Buczkowska, K.E.; Dufková, I. Study on Temperature-Dependent Properties and Fire Resistance of Metakaolin-Based Geopolymer Foams. Polymers 2020, 12, 2994. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Li, H.; Shuai, Q.; Wang, L. Fire Resistance of Alkali Activated Geopolymer Foams Produced from Metakaolin and Na2O2. Materials 2020, 13, 535. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Zhang, W.; Shi, D. Effect of Elevated Temperature on the Properties of Geopolymer Synthesized from Calcined Ore-Dressing Tailing of Bauxite and Ground-Granulated Blast Furnace Slag. Constr. Build. Mater. 2014, 69, 41–48. [Google Scholar] [CrossRef]
- Chithambaram, S.; Kumar, S.; Prasad, M.M. Thermo-Mechanical Characteristics of Geopolymer Mortar. Constr. Build. Mater. 2019, 213, 100–108. [Google Scholar] [CrossRef]
- Yang, Z.; Mocadlo, R.; Zhao, M.; Sisson, R.D.; Tao, M.; Liang, J. Preparation of a Geopolymer from Red Mud Slurry and Class F Fly Ash and Its Behavior at Elevated Temperatures. Constr. Build. Mater. 2019, 221, 308–317. [Google Scholar] [CrossRef]
- Kürklü, G. The Effect of High Temperature on the Design of Blast Furnace Slag and Coarse Fly Ash-Based Geopolymer Mortar. Compos. Part. B Eng. 2016, 92, 9–18. [Google Scholar] [CrossRef]
- František, Š.; Rostislav, Š.; Zdeněk, T.; Petr, S.; Vít, Š.; Zuzana, Z.C. Preparation and Properties of Fly Ashbased Geopolymer Foams. Ceramics-Silikáty 2014, 58, 188–197. [Google Scholar]
- Hlaváek, P.; Milauer, V.; Kvára, F.; Kopecký, L.; Šulc, R. Inorganic Foams Made from Alkali-Activated Fly Ash: Mechanical, Chemical and Physical Properties. J. Eur. Ceram. Soc. 2015, 35, 703–709. [Google Scholar] [CrossRef]
- Cilla, M.S.; de Mello Innocentini, M.D.; Morelli, M.R.; Colombo, P. Geopolymer Foams Obtained by the Saponification/Peroxide/Gelcasting Combined Route Using Different Soap Foam Precursors. J. Am. Ceram. Soc. 2017, 100, 3440–3450. [Google Scholar] [CrossRef]
- Liu, L.; Cui, X.; He, Y.; Liu, S.; Gong, S. The Phase Evolution of Phosphoric Acid-Based Geopolymers at Elevated Temperatures. Mater. Lett. 2012, 66, 10–12. [Google Scholar] [CrossRef]
- Tong, Y. Sprayed Concrete Multipurpose Nozzle. 2020. Available online: https://typeset.io/papers/sprayed-concrete-multipurpose-nozzle-2zn9lf93qi (accessed on 15 August 2023).
- Wang, M. Concrete Spraying Construction Method. 2019. Available online: https://typeset.io/papers/concrete-spraying-construction-method-4ix4w13ma1 (accessed on 15 August 2023).
- Xiao, F. Concrete Spraying Construction Technology. 2019. Available online: https://typeset.io/papers/concrete-spraying-construction-technology-4x1lmjzcsq (accessed on 15 August 2023).
- Vyacheslav, A.; Bazhenova, S. Optimization of Concrete Compositions for Sprayed Concrete in the Construction of Underground Structures. Bull. Belgorod State Technol. Univ. Named V. G. Shukhov 2020, 8–17. [Google Scholar] [CrossRef]
- Melbye, T.A.; Dimmock, R.H. Modern Advances and Applications of Sprayed Concrete. In Shotcrete: Engineering Developments; CRC Press: Boca Raton, FL, USA, 2020; pp. 7–29. [Google Scholar] [CrossRef]
- Nguyen, V.V.; Le, V.S.; Louda, P.; Szczypiński, M.M.; Ercoli, R.; Růžek, V.; Łoś, P.; Prałat, K.; Plaskota, P.; Pacyniak, T.; et al. Low-Density Geopolymer Composites for the Construction Industry. Polymers 2022, 14, 304. [Google Scholar] [CrossRef]
- Le, V.S.; Nguyen, V.V.; Sharko, A.; Ercoli, R.; Nguyen, T.X.; Tran, D.H.; Łoś, P.; Buczkowska, K.E.; Mitura, S.; Špirek, T.; et al. Fire Resistance of Geopolymer Foams Layered on Polystyrene Boards. Polymers 2022, 14, 1945. [Google Scholar] [CrossRef] [PubMed]
- Le, C.H.; Louda, P.; Ewa Buczkowska, K.; Dufkova, I. Investigation on Flexural Behavior of Geopolymer-Based Carbon Textile/Basalt Fiber Hybrid Composite. Polymers 2021, 13, 751. [Google Scholar] [CrossRef] [PubMed]
- Le, V.S.; Louda, P. Research of Curing Time and Temperature-Dependent Strengths and Fire Resistance of Geopolymer Foam Coated on an Aluminum Plate. Coatings 2021, 11, 87. [Google Scholar] [CrossRef]
- Troisi, J.; Troisi, G.; Scala, G.; Richards, S.M. Techniques for Converting Metabolomic Data for Analysis. In Metabolomics Perspectives: From Theory to Practical Application; Academic Press: Cambridge, MA, USA, 2022; pp. 265–285. [Google Scholar] [CrossRef]
- Traven, K.; Češnovar, M.; Ducman, M. Particle size manipulation as an influential parameter in the development of mechanical properties in electric arc furnace slag-based AAM. Ceram. Int. 2019, 45, 22632–22641. [Google Scholar] [CrossRef]
- Li, H.; Gao, P.; Xu, F.; Sun, T.; Zhou, Y.; Zhu, J.; Peng, C.; Lin, J. Effect of fine aggregate particle characteristics on mechanical properties of fly ash-based geopolymer mortar. Minerals 2021, 11, 897. [Google Scholar] [CrossRef]
- Marczyk, J.; Ziejewska, C.; Korniejenko, K.; Łach, M.; Marzec, W.; Góra, M.; Dziura, P.; Sprince, A.; Szechyńska-Hebda, M.; Hebda, M. Properties of 3D Printed Concrete–Geopolymer Hybrids Reinforced with Aramid Roving. Materials 2022, 15, 6132. [Google Scholar] [CrossRef]
- Singha, K. A Short Review on Basalt Fiber. Int. J. Text. Sci. 2012, 1, 19–28. [Google Scholar]
- Temitope, D.; Oyedotun, T. X-ray fluorescence (XRF) in the investigation of the composition of earth materials: A review and an overview. Geol. Ecol. Landsc. 2018, 2, 148–154. [Google Scholar] [CrossRef]
- Pinto, C.D.C.; Sanches, E.A.; Clerici, M.T.P.S.; Pereira, M.T.; Campelo, P.H.; Souza, S.M. X-ray diffraction and Rietveld characterization of radiation-induced physicochemical changes in Ariá (Goeppertia allouia) C-type starch. Food Hydrocoll. 2021, 117, 106682. [Google Scholar] [CrossRef]
- Demiral, N.C.; Ozkan Ekinci, M.; Sahin, O.; Ilcan, H.; Kul, A.; Yildirim, G.; Sahmaran, M. Mechanical Anisotropy Evaluation and Bonding Properties of 3D-Printable Construction and Demolition Waste-Based Geopolymer Mortars. Cem. Concr. Compos. 2022, 134, 104814. [Google Scholar] [CrossRef]
- Ural, N. The Significance of Scanning Electron Microscopy (SEM) Analysis on the Microstructure of Improved Clay: An Overview. Open Geosci. 2021, 13, 197–218. [Google Scholar] [CrossRef]
- Sharma, A.S. Influence of Foam Densities in Cellular Lightweight Concrete. Int. J. Res. Appl. Sci. Eng. Technol. 2017, 5, 1078–1089. [Google Scholar] [CrossRef]
- Clements, D.H. ‘Concrete’ Manipulatives, Concrete Ideas. Contemp. Issues Early Child. 2000, 1, 45–60. [Google Scholar] [CrossRef]
- Fiertak, M.; Stryszewska, T. Resistance of Three-Component Cement Binders in Highly Chemically Corrosive Environments. Procedia Eng. 2013, 57, 278–286. [Google Scholar] [CrossRef]
- Baziak, A.; Pławecka, K.; Hager, I.; Castel, A.; Korniejenko, K. Development and Characterization of Lightweight Geopolymer Composite Reinforced with Hybrid Carbon and Steel Fibers. Materials 2021, 14, 5741. [Google Scholar] [CrossRef]
- Parzych, S.; Paszkowska, M.; Stanisz, D.; Bąk, A.; Łach, M. Possibilities of Using Geopolymers in Welding Processes and Protection against High Temperatures. Materials 2023, 16, 7035. [Google Scholar] [CrossRef]
- Rong, X.; Wang, Z.; Xing, X.; Zhao, L. Review on the adhesion of geopolymer coatings. ACS Omega 2021, 6, 5108–5112. [Google Scholar] [CrossRef]
- Tian, Q.; Wang, S.; Sui, Y.; Lv, Z. Alkali-activated materials as coatings deposited on various substrates: A review. Int. J. Adhes. Adhes. 2021, 110, 102934. [Google Scholar] [CrossRef]
- Temuujin, J.; Minjigmaa, A.; Rickard, W.; Lee, M.; Williams, I.; van Riessen, A. Preparation of metakaolin based geopolymer coatings on metal substrates as thermal barriers. Appl. Clay Sci. 2009, 46, 265–270. [Google Scholar] [CrossRef]
- Kaczmarski, K.; Pławecka, K.; Kozub, B.; Bazan, P.; Łach, M. Preliminary Investigation of Geopolymer Foams as Coating Materials. Appl. Sci. 2022, 12, 11205. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, R.; Gong, L.; Li, Y.; Cao, W.; Cheng, X. Development of porous fly ash-based geopolymer with low thermal conductivity. Mater. Des. (1980–2015) 2015, 65, 529–533. [Google Scholar] [CrossRef]
- Agustini, N.K.A.; Triwiyono, A.; Sulistyo, D.; Suyitno, D. Effects of water to solid ratio on thermalconductivity of fly ash-based geopolymer paste. IOP Conf. Ser. Earth Environ. Sci. 2020, 426, 012010. [Google Scholar] [CrossRef]
- Masi, G.; Richard, W.D.A.; Bignozzi, M.C.; van Riessen, A. The effect of organic and inorganic fibres on the mechanical and thermal properties of aluminate activated geopolymers. Compos. Part. B Eng. 2015, 76, 218–228. [Google Scholar] [CrossRef]
- Klima, K.M.; Schollbach, K.; Brouwers, H.J.H.; Yu, Q. Thermal and fire resistance of Class F fly ash based geopolymers—A review. Constr. Build. Mater. 2022, 323, 126529. [Google Scholar] [CrossRef]
- Gomes, S.; Petit, E.; Frezet, L.; Nedelec, J.; Gharzouni, A.; Rossignol, S.; Renaudin, G. Temperature Stability of a Pure Metakaolin Based K-geopolymer: Part 2. Variations in the Mesoporous Network and Its Rehydration Stability. J. Am. Ceram. Soc. 2020, 103, 5813–5824. [Google Scholar] [CrossRef]
- Mishra, D.K.; Samad, S.K.; Varma, A.K.; Mendhe, V.A. Pore Geometrical Complexity and Fractal Facets of Permian Shales and Coals from Auranga Basin, Jharkhand, India. J. Nat. Gas Sci. Eng. 2018, 52, 25–43. [Google Scholar] [CrossRef]
- Davidovits, J. Fire proof geopolymeric cements. In Proceedings of the Geopolymer ‘99 2nd International Conference on Geopolymer, Saint-Quentin, France, 30 June–2 July 1999. [Google Scholar]
- Provis, J. Fire Resistance of Geopolymer Concretes; Melbourne Univercity Victoria: Melbourne, Australia, 2010; pp. 1–8. Available online: https://apps.dtic.mil/sti/pdfs/ADA516453.pdf (accessed on 25 November 2023).
- Yasaswini, K.; Rao, A.V. Behaviour of geopolymer concrete at elevated temperature. Mater. Today Proc. 2020, 33, 239–244. [Google Scholar] [CrossRef]
- Lahoti, M.; Tan, K.H.; Yang, E.-H. A critical review of geopolymer properties for structural fire-resistance applications. Constr. Build. Mater. 2019, 221, 514–526. [Google Scholar] [CrossRef]
- Giannopoulou, I.; Robert, P.M.; Sakkas, K.M.; Petrou, M.F.; Nicolaides, D. High temperature performance of geopolymers based on construction and demolition waste. J. Build. Eng. 2023, 72, 106575. [Google Scholar] [CrossRef]
- Sarazin, J.; Davy, C.A.; Bourbigot, S.; Tricot, G.; Hosdez, J.; Lambertin, D.; Fontaine, G. Flame resistance of geopolymer foam coatings for the fire protection of steel. Compos. Part B Eng. 2021, 222, 109045. [Google Scholar] [CrossRef]
- Carabba, L.; Masi, G.; Pirskawetz, S.; Krüger, S.; Gluth, G.; Bignozzi, M.C. Thermal properties and steel corrosion in light-weight alkali-activated mortars. In Proceedings of the International Conference on Sustainable Materials, Systems and Structures (SMSS2019)—New generation of Construction Materials, Rovinji, Croatia, 18–22 March 2019; Volume 1, pp. 125–132. [Google Scholar]
Index | Base Materials (S) [Weight Ratio] | Alkaline Activator (L) | Liquid/Solid [Weight Ratio] | ||||
---|---|---|---|---|---|---|---|
SF | S | BF | A | Baucis 1k | |||
Geopolymer solid (GS) | 0.05 | 1 | 0.083 | - | 1 | alkaline potassium activator | 0.1/2.37 |
Geopolymer foam (GF) | 0.05 | 1 | 0.083 | 0.006 | 1 | 0.1/2.37 |
Cycle | Cykl ASTM G-154—Cycle 7 |
---|---|
UV irradiance: [W/m2/nm]; time [h]; temperature [°C]) | 1.55; 8; 60 |
Spraying: time [h]; temperature [°C]) | 0.15; 30 |
Condensation: time [h], temperature [°C]) | 3.45; 50 |
Total test time [h] | 1000 |
Index | D10 | D50 | D90 | Mean Size [µm] |
---|---|---|---|---|
M | 1.77 | 8.10 | 16.13 | 8.94 ± 1.71 |
SF | 5.03 | 10.39 | 15.73 | 10.90 ± 2.28 |
A | 4.35 | 10.06 | 15.07 | 10.46 ± 1.50 |
S | 392.96 | 639.64 | 1033.58 | 729.76 ± 3.05 |
M | SF | A | S | B | |||||
---|---|---|---|---|---|---|---|---|---|
Compound Formula | Conc, % | Compound Formula | Conc, % | Compound Formula | Conc, % | Compound Formula | Conc, % | Compound Formula | Conc, % |
SiO2 | 51.149 | SiO2 | 98.888 | Al2O3 | 99.902 | SiO2 | 99.237 | SiO2 | 59.356 |
Al2O3 | 34.979 | K2O | 0.435 | SO3 | 0.031 | Al2O3 | 0.478 | Al2O3 | 19.797 |
CaO | 11.308 | CaO | 0.424 | Fe2O3 | 0.027 | SO3 | 0.118 | Fe2O3 | 10.173 |
TiO2 | 0.716 | SO3 | 0.164 | CaO | 0.018 | CaO | 0.077 | CaO | 7.273 |
Fe2O3 | 0.637 | Fe2O3 | 0.040 | V2O5 | 0.006 | BaO | 0.042 | K2O | 1.600 |
K2O | 0.532 | WO3 | 0.015 | Lu2O2 | 0.003 | Fe2O3 | 0.022 | TiO2 | 1.106 |
SO3 | 0.391 | MnO | 0.011 | Cr2O3 | 0.002 | MnO | 0.008 | SO3 | 0.354 |
MnO | 0.178 | PbO | 0.009 | Ga2O3 | 0.002 | OsO4 | 0.005 | MnO | 0.167 |
V2O5 | 0.037 | CuO | 0.003 | CuO | 0.002 | HgO | 0.005 | V2O5 | 0.082 |
SrO | 0.023 | Cr2O3 | 0.002 | BaO | 0.002 | CuO | 0.005 | SrO | 0.038 |
ZrO2 | 0.018 | TiO2 | 0.002 | NiO | 0.001 | Ga2O3 | 0.002 | ZrO2 | 0.021 |
Cr2O3 | 0.010 | Ir2O3 | 0.002 | ZnO | 0.001 | - | - | ZnO | 0.010 |
ZnO | 0.005 | SeO2 | 0.001 | OsO4 | 0.001 | - | - | MoO3 | 0.005 |
NiO | 0.003 | Rb2O | 0.001 | - | - | - | - | Cr2O3 | 0.005 |
Y2O3 | 0.003 | - | - | - | - | - | - | CuO | 0.005 |
CuO | 0.003 | - | - | - | - | - | - | Y2O3 | 0.005 |
Ga2O3 | 0.002 | - | - | - | - | - | - | Ga2O3 | 0.003 |
Rb2O | 0.002 | - | - | - | - | - | - | - | - |
PbO | 0.002 | - | - | - | - | - | - | - | - |
ThO2 | 0.001 | - | - | - | - | - | - | - | - |
NbO | 0.001 | - | - | - | - | - | - | - | - |
Identified Phase | Chemical Formula | Amount of Phase [%] | |||
---|---|---|---|---|---|
M | SF | A | S | ||
Quartz, syn | SiO2 | 18.9 | 51.1 | - | 100 |
Calcite | Ca(CO3) | 12.1 | - | - | - |
Kaolinite-1A | Al2Si2O5(OH)4 | 16.3 | - | - | - |
Muscovite-2M1 | Kal3Si3O10(OH)2 | 52.7 | - | - | - |
Gypsum | CaSO4∙2H2O | - | 48.9 | - | - |
Aluminum oxide | Al2O2 | - | - | 100 | - |
Thermal Conductivity λ [W/(m·K)] | Average Thermal Conductivity λ [W/(m·K)] | Thermal Resistance [m2·K/W] | Average Thermal Resistance [m2·K/W] | |
---|---|---|---|---|
GS | 0.867 | 0.864 ± 0.005 | 0.018 | 0.017 ± 0.001 |
0.860 | 0.017 | |||
GF | 0.150 | 0.153 ± 0.004 | 0.090 | 0.089 ± 0.002 |
0.156 | 0.087 |
Sample | Parameters of the Porous Structure | |||||
---|---|---|---|---|---|---|
SBET [m2/g] | [cm3/g] | [cm3/g] | [cm3/g] | [nm] | [nm] | |
Solid | 7.044 | 0.0236 | 0.003 | 0.023 | 1.833 | 2.190 |
Foam | 26.129 | 0.0906 | 0.010 | 0.090 | 1.904 | 12.303 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, V.S.; Setlak, K. Revolutionizing Construction Safety with Geopolymer Composites: Unveiling Advanced Techniques in Manufacturing Sandwich Steel Structures Using Formwork-Free Spray Technology. Coatings 2024, 14, 146. https://doi.org/10.3390/coatings14010146
Le VS, Setlak K. Revolutionizing Construction Safety with Geopolymer Composites: Unveiling Advanced Techniques in Manufacturing Sandwich Steel Structures Using Formwork-Free Spray Technology. Coatings. 2024; 14(1):146. https://doi.org/10.3390/coatings14010146
Chicago/Turabian StyleLe, Van Su, and Kinga Setlak. 2024. "Revolutionizing Construction Safety with Geopolymer Composites: Unveiling Advanced Techniques in Manufacturing Sandwich Steel Structures Using Formwork-Free Spray Technology" Coatings 14, no. 1: 146. https://doi.org/10.3390/coatings14010146
APA StyleLe, V. S., & Setlak, K. (2024). Revolutionizing Construction Safety with Geopolymer Composites: Unveiling Advanced Techniques in Manufacturing Sandwich Steel Structures Using Formwork-Free Spray Technology. Coatings, 14(1), 146. https://doi.org/10.3390/coatings14010146