A Comparison of 90° Bending for Foldable Electronics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thin Film Deposition
2.2. Monotonic Tensile Testing
2.3. Bending Tests
2.4. Intermittent Measurements
3. Results
3.1. Intermittent Bending Results in the Relaxed State
3.2. In Situ Bending Results
4. Discussion
4.1. Intermittent Bending
4.2. In Situ Resistance during Bending
4.3. Standardization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saleh, R.; Barth, M.; Eberhardt, W.; Zimmermann, A. Bending Setups for Reliability Investigation of Flexible Electronics. Micromachines 2021, 12, 78. [Google Scholar] [CrossRef] [PubMed]
- Glushko, O.; Cordill, M.J.; Klug, A.; List-Kratochvil, E.J.W. The Effect of Bending Loading Conditions on the Reliability of Inkjet Printed and Evaporated Silver Metallization on Polymer Substrates. Microelectron. Reliab. 2016, 56, 109–113. [Google Scholar] [CrossRef]
- Kim, B.J.; Shin, H.A.S.; Lee, J.H.; Yan, T.Y.; Haas, T.; Gruber, P.; Chou, I.S.; Kraft, O.; Joo, Y.C. Effect of Film Thickness on the Stretchability and Fatigue Resistance of Cu Films on Polymer Substrates. J. Mater. Res. 2014, 29, 2827–2834. [Google Scholar] [CrossRef]
- Ma, Q. A Four-Point Bending Technique for Studying Subcritical Crack Growth in Thin Films and at Interfaces. J. Mater. Res. 1997, 12, 840–845. [Google Scholar] [CrossRef]
- Yang, M.; Chon, M.W.; Kim, J.H.; Lee, S.H.; Jo, J.; Yeo, J.; Ko, S.H.; Choa, S.H. Mechanical and Environmental Durability of Roll-to-Roll Printed Silver Nanoparticle Film Using a Rapid Laser Annealing Process for Flexible Electronics. Microelectron. Reliab. 2014, 54, 2871–2880. [Google Scholar] [CrossRef]
- Park, S., II; Ahn, J.H.; Feng, X.; Wang, S.; Huang, Y.; Rogers, J.A. Theoretical and Experimental Studies of Bending of Inorganic Electronic Materials on Plastic Substrates. Adv. Funct. Mater. 2008, 18, 2673–2684. [Google Scholar] [CrossRef]
- Alzoubi, K.; Lu, S.; Sammakia, B.; Poliks, M. Experimental and Analytical Studies on the High Cycle Fatigue of Thin Film Metal on PET Substrate for Flexible Electronics Applications. IEEE Trans. Compon. Packag. Manuf. Technol. 2011, 1, 43–51. [Google Scholar] [CrossRef]
- Van Den Ende, D.A.; Van De Wiel, H.J.; Kusters, R.H.L.; Sridhar, A.; Schram, J.F.M.; Cauwe, M.; Van Den Brand, J. Mechanical and Electrical Properties of Ultra-Thin Chips and Flexible Electronics Assemblies during Bending. Microelectron. Reliab. 2014, 54, 2860–2870. [Google Scholar] [CrossRef]
- Bensaid, B.; Boddaert, X.; Benaben, P.; Gwoziecki, R.; Coppard, R. Reliability of OTFTs on Flexible Substrate: Mechanical Stress Effect. Eur. Phys. J. Appl. Phys. 2011, 55, 23907. [Google Scholar] [CrossRef]
- Trinks, C.; Volkert, C.A. Transition from Dislocation Glide to Creep Controlled Damage in Fatigued Thin Cu Films. J. Appl. Phys. 2013, 114, 093510. [Google Scholar] [CrossRef]
- Abdallah, A.A.; Bouten, P.C.P.; de With, G. Experimental Study on Buckle Evolution of Thin Inorganic Layers on a Polymer Substrate. Eng. Fract. Mech. 2010, 77, 2896–2905. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Yi, S.-M.; Lee, J.-H.; Lee, H.-S.; Hyun, S.; Joo, Y.-C. Effects of Bending Fatigue on the Electrical Resistance in Metallic Films on Flexible Substrates. Met. Mater. Int. 2010, 16, 947–951. [Google Scholar] [CrossRef]
- Mao, L.; Meng, Q.; Ahmad, A.; Wei, Z. Mechanical Analyses and Structural Design Requirements for Flexible Energy Storage Devices. Adv. Energy Mater. 2017, 7, 1700535. [Google Scholar] [CrossRef]
- Agrawal, D.C.; Raj, R. Measurement of the Ultimate Shear Strength of a Metal-Ceramic Interface. Acta Metall. 1989, 37, 1265–1270. [Google Scholar] [CrossRef]
- Kreiml, P.; Rausch, M.; Terziyska, V.L.; Winkler, J.; Mitterer, C.; Cordill, M.J. Compressive and Tensile Bending of Sputter Deposited Al/Mo Bilayers. Scr. Mater. 2019, 162, 367–371. [Google Scholar] [CrossRef]
- Schwaiger, R.; Kraft, O. Size Effects in the Fatigue Behavior of Thin Ag Films. Acta Mater. 2003, 51, 195–206. [Google Scholar] [CrossRef]
- Hassan, T.; Liu, Z. On the Difference of Fatigue Strengths from Rotating Bending, Four-Point Bending, and Cantilever Bending Tests. Int. J. Press. Vessel. Pip. 2001, 78, 19–30. [Google Scholar] [CrossRef]
- Guan, Q.; Laven, J.; Bouten, P.C.P.; de With, G. Mechanical Failure of Brittle Thin Films on Polymers during Bending by Two-Point Rotation. Thin Solid Films 2016, 611, 107–116. [Google Scholar] [CrossRef]
- Abdallah, A.A.; Kozodaev, D.; Bouten, P.C.P.; Den Toonder, J.M.J.; Schubert, U.S.; De With, G. Buckle Morphology of Compressed Inorganic Thin Layers on a Polymer Substrate. Thin Solid Films 2006, 503, 167–176. [Google Scholar] [CrossRef]
- Kamiya, S.; Izumi, H.; Sekine, T.; Shishido, N.; Sugiyama, H.; Haga, Y.; Minari, T.; Koganemaru, M.; Tokito, S. A Multidimensional Scheme of Characterization for Performance Deterioration Behavior of Flexible Devices under Bending Deformation. Thin Solid Films 2020, 694, 137613. [Google Scholar] [CrossRef]
- Yi, S.M.; Choi, I.S.; Kim, B.J.; Joo, Y.C. Reliability Issues and Solutions in Flexible Electronics Under Mechanical Fatigue. Electron. Mater. Lett. 2018, 14, 387–404. [Google Scholar] [CrossRef]
- Kim, B.-J.; Haas, T.; Friederich, A.; Lee, J.-H.; Nam, D.-H.; Binder, J.R.; Bauer, W.; Choi, I.-S.; Joo, Y.-C.; Gruber, P.A.; et al. Improving Mechanical Fatigue Resistance by Optimizing the Nanoporous Structure of Inkjet-Printed Ag Electrodes for Flexible Devices. Nanotechnology 2014, 25, 125706. [Google Scholar] [CrossRef]
- Wright, D.N.; Vardøy, A.S.B.; Belle, B.D.; Visser Taklo, M.M.; Hagel, O.; Xie, L.; Danestig, M.; Eriksson, T. Bending Machine for Testing Reliability of Flexible Electronics. In Proceedings of the 2017 IMAPS Nordic Conference on Microelectronics Packaging, NordPac 2017, Gothenburg, Sweden, 18–20 June 2017; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2017; pp. 47–52. [Google Scholar]
- Glushko, O.; Kraker, P.; Cordill, M.J. Explicit Relationship between Electrical and Topological Degradation of Polymer-Supported Metal Films Subjected to Mechanical Loading. Appl. Phys. Lett. 2017, 110, 191904. [Google Scholar] [CrossRef]
- Cordill, M.J.; Kreiml, P.; Mitterer, C. Materials Engineering for Flexible Metallic Thin Film Applications. Materials 2022, 15, 926. [Google Scholar] [CrossRef] [PubMed]
- Lu, N.; Wang, X.; Suo, Z.; Vlassak, J. Metal Films on Polymer Substrates Stretched beyond 50%. Appl. Phys. Lett. 2007, 91, 2–4. [Google Scholar] [CrossRef]
- Kreiml, P.; Rausch, M.; Terziyska, V.L.; Köstenbauer, H.; Winkler, J.; Mitterer, C.; Cordill, M.J. Correlation of Mechanical Damage and Electrical Behavior of Al/Mo Bilayers Subjected to Bending. Thin Solid Films 2019, 687, 137480. [Google Scholar] [CrossRef]
- Gebhart, D.D.; Krapf, A.; Gammer, C.; Merle, B.; Cordill, M.J. Linking Through-Thickness Cracks in Metallic Thin Films to in-Situ Electrical Resistance Peak Broadening. Scr. Mater. 2022, 212, 114550. [Google Scholar] [CrossRef]
- Cordill, M.J.; Kreiml, P.; Putz, B.; Mitterer, C.; Thiaudière, D.; Mocuta, C.; Renault, P.-O.; Faurie, D. Role of Layer Order on the Equi-Biaxial Behavior of Al/Mo Bilayers. Scr. Mater. 2021, 194, 113656. [Google Scholar] [CrossRef]
- Rausch, M.; Sabag, A.; Pichler, K.-H.; Gruber, G.C.; Köstenbauer, J.; Köstenbauer, H.; Kreiml, P.; Cordill, M.J.; Winkler, J.; Mitterer, C. The Sputter Performance of an Industrial-Scale Planar Mo-Target over Its Lifetime: Target Erosion and Fi Lm Properties. Surf. Coat. Technol. 2020, 381, 125174. [Google Scholar] [CrossRef]
- Sim, G.D.; Hwangbo, Y.; Kim, H.H.; Lee, S.B.; Vlassak, J.J. Fatigue of Polymer-Supported Ag Thin Films. Scr. Mater. 2012, 66, 915–918. [Google Scholar] [CrossRef]
- Sim, G.-D.; Lee, Y.-S.; Lee, S.-B.; Vlassak, J.J. Effects of Stretching and Cycling on the Fatigue Behavior of Polymer-Supported Ag Thin Films. Mater. Sci. Eng. A 2013, 575, 86–93. [Google Scholar] [CrossRef]
- Kreiml, P.; Rausch, M.; Terziyska, V.L.; Köstenbauer, H.; Winkler, J.; Mitterer, C.; Cordill, M.J. Improved Electro-Mechanical Reliability of Flexible Systems with Alloyed Mo-Ta Adhesion Layers. Thin Solid Films 2021, 720, 138533. [Google Scholar] [CrossRef]
- Sim, G.D.; Won, S.; Jin, C.Y.; Park, I.; Lee, S.B.; Vlassak, J.J. Improving the Stretchability of As-Deposited Ag Coatings on Poly-Ethylene-Terephthalate Substrates through Use of an Acrylic Primer. J. Appl. Phys. 2011, 109, 073511. [Google Scholar] [CrossRef]
- Glushko, O.; Klug, A.; List-Kratochvil, E.J.W.; Cordill, M.J. Relationship between Mechanical Damage and Electrical Degradation in Polymer-Supported Metal Films Subjected to Cyclic Loading. Mater. Sci. Eng. A 2016, 662, 157–161. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cordill, M.J.; Kreiml, P.; Köstenbauer, H.; Mitterer, C. A Comparison of 90° Bending for Foldable Electronics. Coatings 2024, 14, 98. https://doi.org/10.3390/coatings14010098
Cordill MJ, Kreiml P, Köstenbauer H, Mitterer C. A Comparison of 90° Bending for Foldable Electronics. Coatings. 2024; 14(1):98. https://doi.org/10.3390/coatings14010098
Chicago/Turabian StyleCordill, Megan J., Patrice Kreiml, Harald Köstenbauer, and Christian Mitterer. 2024. "A Comparison of 90° Bending for Foldable Electronics" Coatings 14, no. 1: 98. https://doi.org/10.3390/coatings14010098
APA StyleCordill, M. J., Kreiml, P., Köstenbauer, H., & Mitterer, C. (2024). A Comparison of 90° Bending for Foldable Electronics. Coatings, 14(1), 98. https://doi.org/10.3390/coatings14010098