Advanced Laser Techniques for the Development of Nature-Inspired Biomimetic Surfaces Applied in the Medical Field
Abstract
:1. Introduction
2. Biomimetic Coatings
3. Overview of Advanced Laser Techniques Used for Nature-Inspired Biomimetic Surfaces Fabrication
3.1. Fundamentals of Laser Techniques
3.2. Types of Lasers Used for Surface Structuring and Coatings Fabrication
3.3. Advanced Laser Processing for Nature-Inspired Biomimetic Surfaces Fabrication
3.3.1. Laser Surface Functionalization by Biomimetic Coatings
3.3.2. Laser Surface Functionalization by Surface Structuring
4. Medical Applications of Nature-Inspired Biomimetic Coatings and Laser Structured Surface
4.1. Case Examples of Gecko-Inspired Surfaces for Medical Applications
- Adhesion
- 2.
- Self-Cleaning
- 3.
- Durability
4.2. Example Cases of Biomimetic Surfaces Based on Spider Silk-Inspired Materials
4.3. Example Cases of Lotus Leaf’s Inspired Surfaces
4.4. Example Cases of Insects Wing-Inspired Surfaces
4.5. Example Cases of Other Nature-Inspired Surfaces
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Czyż, K.; Marczak, J.; Major, R.; Mzyk, A.; Rycyk, A.; Sarzyński, A.; Strzelec, M. Selected laser methods for surface structuring of biocompatible diamond-like carbon layers. Diam. Relat. Mater. 2016, 67, 26–40. [Google Scholar] [CrossRef]
- Himel, M.H.; Sikder, B.; Ahmed, T.; Choudhury, S.M. Biomimicry in nanotechnology: A comprehensive review. Nanoscale Adv. 2022, 5, 596–614. [Google Scholar] [CrossRef]
- Luo, X.; Niu, J.; Su, G.; Zhou, L.; Zhang, X.; Liu, Y.; Wang, Q.; Sun, N. Research progress of biomimetic materials in oral medicine. J. Biol. Eng. 2023, 17, 72. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, A.; Cai, B.; Wang, L.; Pang, D.; Ma, H.; Yu, L.; Li, X.; Huang, H.; Zeng, L.; et al. A New Species of the Genus Gekko (Squamata: Sauria: Gekkonidae) from the Dabie Mountains, China. Animals 2023, 13, 3796. [Google Scholar] [CrossRef]
- Alvarez, S.; Raydan, N.D.V.; Svahn, I.; Gontier, E.; Rischka, K.; Charrier, B.; Robles, E. Assessment and Characterization of Duck Feathers as Potential Source of Biopolymers from an Upcycling Perspective. Sustainability 2023, 15, 14201. [Google Scholar] [CrossRef]
- Scerrato, D.; Bersani, A.M.; Giorgio, I. Bio-Inspired Design of a Porous Resorbable Scaffold for Bone Reconstruction: A Preliminary Study. Biomimetics 2021, 6, 18. [Google Scholar] [CrossRef]
- Zheng, S.; Johnson, A.J.; Li, Y.; Chu, C.; Hulcr, J. Cryphalus eriobotryae sp. nov. (Coleoptera: Curculionidae: Scolytinae), a New Insect Pest of Loquat Eriobotrya japonica in China. Insects 2019, 10, 180. [Google Scholar] [CrossRef]
- Feld, K.; Kolborg, A.N.; Nyborg, C.M.; Salewski, M.; Steffensen, J.F.; Berg-Sørensen, K. Dermal Denticles of Three Slowly Swimming Shark Species: Microscopy and Flow Visualization. Biomimetics 2019, 4, 38. [Google Scholar] [CrossRef]
- Kertész, K.; Piszter, G.; Bálint, Z.; Biró, L.P. Optical Vapor Sensing on Single Wing Scales and on Whole Wings of the Albulina metallica Butterfly. Sensors 2018, 18, 4282. [Google Scholar] [CrossRef]
- De, M.G. Velvet Type Fabric and Method of Producing Same. U.S. Patent US2717437A, 13 September 1955. [Google Scholar]
- Bhushan, B. Biomimetics: Lessons from nature-an overview. Philos. Trans. A Math. Phys. Eng. Sci. 2009, 367, 1445–1486. [Google Scholar] [CrossRef]
- Barthelat, F. Biomimetics for next generation materials. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 2007, 365, 2907–2919. [Google Scholar] [CrossRef]
- Cheng, X.; Shen, Z.; Zhang, Y. Bioinspired 3D flexible devices and functional systems. Natl. Sci. Rev. 2024, 11, nwad314. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Volosova, M.A.; Okunkova, A.A. Advances in Laser Materials Processing. Metals 2022, 12, 917. [Google Scholar] [CrossRef]
- Hu, X.; Wang, T.; Li, F.; Mao, X. Surface modifications of biomaterials in different applied fields. RSC Adv. 2023, 13, 20495–20511. [Google Scholar] [CrossRef]
- He, H.; Qu, N.; Zeng, Y. Lotus-leaf-like microstructures on tungsten surface induced by one-step nanosecond laser irradiation. Surf. Coat. Technol. 2016, 307, 898–907. [Google Scholar] [CrossRef]
- Zhuang, S.; Cheng, J.; Chen, S.; Li, Y.; Ding, D.; Yu, Z.; Xie, Y. Lotus leaf-inspired biomimetic SERS substrate for detection of thiram on apple. Food Biosci. 2024, 58, 103818. [Google Scholar] [CrossRef]
- Rong, W.; Zhang, H.; Mao, Z.; Chen, L.; Liu, X. Improved Stable Drag Reduction of Controllable Laser-Patterned Superwetting Surfaces Containing Bioinspired Micro/Nanostructured Arrays. ACS Omega 2022, 7, 2049–2063. [Google Scholar] [CrossRef]
- Guo, M.; Zhang, G.; Xin, G.; Huang, H.; Huang, Y.; Rong, Y.; Wu, C. Laser direct writing of rose petal biomimetic micro-bulge structure to realize superhydrophobicity and large slip length. Colloids Surf. A Physicochem. Eng. Asp. 2023, 664, 130972. [Google Scholar] [CrossRef]
- Long, J.; Fan, P.; Gong, D.; Jiang, D.; Zhang, H.; Li, L.; Zhong, M. Superhydrophobic Surfaces Fabricated by Femtosecond Laser with Tunable Water Adhesion: From Lotus Leaf to Rose Petal. ACS Appl. Mater. Interfaces 2015, 7, 9858–9865. [Google Scholar] [CrossRef]
- Tseng, S.-F.; Chen, Y.-S.; Gao, T.-W.; Kuo, C.-C. Investigation of laser-patterned biomimetic microstructures on CFRP and AA5052 surfaces to enhance their single-lap bonding strength. Compos. Part A Appl. Sci. Manuf. 2024, 178, 107980. [Google Scholar] [CrossRef]
- Zhang, Z.; He, B.; Han, Q.; He, R.; Ding, Y.; Han, B.; Ma, Z.-C. Femtosecond Laser Direct Writing of Gecko-Inspired Switchable Adhesion Interfaces on a Flexible Substrate. Micromachines 2023, 14, 1742. [Google Scholar] [CrossRef]
- Zhao, W.; Xiao, L.; He, X.; Cui, Z.; Fang, J.; Zhang, C.; Li, X.; Li, G.; Zhong, L.; Zhang, Y. Moth-eye-inspired texturing surfaces enabled self-cleaning aluminum to achieve photothermal anti-icing. Opt. Laser Technol. 2021, 141, 107115. [Google Scholar] [CrossRef]
- Yu, X.; Yasunaga, Y.; Goto, K.; Liu, D.; Ono, S. Profile control of femtosecond laser-fabricated moth-eye structures on Si substrate. Opt. Lasers Eng. 2021, 142, 106584. [Google Scholar] [CrossRef]
- He, X.; Li, G.; Zhang, Y.; Lai, X.; Zhou, M.; Xiao, L.; Tang, X.; Hu, Y.; Liu, H.; Yang, Y.; et al. Bioinspired functional glass integrated with multiplex repellency ability from laser-patterned hexagonal texturing. Chem. Eng. J. 2021, 416, 129113. [Google Scholar] [CrossRef]
- Xiao, G.; He, Y.; Liu, S.; Yi, H.; Du, L. Laser processing of micro/nano biomimetic structures. Micro Nano Lett. 2021, 16, 327–335. [Google Scholar] [CrossRef]
- Kirner, S.V.; Hermens, U.; Mimidis, A.; Skoulas, E.; Florian, C.; Hischen, F.; Plamadeala, C.; Baumgartner, W.; Winands, K.; Mescheder, H.; et al. Mimicking bug-like surface structures and their fluid transport produced by ultrashort laser pulse irradiation of steel. Appl. Phys. A 2017, 123, 754. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Q.; Huo, L.; Liu, J.; Bai, Z. High-efficient laser-based bionic surface structuring for enhanced surface functionalization and self-cleaning effect. Surf. Interfaces 2023, 37, 102691. [Google Scholar] [CrossRef]
- Žemaitis, A.; Mikšys, J.; Gaidys, M.; Gečys, P.; Gedvilas, M. High-efficiency laser fabrication of drag reducing riblet surfaces on pre-heated Teflon. Mater. Res. Express 2019, 6, 65309. [Google Scholar] [CrossRef]
- Romanos, G.; Crespi, R.; Barone, A.; Covani, U. Osteoblast attachment on titanium disks after laser irradiation. Int. J. Oral Maxillofac. Implants 2006, 21, 232–236. [Google Scholar]
- Phipps, C. (Ed.) Laser Ablation and Its Applications, 1st ed.; Springer Series in Optical Sciences; Springer: Boston, MA, USA, 2007; Volume 129, ISBN 9780387304526. [Google Scholar]
- Chen, C.-H.; Liu, C.-P.; Lee, Y.-C.; Hsiao, F.-B.; Chiu, C.-Y.; Chung, M.-H.; Chiang, M.-H. IR laser-assisted micro/nano-imprinting. J. Micromechanics Microengineering 2006, 16, 1463. [Google Scholar] [CrossRef]
- Chrisey, D.B.; Piqué, A. Introduction to Direct-Write Technologies for Rapid Prototyping. In Direct-Write Technologies for Rapid Prototyping; Piqué, A., Ed.; Academic Press: San Diego, CA, USA, 2002; pp. 1–13. ISBN 978-0-12-174231-7. [Google Scholar]
- Sima, F.; Mihailescu, I.N. Biomimetic Assemblies by Matrix-Assisted Pulsed Laser Evaporation. In Laser Technology in Biomimetics. Biological and Medical Physics, Biomedical Engineering; Schmidt, V., Belegratis, M.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 111–141. ISBN 978-3-642-41341-4. [Google Scholar]
- Ristoscu, C.; Mihailescu, I.N. Biomimetic Coatings by Pulsed Laser Deposition. In Laser Technology in Biomimetics. Biological and Medical Physics, Biomedical Engineering; Schmidt, V., Belegratis, M.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 163–191. ISBN 978-3-642-41341-4. [Google Scholar]
- Nelea, V.; Mihailescu, I.N.; Jelínek, M. Biomaterials: New Issues and Breakthroughs for Biomedical Applications. In Pulsed Laser Deposition of Thin Films; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; pp. 421–459. ISBN 9780470052129. [Google Scholar]
- Cristescu, R.; Mihailescu, I.N.; JelÍnek, M.; Chrisey, D.B. Functionalized Thin Films and Structures Obtained by Novel Laser Processing Issues. In Proceedings of the Functional Properties of Nanostructured Materials. Nato Science Series; Kassing, R., Petkov, P., Kulisch, W., Popov, C., Eds.; Springer: Dordrecht, The Netherlands, 2006; Volume 223, pp. 211–226. [Google Scholar]
- Mihailescu, I.N.; Caricato, A.P. (Eds.) Pulsed Laser Ablation: Advances and Applications in Nanoparticles and Nanostructuring Thin Films, 1st ed.; Pan Stanford Publishing: Singapore, 2018; 564p, ISBN 9789814774239/9814774235. [Google Scholar]
- Popescu-Pelin, G.-F.; Ristoscu, C.; Mihailescu, I.N. Laser Ablation of Biomaterials. In Applications of Laser Ablation—Thin Film Deposition, Nanomaterial Synthesis and Surface Modification; Yang, D., Ed.; IntechOpen: Rijeka, Croatia, 2016; ISBN 978-953-51-2812-0. [Google Scholar]
- Weber, M.J. (Ed.) Handbook of Laser Wavelengths; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Stenhoff, S.; Mills, J. Basic principles of lasers. Anaesth. Intensive Care Med. 2024, 25, 133–137. [Google Scholar] [CrossRef]
- Singh, S.C.; Zeng, H.; Guo, C.; Cai, W. Lasers: Fundamentals, Types, and Operations. In Nanomaterials: Processing and Characterization with Lasers; Singh, S.C., Zeng, H., Guo, C., Cai, W., Eds.; Wiley-VCH Verlag & Co. KGaA: Aachen, Germany, 2012; pp. 1–34. ISBN 9783527646821. [Google Scholar]
- Wieneke, S.; Gerhard, C. Lasers in Medical Diagnosis and Therapy: Basics, Applications and Future Prospects; IOP Publishing: Bristol, UK, 2018; p. 199. ISBN 978-0-7503-1275-2. [Google Scholar]
- Jelínková, H. Introduction: The history of lasers in medicine. In Lasers for Medical Applications Diagnostics, Therapy and Surgery; Jelínková, H., Ed.; Woodhead Publishing: Sawston, UK, 2013; pp. 1–13. ISBN 978-0-85709-237-3. [Google Scholar]
- Jelinkova, H.; Hamal, K.; Cech, M.; Pasta, J.; Dostalova, T. Pulsed solid state lasers in medicine. In Proceedings of the SPIE, Heraklion, Crete, Greece, 20–24 May 1996; Volume 2965, pp. 140–147. [Google Scholar]
- Gabay, S. The role of laser technologies in medicine and surgery. In Proceedings of the SPIE, Florence, Italy, 10 September 2004; Volume 5610, pp. 102–107. [Google Scholar]
- Liu, W.; Saleheen, K.M.; Tang, Z.; Wang, H.; Al-Hammadi, G.; Abdelrahman, A.; Yongxin, Z.; Hua, S.-G.; Wang, F. Review on scanning pattern evaluation in laser-based additive manufacturing. Opt. Eng. 2021, 60, 70901. [Google Scholar] [CrossRef]
- Badiceanu, M.; Anghel, S.; Mihailescu, N.; Visan, A.I.; Mihailescu, C.N.; Mihailescu, I.N. Coatings Functionalization via Laser versus Other Deposition Techniques for Medical Applications: A Comparative Review. Coatings 2022, 12, 71. [Google Scholar] [CrossRef]
- Fabris, D.; Lasagni, A.F.; Fredel, M.C.; Henriques, B. Direct Laser Interference Patterning of Bioceramics: A Short Review. Ceramics 2019, 2, 578–586. [Google Scholar] [CrossRef]
- Touya, N.; Al-Bourgol, S.; Désigaux, T.; Kérourédan, O.; Gemini, L.; Kling, R.; Devillard, R. Bone Laser Patterning to Decipher Cell Organization. Bioengineering 2023, 10, 155. [Google Scholar] [CrossRef]
- Sima, F.; Davidson, P.M.; Dentzer, J.; Gadiou, R.; Pauthe, E.; Gallet, O.; Mihailescu, I.N.; Anselme, K. Inorganic-organic thin implant coatings deposited by lasers. ACS Appl. Mater. Interfaces 2015, 7, 911–920. [Google Scholar] [CrossRef]
- Mohammed, A.A. Enhance the Biological Properties of Commercial Pure Titanium with Bioactive Glass Coating by Pulsed Laser Deposition. J. Biomimetics Biomater. Biomed. Eng. 2021, 51, 29–37. [Google Scholar] [CrossRef]
- Lackner, J.M.; Waldhauser, W.; Major, R.; Major, L.; Hartmann, P. Biomimetics in thin film design—Wrinkling and fracture of pulsed laser deposited films in comparison to human skin. Surf. Coat. Technol. 2013, 215, 192–198. [Google Scholar] [CrossRef]
- Fernández-Pradas, J.M.; Clèries, L.; Sardin, G.; Morenza, J.L. Characterization of calcium phosphate coatings deposited by Nd:YAG laser ablation at 355nm: Influence of thickness. Biomaterials 2002, 23, 1989–1994. [Google Scholar] [CrossRef]
- Wang, Z.B.; Guo, W.; Luk’yanchuk, B.S.; Pena, A.; Li, L.; Liu, Z. Laser ablation on nanoscales. In Proceedings of the SPIE, Taos, NM, USA, 20–24 April 2008; Volume 7005, p. 70050S. [Google Scholar]
- Cristescu, R.; Jelinek, M.; Kocourek, T.; Axente, E.; Grigorescu, S.; Moldovan, A.; Mihaiescu, D.E.; Albulescu, M.; Buruiana, T.; Dybal, J.; et al. Matrix assisted pulsed laser evaporation of pullulan tailor-made biomaterial thin films for controlled drug delivery systems. J. Phys. Conf. Ser. 2007, 59, 144–149. [Google Scholar] [CrossRef]
- Alfe, M.; Minopoli, G.; Tartaglia, M.; Gargiulo, V.; Caruso, U.; Pepe, G.P.; Ausanio, G. Coating of Flexible PDMS Substrates through Matrix-Assisted Pulsed Laser Evaporation (MAPLE) with a New-Concept Biocompatible Graphenic Material. Nanomaterials 2022, 12, 3663. [Google Scholar] [CrossRef]
- Visan, A.; Grossin, D.; Stefan, N.; Duta, L.; Miroiu, F.M.; Stan, G.E.; Sopronyi, M.; Luculescu, C.; Freche, M.; Marsan, O.; et al. Biomimetic nanocrystalline apatite coatings synthesized by Matrix Assisted Pulsed Laser Evaporation for medical applications. Mater. Sci. Eng. B 2014, 181, 56–63. [Google Scholar] [CrossRef]
- Plamadeala, C.; Gosain, S.R.; Hischen, F.; Buchroithner, B.; Puthukodan, S.; Jacak, J.; Bocchino, A.; Whelan, D.; O’Mahony, C.; Baumgartner, W.; et al. Bio-inspired microneedle design for efficient drug/vaccine coating. Biomed. Microdevices 2019, 22, 8. [Google Scholar] [CrossRef]
- Schieber, R.; Lasserre, F.; Hans, M.; Fernández-Yagüe, M.; Díaz-Ricart, M.; Escolar, G.; Ginebra, M.-P.; Mücklich, F.; Pegueroles, M. Direct Laser Interference Patterning of CoCr Alloy Surfaces to Control Endothelial Cell and Platelet Response for Cardiovascular Applications. Adv. Healthc. Mater. 2017, 6, 1700327. [Google Scholar] [CrossRef]
- Goldberg, P.; Hariharan, A.; Schell, F.; Hantusch, M.; Cichocka, M.O.; Pérez, N.; Voß, A.; Giebeler, L.; Hoffmann, V.; Zwahr, C.; et al. Fine-tuning effect of Direct Laser Interference Patterning on the surface states and the corrosion behavior of a biomedical additively manufactured beta Ti alloy. Corros. Sci. 2023, 219, 111230. [Google Scholar] [CrossRef]
- Mutsuzaki, H.; Yashiro, H.; Kakehata, M.; Oyane, A.; Ito, A. Femtosecond Laser Irradiation to Zirconia Prior to Calcium Phosphate Coating Enhances Osteointegration of Zirconia in Rabbits. J. Funct. Biomater. 2024, 15, 42. [Google Scholar] [CrossRef]
- Darwish, M.A.E.; Abo-Elezz, A.F.; Safy, R.K. Effect of Diode Laser versus a Combination of Sodium Trimetaphosphate with Polyacrylic Acid on Obliteration of Dentinal Tubules: An In Vitro Study. Open Access Maced. J. Med. Sci. 2022, 10, 160–165. [Google Scholar] [CrossRef]
- Nathanael, A.J.; Oyane, A.; Nakamura, M.; Koga, K.; Nishida, E.; Tanaka, S.; Miyaji, H. Calcium phosphate coating on dental composite resins by a laser-assisted biomimetic process. Heliyon 2018, 4, e00734. [Google Scholar] [CrossRef]
- Zhu, D.; Zuo, P.; Li, F.; Tian, H.; Liu, T.; Hu, L.; Huang, H.; Liu, J.; Qian, X. Fabrication and applications of surface micro/nanostructures by femtosecond laser. Colloid Interface Sci. Commun. 2024, 59, 100770. [Google Scholar] [CrossRef]
- Kietzig, A.-M.; Lehr, J.; Matus, L.; Liang, F. Laser-induced patterns on metals and polymers for biomimetic surface engineering. In Proceedings of the SPIE, San Francisco, CA, USA, 6 March 2014; Volume 8967, p. 896705. [Google Scholar]
- Lasagni, A.F.; Alamri, S.; Aguilar-Morales, A.I.; Rößler, F.; Voisiat, B.; Kunze, T. Biomimetic Surface Structuring Using Laser Based Interferometric Methods. Appl. Sci. 2018, 8, 1260. [Google Scholar] [CrossRef]
- Creighton, R.L.; Phan, J.; Woodrow, K.A. In situs 3D-patterning of electrospun fibers using two-layer composite materials. Sci. Rep. 2020, 10, 7949. [Google Scholar] [CrossRef]
- Bilican, I.; Tahsin Guler, M. Assessment of PMMA and polystyrene based microfluidic chips fabricated using CO2 laser machining. Appl. Surf. Sci. 2020, 534, 147642. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, B.; Zhang, H.; Shangguan, Z.; Sun, C.; Cui, X.; Liu, X.; Zhao, Z.; Liu, G.; Chen, H. Laser Ablating Biomimetic Periodic Array Fish Scale Surface for Drag Reduction. Biomimetics 2024, 9, 415. [Google Scholar] [CrossRef]
- Serra, P.; Duocastella, M.; Fernández-Pradas, J.M.; Morenza, J.L. Laser-Induced Forward Transfer: A Laser-Based Technique for Biomolecules Printing. In Cell and Organ Printing; Ringeisen, B.R., Spargo, B.J., Wu, P.K., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 53–80. ISBN 978-90-481-9145-1. [Google Scholar]
- Narazaki, A.; Oyane, A.; Miyaji, H. Laser-Induced Forward Transfer with Optical Stamp of a Protein-Immobilized Calcium Phosphate Film Prepared by Biomimetic Process to a Human Dentin. Appl. Sci. 2020, 10, 7984. [Google Scholar] [CrossRef]
- Zhang, W.; Chung, P.H.; Zhang, A.; Chen, S. Laser Processing of Natural Biomaterials. In Laser Technology in Biomimetics. Biological and Medical Physics, Biomedical Engineering; Schmidt, V., Belegratis, M.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 237–257. ISBN 978-3-642-41341-4. [Google Scholar]
- Lechthaler, B.; Fox, T.; Slawik, S.; Mücklich, F. Direct laser interference patterning combined with mask imaging. Opt. Laser Technol. 2020, 123, 105918. [Google Scholar] [CrossRef]
- Peter, A.; Lutey, A.H.A.; Faas, S.; Romoli, L.; Onuseit, V.; Graf, T. Direct laser interference patterning of stainless steel by ultrashort pulses for antibacterial surfaces. Opt. Laser Technol. 2020, 123, 105954. [Google Scholar] [CrossRef]
- Tabares, I.; Soldera, M.; Voisiat, B.; Lasagni, A.F. Diffraction-based approach for real-time monitoring of nanosecond direct laser interference patterning structure formation on stainless steel. Sci. Rep. 2024, 14, 9599. [Google Scholar] [CrossRef]
- Wolff, M.; Wonneberger, R.; Freiberg, K.E.; Hertwig, A.; Bonse, J.; Giebeler, L.; Koitzsch, A.; Kunz, C.; Weber, H.; Hufenbach, J.K.; et al. Formation of laser-induced periodic surface structures on Zr-based bulk metallic glasses with different chemical composition. Surf. Interfaces 2023, 42, 103305. [Google Scholar] [CrossRef]
- Grossmann, S.; Bohne, E.; Stiehm, M.; Schmitz, K.-P.; Siewert, S. Method for fabrication of laser-induced periodic surface structures on vascular stents. Curr. Dir. Biomed. Eng. 2023, 9, 627–629. [Google Scholar] [CrossRef]
- Selimis, A.; Mironov, V.; Farsari, M. Direct laser writing: Principles and materials for scaffold 3D printing. Microelectron. Eng. 2015, 132, 83–89. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, Q.; Gu, M. Three-dimensional direct laser writing of biomimetic neuron structures. Opt. Express 2018, 26, 32111–32117. [Google Scholar] [CrossRef]
- Narazaki, A.; Oyane, A.; Komuro, S.; Kurosaki, R.; Kameyama, T.; Sakamaki, I.; Araki, H.; Miyaji, H. Bioactive micropatterning of apatite immobilizing cell adhesion protein by laser-induced forward transfer with a shock absorber. Opt. Mater. Express 2019, 9, 2807–2816. [Google Scholar] [CrossRef]
- Guillotin, B.; Catros, S.; Guillemot, F. Laser Assisted Bio-printing (LAB) of Cells and Bio-materials Based on Laser Induced Forward Transfer (LIFT). In Laser Technology in Biomimetics. Biological and Medical Physics, Biomedical Engineering; Schmidt, V., Belegratis, M.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 193–209. ISBN 978-3-642-41341-4. [Google Scholar]
- Zhang, D.; Ranjan, B.; Tanaka, T.; Sugioka, K. Carbonized Hybrid Micro/Nanostructured Metasurfaces Produced by Femtosecond Laser Ablation in Organic Solvents for Biomimetic Antireflective Surfaces. ACS Appl. Nano Mater. 2020, 3, 1855–1871. [Google Scholar] [CrossRef]
- Piatkowski, P.; Ali, A.; Alawadhi, H.; Alnaser, A.S. Simultaneous Carburization, Oxidation, and Nitridation of Titanium Surface Using Ablation by Femtosecond Laser in n-Heptane. Adv. Eng. Mater. 2023, 25, 2201361. [Google Scholar] [CrossRef]
- Barili, M.; Lutey, A.H.A.; Sciancalepore, C.; Romoli, L. A Hybrid Approach to Surface Engineering Based on Laser Texturing and Coating. J. Manuf. Mater. Process. 2023, 7, 59. [Google Scholar] [CrossRef]
- Buchberger, G.; Muck, M.; Plamadeala, C.; Heitz, J. Laser Structuring for Biomedical Applications. In Ultrafast Laser Nanostructuring; Stoian, R., Bonse, J., Eds.; Springer Series in Optical Sciences; Springer International Publishing: Cham, Switzerland, 2023; Volume 239, pp. 1105–1165. ISBN 978-3-031-14752-4. [Google Scholar]
- Paustovskii, A.V.; Botvinko, V.P. Laser deposition and treatment of coatings. Powder Metall. Met. Ceram. 1998, 37, 79–84. [Google Scholar] [CrossRef]
- Jelinek, M. 23—Hybrid laser technology for biomaterials. In Lasers for Medical Applications Diagnostics, Therapy and Surgery; Jelínková, H., Ed.; Woodhead Publishing: Sawston, UK, 2013; pp. 704–724. ISBN 978-0-85709-237-3. [Google Scholar]
- Barthwal, S.; Uniyal, S.; Barthwal, S. Nature-Inspired Superhydrophobic Coating Materials: Drawing Inspiration from Nature for Enhanced Functionality. Micromachines 2024, 15, 391. [Google Scholar] [CrossRef]
- Popescu-Pelin, G.-F.; Ristoscu, C.-G.; Badiceanu, M.; Mihailescu, I.N. Protected Laser Evaporation/Ablation and Deposition of Organic/Biological Materials: Thin Films Deposition for Nano-biomedical Applications. In Laser Ablation—From Fundamentals to Applications; Itina, T.E., Ed.; IntechOpen: Rijeka, Croatia, 2017; ISBN 978-953-51-3700-9. [Google Scholar]
- Ristoscu, C.; Mihailescu, I.N. Thin Films and Nanoparticles by Pulsed Laser Deposition: Wetting, Adherence, and Nanostructuring. In Pulsed Laser Ablation; Jenny Stanford Publishing: Singapore, 2018; pp. 245–276. [Google Scholar]
- Visan, A.; Ristoscu, C.; Mihailescu, I.N. Composite Coatings Based on Renewable Resources Synthesized by Advanced Laser Techniques. In Composites from Renewable and Sustainable Materials; Poletto, M., Ed.; IntechOpen: Rijeka, Croatia, 2016; ISBN 978-953-51-2794-9. [Google Scholar]
- Sima, F.; Axente, E.; Ristoscu, C.; Gallet, O.; Anselme, K.; Mihailescu, I.N. Bioresponsive Surfaces and Interfaces Fabricated by Innovative Laser Approaches. In Advanced Materials Interfaces; Wiley-VCH: Aachen, Germany, 2016; pp. 427–462. ISBN 9781119242604. [Google Scholar]
- Chang, J.; Zhou, Y.L.; Zhou, Y. 2—Surface modification of bioactive glasses. In Bioactive Glasses Materials, Properties and Applications, 2nd ed.; Ylänen, H., Ed.; Woodhead Publishing: Sawston, UK, 2011; pp. 29–52. ISBN 978-1-84569-768-6. [Google Scholar]
- Paul, B.K.; Mondal, D.; Bhattacharya, D.; Ghosh, A.; Das, S. 4.12—Processing of thin-film electrode based supercapacitors: Progress during the last decade. In Comprehensive Materials Processing; Hashmi, S., Ed.; Elsevier: Oxford, UK, 2024; pp. 179–199. ISBN 978-0-323-96021-2. [Google Scholar]
- Sankur, H. Deposition of optical coatings by laser-assisted evaporation and by photo-assisted chemical vapor deposition. Thin Solid Films 1992, 218, 161–169. [Google Scholar] [CrossRef]
- Cristescu, R.; Dorcioman, G.; Ristoscu, C.; Axente, E.; Grigorescu, S.; Moldovan, A.; Mihailescu, I.N.; Kocourek, T.; Jelinek, M.; Albulescu, M.; et al. Matrix assisted pulsed laser evaporation processing of triacetate-pullulan polysaccharide thin films for drug delivery systems. Appl. Surf. Sci. 2006, 252, 4647–4651. [Google Scholar] [CrossRef]
- Patz, T.M.; Doraiswamy, A.; Narayan, R.J.; Menegazzo, N.; Kranz, C.; Mizaikoff, B.; Zhong, Y.; Bellamkonda, R.; Bumgardner, J.D.; Elder, S.H.; et al. Matrix assisted pulsed laser evaporation of biomaterial thin films. Mater. Sci. Eng. C 2007, 27, 514–522. [Google Scholar] [CrossRef]
- Popescu, A.C.; Ulmeanu, M.; Ristoscu, C.; Mihailescu, I.N. 12—Deposition and surface modification of thin solid structures by high-intensity pulsed laser irradiation. In Laser Surface Engineering. Processes and Applications; Lawrence, J., Waugh, D., Eds.; Woodhead Publishing: Sawston, UK, 2015; pp. 287–313. ISBN 978-1-78242-074-3. [Google Scholar]
- Ozbolat, I.T. Laser-Based Bioprinting∗∗With minor contributions by Hemanth Gudapati, The Pennsylvania State University. In 3D Bioprinting. Fundamentals, Principles and Applications; Ozbolat, I., Ed.; Academic Press: Oxford, UK, 2017; pp. 165–197. ISBN 978-0-12-803010-3. [Google Scholar]
- Murakami, S.; Kashii, M.; Kitano, H.; Adachi, H.; Takano, K.; Matsumura, H.; Inoue, T.; Mori, Y.; Doi, M.; Sugamoto, K.; et al. Effect of Laser Irradiation on Enzyme Activity. Jpn. J. Appl. Phys. 2005, 44, 8216. [Google Scholar] [CrossRef]
- Lynnyk, A.; Smolková, B.; Uzhytchak, M.; Egorova, D.; Kulikov, A.; Lunova, M.; Kubinová, Š.; Dejneka, A.; Lunov, O. Laser irradiation induces mitochondrial dysfunction in hepatic cells. In Proceedings of the SPIE, Munich, Germany, 23–25 June 2019; Volume 11079, p. 1107911. [Google Scholar]
- Kabouraki, E.; Terzaki, K.; Melissinaki, V.; Manousidaki, M.; Vamvakaki, M.; Farsari, M. Direct fs Laser Writing of 3D Nanostructures. In Progress in Nonlinear Nano-Optics. Nano-Optics and Nanophotonics; Sakabe, S., Lienau, C., Grunwald, R., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 137–154. ISBN 978-3-319-12217-5. [Google Scholar]
- Kreisler, M.; Kohnen, W.; Marinello, C.; Schoof, J.; Langnau, E.; Jansen, B.; d’Hoedt, B. Antimicrobial efficacy of semiconductor laser irradiation on implant surfaces. Int. J. Oral Maxillofac. Implants 2003, 18, 706–711. [Google Scholar]
- Stratakis, E. Nanomaterials by ultrafast laser processing of surfaces. Sci. Adv. Mater. 2012, 4, 407–431. [Google Scholar] [CrossRef]
- Basset, S.; Heisbourg, G.; Pascale-Hamri, A.; Benayoun, S.; Valette, S. Effect of Texturing Environment on Wetting of Biomimetic Superhydrophobic Surfaces Designed by Femtosecond Laser Texturing. Nanomaterials 2022, 12, 3099. [Google Scholar] [CrossRef]
- Schille, J.; Schneider, L.; Mauersberger, S.; Szokup, S.; Höhn, S.; Pötschke, J.; Reiß, F.; Leidich, E.; Löschner, U. High-Rate Laser Surface Texturing for Advanced Tribological Functionality. Lubricants 2020, 8, 33. [Google Scholar] [CrossRef]
- Despres, L.; Costil, S.; Cormier, J.; Villechaise, P.; Cariou, R. Impact of Laser Texturing on Ni-Based Single Crystal Superalloys. Metals 2021, 11, 1737. [Google Scholar] [CrossRef]
- Pakuła, D.; Staszuk, M.; Dziekońska, M.; Kožmín, P.; Čermák, A. Laser Micro-Texturing of Sintered Tool Materials Surface. Materials 2019, 12, 3152. [Google Scholar] [CrossRef]
- Axente, E.; Sima, F. Biomimetic Nanostructures with Compositional Gradient Grown by Combinatorial Matrix-Assisted Pulsed Laser Evaporation for Tissue Engineering. Curr. Med. Chem. 2020, 27, 903–918. [Google Scholar] [CrossRef]
- Shivakoti, I.; Kibria, G.; Cep, R.; Pradhan, B.B.; Sharma, A. Laser surface texturing for biomedical applications: A review. Coatings 2021, 11, 124. [Google Scholar] [CrossRef]
- Klos, A.; Sedao, X.; Itina, T.E.; Helfenstein-Didier, C.; Donnet, C.; Peyroche, S.; Vico, L.; Guignandon, A.; Dumas, V. Ultrafast Laser Processing of Nanostructured Patterns for the Control of Cell Adhesion and Migration on Titanium Alloy. Nanomaterials 2020, 10, 864. [Google Scholar] [CrossRef]
- Narayan, R.J.; Doraiswamy, A.; Chrisey, D.B.; Chichkov, B.N. Medical prototyping using two photon polymerization. Mater. Today 2010, 13, 42–48. [Google Scholar] [CrossRef]
- Huang, Z.; Chi-Pong Tsui, G.; Deng, Y.; Tang, C.-Y. Two-photon polymerization nanolithography technology for fabrication of stimulus-responsive micro/nano-structures for biomedical applications. Nanotechnol. Rev. 2020, 9, 1118–1136. [Google Scholar] [CrossRef]
- Oakdale, J.S.; Ye, J.; Smith, W.L.; Biener, J. Post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon lithography. Opt. Express 2016, 24, 27077–27086. [Google Scholar] [CrossRef] [PubMed]
- Farsari, M.; Chichkov, B.N. Materials processing: Two-photon fabrication. Nat. Photonics 2009, 3, 450–452. [Google Scholar] [CrossRef]
- Ovsianikov, A.; Doraiswamy, A.; Narayan, R.; Chichkov, B.N. Two-photon polymerization for fabrication of biomedical devices. In Proceedings of the SPIE, San Jose, CA, USA, 22 January 2007; Volume 6465, p. 64650O. [Google Scholar]
- Mckee, S.; Lutey, A.; Sciancalepore, C.; Poli, F.; Selleri, S.; Cucinotta, A. Microfabrication of polymer microneedle arrays using two-photon polymerization. J. Photochem. Photobiol. B Biol. 2022, 229, 112424. [Google Scholar] [CrossRef]
- Faraji Rad, Z.; Prewett, P.D.; Davies, G.J. High-resolution two-photon polymerization: The most versatile technique for the fabrication of microneedle arrays. Microsystems Nanoeng. 2021, 7, 71. [Google Scholar] [CrossRef]
- Gallarato, L.A.; Mulko, L.E.; Dardanelli, M.S.; Barbero, C.A.; Acevedo, D.F.; Yslas, E.I. Synergistic effect of polyaniline coverage and surface microstructure on the inhibition of Pseudomonas aeruginosa biofilm formation. Colloids Surf. B Biointerfaces 2017, 150, 1–7. [Google Scholar] [CrossRef]
- Lasagni, A.F.; Gachot, C.; Trinh, K.E.; Hans, M.; Rosenkranz, A.; Roch, T.; Eckhardt, S.; Kunze, T.; Bieda, M.; Günther, D.; et al. Direct laser interference patterning, 20 years of development: From the basics to industrial applications. In Proceedings of the SPIE, San Francisco, CA, USA, 7 March 2017; Volume 10092, p. 1009211. [Google Scholar]
- Günther, D.; Scharnweber, D.; Hess, R.; Wolf-Brandstetter, C.; Grosse Holthaus, M.; Lasagni, A.F. 1—High precision patterning of biomaterials using the direct laser interference patterning technology. In Laser Surface Modification of Biomaterials. Techniques and Applications; Vilar, R., Ed.; Woodhead Publishing: Sawston, UK, 2016; pp. 3–33. ISBN 978-0-08-100883-6. [Google Scholar]
- Lasagni, A.F. Laser interference patterning methods: Possibilities for high-throughput fabrication of periodic surface patterns. Adv. Opt. Technol. 2017, 6, 265–275. [Google Scholar] [CrossRef]
- Bonse, J. Quo Vadis LIPSS?—Recent and Future Trends on Laser-Induced Periodic Surface Structures. Nanomaterials 2020, 10, 1950. [Google Scholar] [CrossRef]
- Bonse, J.; Kirner, S.V.; Höhm, S.; Epperlein, N.; Spaltmann, D.; Rosenfeld, A.; Krüger, J. Applications of laser-induced periodic surface structures (LIPSS). In Proceedings of the SPIE, San Francisco, CA, USA, 17 February 2017; Volume 10092, p. 100920N. [Google Scholar]
- Hadzik, J.; Kubasiewicz-Ross, P.; Simka, W.; Gębarowski, T.; Barg, E.; Cieśla-Niechwiadowicz, A.; Trzcionka Szajna, A.; Szajna, E.; Gedrange, T.; Kozakiewicz, M.; et al. Fractal Dimension and Texture Analysis in the Assessment of Experimental Laser-Induced Periodic Surface Structures (LIPSS) Dental Implant Surface-In Vitro Study Preliminary Report. Materials 2022, 15, 2713. [Google Scholar] [CrossRef]
- Bonse, J.; Kirner, S.V.; Krüger, J. Laser-Induced Periodic Surface Structures (LIPSS) BT. In Handbook of Laser Micro- and Nano-Engineering; Sugioka, K., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 879–936. ISBN 978-3-030-63647-0. [Google Scholar]
- Heitz, J.; Muck, M.; Vujovic, J.; Baumgartner, W.; Hassel, A.W.; Lone, S.A.; Steinhauser, B.; Hrelescu, C.; Klar, T.A.; Buchberger, G.; et al. Laser-Induced Periodic Surface Structures (LIPSS) for Biomedical and Sensing Applications. In Proceedings of the 2020 22nd International Conference on Transparent Optical Networks (ICTON), Bari, Italy, 19–23 July 2020. [Google Scholar]
- Jonušauskas, L.; Andrijec, D.; Andriukaitis, D.; Vargalis, R.; Baravykas, T.; Stankevičius, A.; Merkininkaite, G.; Pautienius, A.; Gricius, H.; Ežerskyte, E.; et al. Expansion of direct laser writing (DLW) capabilities for usage in biomedical applications. In Proceedings of the SPIE, Online, 8 March 2021; Volume 11677, p. 1167713. [Google Scholar]
- Gittard, S.D.; Narayan, R.J. Laser direct writing of micro- and nano-scale medical devices. Expert Rev. Med. Devices 2010, 7, 343–356. [Google Scholar] [CrossRef]
- Wu, Z.-L.; Qi, Y.-N.; Yin, X.-J.; Yang, X.; Chen, C.-M.; Yu, J.-Y.; Yu, J.-C.; Lin, Y.-M.; Hui, F.; Liu, P.-L.; et al. Polymer-Based Device Fabrication and Applications Using Direct Laser Writing Technology. Polymers 2019, 11, 553. [Google Scholar] [CrossRef] [PubMed]
- Maciulaitis, J.; Rekštytė, S.; Bratchikov, M.; Gudas, R.; Malinauskas, M.; Pockevicius, A.; Usas, A.; Rimkunas, A.; Jankauskaite, V.; Grigaliunas, V.; et al. Customization of direct laser lithography-based 3D scaffolds for optimized in vivo outcome. Appl. Surf. Sci. 2019, 487, 692–702. [Google Scholar] [CrossRef]
- Sarker, S.; Forghani, K.; Wen, Z.; Halli, R.N.; Hoag, S.; Flank, S.; Sochol, R.D. Toward controlled-release drug delivery microcarriers enabled by direct laser writing 3D printing. In Proceedings of the 2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS), Austin, TX, USA, 21–25 January 2024; pp. 433–436. [Google Scholar] [CrossRef]
- Herzog, J.; Franke, L.; Lai, Y.; Gomez Rossi, P.; Sachtleben, J.; Weuster-Botz, D. 3D bioprinting of microorganisms: Principles and applications. Bioprocess Biosyst. Eng. 2024, 47, 443–461. [Google Scholar] [CrossRef] [PubMed]
- Karakaidos, P.; Kryou, C.; Simigdala, N.; Klinakis, A.; Zergioti, I. Laser Bioprinting of Cells Using UV and Visible Wavelengths: A Comparative DNA Damage Study. Bioengineering 2022, 9, 378. [Google Scholar] [CrossRef]
- Yong, J.; Huo, J.; Yang, Q.; Chen, F.; Fang, Y.; Wu, X.; Liu, L.; Lu, X.; Zhang, J.; Hou, X. Femtosecond Laser Direct Writing of Porous Network Microstructures for Fabricating Super-Slippery Surfaces with Excellent Liquid Repellence and Anti-Cell Proliferation. Adv. Mater. Interfaces 2018, 5, 1701479. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiao, Y.; Li, C.; Chen, C.; Li, J.; Hu, Y.; Wu, D.; Chu, J. Bioinspired micro/nanostructured surfaces prepared by femtosecond laser direct writing for multi-functional applications. Int. J. Extrem. Manuf. 2020, 2, 32002. [Google Scholar] [CrossRef]
- Axente, E.; Elena Sima, L.; Sima, F. Biomimetic Coatings Obtained by Combinatorial Laser Technologies. Coatings 2020, 10, 463. [Google Scholar] [CrossRef]
- Varaganti, P.; Seo, S. Recent Advances in Biomimetics for the Development of Bio-Inspired Prosthetic Limbs. Biomimetics 2024, 9, 273. [Google Scholar] [CrossRef]
- Duta, L.; Neamtu, J.; Melinte, R.P.; Zureigat, O.A.; Popescu-Pelin, G.; Chioibasu, D.; Oktar, F.N.; Popescu, A.C. In vivo assessment of bone enhancement in the case of 3d-printed implants functionalized with lithium-doped biological-derived hydroxyapatite coatings: A preliminary study on rabbits. Coatings 2020, 10, 992. [Google Scholar] [CrossRef]
- Ilieva, L.; Ursano, I.; Traista, L.; Hoffmann, B.; Dahy, H. Biomimicry as a Sustainable Design Methodology—Introducing the ‘Biomimicry for Sustainability’ Framework. Biomimetics 2022, 7, 37. [Google Scholar] [CrossRef] [PubMed]
- Florea, D.A.; Grumezescu, V.; Bîrcă, A.C.; Vasile, B.Ș.; Iosif, A.; Chircov, C.; Stan, M.S.; Grumezescu, A.M.; Andronescu, E.; Chifiriuc, M.C. Bioactive Hydroxyapatite-Magnesium Phosphate Coatings Deposited by MAPLE for Preventing Infection and Promoting Orthopedic Implants Osteointegration. Materials 2022, 15, 7337. [Google Scholar] [CrossRef] [PubMed]
- Lackington, W.A.; Bellon, B.; Guimond, S.; Schweizer, P.; Cancellieri, C.; Ambeza, A.; Chopard-Lallier, A.-L.; Pippenger, B.; Armutlulu, A.; Maeder, X.; et al. Bio-Inspired Micro- and Nano-Scale Surface Features Produced by Femtosecond Laser-Texturing Enhance TiZr-Implant Osseointegration. Adv. Healthc. Mater. 2024, 13, e2400810. [Google Scholar] [CrossRef]
- Jipa, F.; Florian, P.E.; Icriverzi, M.; Popescu-Pelin, G.; Budei, D.V.; Axente, E.; Sugioka, K.; Sima, F. Titanium Surface Nanostructuring by Picosecond Laser Irradiation for Surface Improvement of Dental Abutments. J. Laser Micro/Nanoeng. 2023, 18, 127–132. [Google Scholar]
- Li, L.; Mirhosseini, N.; Michael, A.; Liu, Z.; Wang, T. Enhancement of endothelialisation of coronary stents by laser surface engineering. Lasers Surg. Med. 2013, 45, 608–616. [Google Scholar] [CrossRef] [PubMed]
- Pathak, S. Biomimicry: (Innovation Inspired by Nature). Int. J. New Technol. Res. 2019, 5, 34–38. [Google Scholar] [CrossRef]
- Buchegger, B.; Tanzer, A.; Posch, S.; Gabriel, C.; Klar, T.A.; Jacak, J. STED lithography in microfluidics for 3D thrombocyte aggregation testing. J. Nanobiotechnol. 2021, 19, 23. [Google Scholar] [CrossRef]
- Comanns, P.; Buchberger, G.; Buchsbaum, A.; Baumgartner, R.; Kogler, A.; Bauer, S.; Baumgartner, W. Directional, passive liquid transport: The Texas horned lizard as a model for a biomimetic ‘liquid diode’. J. R. Soc. Interface 2015, 12, 20150415. [Google Scholar] [CrossRef] [PubMed]
- Enrico, A.; Voulgaris, D.; Östmans, R.; Sundaravadivel, N.; Moutaux, L.; Cordier, A.; Niklaus, F.; Herland, A.; Stemme, G. 3D Microvascularized Tissue Models by Laser-Based Cavitation Molding of Collagen. Adv. Mater. 2022, 34, 2109823. [Google Scholar] [CrossRef]
- Shen, W.; Karumbaiah, L.; Liu, X.; Saxena, T.; Chen, S.; Patkar, R.; Bellamkonda, R.V.; Allen, M.G. Extracellular matrix-based intracortical microelectrodes: Toward a microfabricated neural interface based on natural materials. Microsyst. Nanoeng. 2015, 1, 15010. [Google Scholar] [CrossRef]
- Wei, X.; Wang, Y.; Liu, Y.; Ji, K.; Li, K.; Wang, J.; Gu, Z. Biomimetic design strategies for biomedical applications. Matter 2024, 7, 826–854. [Google Scholar] [CrossRef]
- Sima, L.E.; Buruiana, E.C.; Buruiana, T.; Matei, A.; Epurescu, G.; Zamfirescu, M.; Moldovan, A.; Petrescu, S.M.; Dinescu, M. Dermal cells distribution on laser-structured ormosils. J. Tissue Eng. Regen. Med. 2013, 7, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Valle, J.; Burgui, S.; Langheinrich, D.; Gil, C.; Solano, C.; Toledo-Arana, A.; Helbig, R.; Lasagni, A.; Lasa, I. Evaluation of Surface Microtopography Engineered by Direct Laser Interference for Bacterial Anti-Biofouling. Macromol. Biosci. 2015, 15, 1060–1069. [Google Scholar] [CrossRef] [PubMed]
- Ciulla, M.G.; Massironi, A.; Sugni, M.; Ensign, M.A.; Marzorati, S.; Forouharshad, M. Recent Advances in the Development of Biomimetic Materials. Gels 2023, 9, 833. [Google Scholar] [CrossRef]
- Fadeeva, E.; Truong, V.K.; Stiesch, M.; Chichkov, B.N.; Crawford, R.J.; Wang, J.; Ivanova, E.P. Bacterial Retention on Superhydrophobic Titanium Surfaces Fabricated by Femtosecond Laser Ablation. Langmuir 2011, 27, 3012–3019. [Google Scholar] [CrossRef]
- Popescu-Pelin, G.; Ristoscu, C.; Duta, L.; Pasuk, I.; Stan, G.E.; Stan, M.S.; Popa, M.; Chifiriuc, M.C.; Hapenciuc, C.; Oktar, F.N.; et al. Fish Bone Derived Bi-Phasic Calcium Phosphate Coatings Fabricated by Pulsed Laser Deposition for Biomedical Applications. Mar. Drugs 2020, 18, 623. [Google Scholar] [CrossRef]
- Popescu-Pelin, G.; Ristoscu, C.; Duta, L.; Stan, G.E.; Pasuk, I.; Tite, T.; Stan, M.S.; Bleotu, C.; Popa, M.; Chifiriuc, M.C.; et al. Antimicrobial and Cytocompatible Bovine Hydroxyapatite-Alumina-Zeolite Composite Coatings Synthesized by Pulsed Laser Deposition from Low-Cost Sustainable Natural Resources. ACS Sustain. Chem. Eng. 2020, 8, 4026–4036. [Google Scholar] [CrossRef]
- Alam, F.; Ashfaq Ahmed, M.; Jalal, A.H.; Siddiquee, I.; Adury, R.Z.; Hossain, G.M.M.; Pala, N. Recent Progress and Challenges of Implantable Biodegradable Biosensors. Micromachines 2024, 15, 475. [Google Scholar] [CrossRef]
- Boanini, E.; Torricelli, P.; Forte, L.; Pagani, S.; Mihailescu, N.; Ristoscu, C.; Mihailescu, I.N.; Bigi, A. Antiresorption implant coatings based on calcium alendronate and octacalcium phosphate deposited by matrix assisted pulsed laser evaporation. Colloids Surf. B Biointerfaces 2015, 136, 449–456. [Google Scholar] [CrossRef]
- Visan, A.I.; Ristoscu, C.; Popescu-Pelin, G.; Sopronyi, M.; Matei, C.E.; Socol, G.; Chifiriuc, M.C.; Bleotu, C.; Grossin, D.; Brouillet, F.; et al. Composite Drug Delivery System Based on Amorphous Calcium Phosphate–Chitosan: An Efficient Antimicrobial Platform for Extended Release of Tetracycline. Pharmaceutics 2021, 13, 1659. [Google Scholar] [CrossRef]
- Visan, A.I.; Popescu-Pelin, G.; Gherasim, O.; Grumezescu, V.; Socol, M.; Zgura, I.; Florica, C.; Popescu, R.C.; Savu, D.; Holban, A.M.; et al. Laser processed antimicrobial nanocomposite based on polyaniline grafted lignin loaded with Gentamicin-functionalized magnetite. Polymers 2019, 11, 283. [Google Scholar] [CrossRef] [PubMed]
- Popescu-Pelin, G.; Fufă, O.; Popescu, R.C.; Savu, D.; Socol, M.; Zgură, I.; Holban, A.M.; Vasile, B.; Grumezescu, V.; Socol, G. Lincomycin–embedded PANI–based coatings for biomedical applications. Appl. Surf. Sci. 2018, 455, 653–666. [Google Scholar] [CrossRef]
- Gerola, A.; Robaey, Z.; Blok, V. What Does it Mean to Mimic Nature? A Typology for Biomimetic Design. Philos. Technol. 2023, 36, 65. [Google Scholar] [CrossRef]
- Yu, Z.; Fu, J.; Ji, Y.; Zhao, B.; Ji, A. Design of a Variable Stiffness Gecko-Inspired Foot and Adhesion Performance Test on Flexible Surface. Biomimetics 2022, 7, 125. [Google Scholar] [CrossRef]
- Sikdar, S.; Rahman, M.H.; Siddaiah, A.; Menezes, P.L. Gecko-Inspired Adhesive Mechanisms and Adhesives for Robots—A Review. Robotics 2022, 11, 143. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Dai, Z. The Neural Control Mechanisms of Gekkonid Adhesion Locomotion: The Effect of Spinal Cord Lesions. Biomimetics 2022, 7, 98. [Google Scholar] [CrossRef]
- Fan, C.; Wang, X.; Yin, X.; Huang, W.; Da, Y.; Jiang, H.; Cao, J.; Gai, Y.; Zhang, W. Adhesion Strength and Anti-Corrosion Performance of Ceramic Coating on Laser-Textured Aluminum Alloy. Coatings 2023, 13, 2098. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Li, J.; Li, P.; Li, S. Gecko-Inspired Controllable Adhesive: Structure, Fabrication, and Application. Biomimetics 2024, 9, 149. [Google Scholar] [CrossRef] [PubMed]
- Li, Q. A practical fabrication method of the gecko-inspired easy-removal skin adhesives. Biosurface Biotribology 2017, 3, 66–74. [Google Scholar] [CrossRef]
- Yang, J.; Włodarczyk-Biegun, M.K.; Filippov, A.; Akerboom, S.; Dompé, M.; van Hees, I.A.; Mocan, M.; Kamperman, M. Functional Polymeric Materials Inspired by Geckos, Mussels, and Spider Silk. Macromol. Chem. Phys. 2018, 219, 1800051. [Google Scholar] [CrossRef]
- Greco, G.; Francis, J.; Arndt, T.; Schmuck, B.; Bäcklund, F.G.; Barth, A.; Johansson, J.; Pugno, N.M.; Rising, A. Properties of Biomimetic Artificial Spider Silk Fibers Tuned by PostSpin Bath Incubation. Molecules 2020, 25, 3248. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Tian, Q.; Wu, W.; Yang, S.; Wu, Q.; Zhao, Y.; Wang, J.; Zhou, X.; Wang, K.; Ren, L.; et al. Bio-Inspired 4D Printing of Dynamic Spider Silks. Polymers 2022, 14, 2069. [Google Scholar] [CrossRef] [PubMed]
- Trossmann, V.T.; Lentz, S.; Scheibel, T. Factors Influencing Properties of Spider Silk Coatings and Their Interactions within a Biological Environment. J. Funct. Biomater. 2023, 14, 434. [Google Scholar] [CrossRef]
- Wu, S.-D.; Chuang, W.-T.; Ho, J.-C.; Wu, H.-C.; Hsu, S. Self-Healing of Recombinant Spider Silk Gel and Coating. Polymers 2023, 15, 1855. [Google Scholar] [CrossRef]
- Branković, M.; Zivic, F.; Grujovic, N.; Stojadinovic, I.; Milenkovic, S.; Kotorcevic, N. Review of Spider Silk Applications in Biomedical and Tissue Engineering. Biomimetics 2024, 9, 169. [Google Scholar] [CrossRef]
- Latthe, S.S.; Terashima, C.; Nakata, K.; Fujishima, A. Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf. Molecules 2014, 19, 4256–4283. [Google Scholar] [CrossRef] [PubMed]
- Farzam, M.; Beitollahpoor, M.; Solomon, S.E.; Ashbaugh, H.S.; Pesika, N.S. Advances in the Fabrication and Characterization of Superhydrophobic Surfaces Inspired by the Lotus Leaf. Biomimetics 2022, 7, 196. [Google Scholar] [CrossRef]
- Collins, C.M.; Safiuddin, M. Lotus-Leaf-Inspired Biomimetic Coatings: Different Types, Key Properties, and Applications in Infrastructures. Infrastructures 2022, 7, 46. [Google Scholar] [CrossRef]
- Ge, H.; Liu, Y.; Liu, F. Up to Date Review of Nature-Inspired Superhydrophobic Textiles: Fabrication and Applications. Materials 2023, 16, 7015. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Wu, C.; Su, K.; Kan, X. Biomimetic Superhydrophobic Materials through 3D Printing: Progress and Challenges. Micromachines 2023, 14, 1216. [Google Scholar] [CrossRef]
- Gao, H.; Liu, Y.; Wang, G.; Li, S.; Han, Z.; Ren, L. Biomimetic metal surfaces inspired by lotus and reed leaves for manipulation of microdroplets or fluids. Appl. Surf. Sci. 2020, 519, 146052. [Google Scholar] [CrossRef]
- Piszter, G.; Kertész, K.; Bálint, Z.; Biró, L.P. Pretreated Butterfly Wings for Tuning the Selective Vapor Sensing. Sensors 2016, 16, 1446. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Guan, H.; Wang, Z.; Niu, S.; Han, Z. Biomimetic Slippery PDMS Film with Papillae-Like Microstructures for Antifogging and Self-Cleaning. Coatings 2021, 11, 238. [Google Scholar] [CrossRef]
- Lai, C.-J.; Tsai, H.-P.; Chen, J.-Y.; Wu, M.-X.; Chen, Y.-J.; Lin, K.-Y.; Yang, H.-T. Single-Step Fabrication of Longtail Glasswing Butterfly-Inspired Omnidirectional Antireflective Structures. Nanomaterials 2022, 12, 1856. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wang, Y.; Gao, W. 3D Modelling for Photonic Crystal Structure in Papilio maackii Wing Scales. Materials 2022, 15, 3334. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Rezapourian, M.; Rahmani, R.; Maurya, H.S.; Kamboj, N.; Hussainova, I. Bioinspired and Multifunctional Tribological Materials for Sliding, Erosive, Machining, and Energy-Absorbing Conditions: A Review. Biomimetics 2024, 9, 209. [Google Scholar] [CrossRef]
- Fang, Y.; Yong, J.; Chen, F.; Huo, J.; Yang, Q.; Zhang, J.; Hou, X. Bioinspired Fabrication of Bi/Tridirectionally Anisotropic Sliding Superhydrophobic PDMS Surfaces by Femtosecond Laser. Adv. Mater. Interfaces 2018, 5, 1701245. [Google Scholar] [CrossRef]
- Doraiswamy, A.; Narayan, R.J.; Cristescu, R.; Mihailescu, I.N.; Chrisey, D.B. Laser processing of natural mussel adhesive protein thin films. Mater. Sci. Eng. C 2007, 27, 409–413. [Google Scholar] [CrossRef]
- Pitta Kruize, C.; Panahkhahi, S.; Putra, N.E.; Diaz-Payno, P.; van Osch, G.; Zadpoor, A.A.; Mirzaali, M.J. Biomimetic Approaches for the Design and Fabrication of Bone-to-Soft Tissue Interfaces. ACS Biomater. Sci. Eng. 2023, 9, 3810–3831. [Google Scholar] [CrossRef]
- Dorcioman, G.; Grumezescu, V.; Stan, G.E.; Chifiriuc, M.C.; Gradisteanu, G.P.; Miculescu, F.; Matei, E.; Popescu-Pelin, G.; Zgura, I.; Craciun, V.; et al. Hydroxyapatite Thin Films of Marine Origin as Sustainable Candidates for Dental Implants. Pharmaceutics 2023, 15, 1294. [Google Scholar] [CrossRef]
- Duta, L.; Stan, G.E.; Popescu-Pelin, G.; Zgura, I.; Anastasescu, M.; Oktar, F.N. Influence of Post-Deposition Thermal Treatments on the Morpho-Structural, and Bonding Strength Characteristics of Lithium-Doped Biological-Derived Hydroxyapatite Coatings. Coatings 2022, 12, 1883. [Google Scholar] [CrossRef]
- Ackerl, N.; Bork, A.H.; Hauert, R.; Müller, E.; Rottmar, M. Rationally designed ultra-short pulsed laser patterning of zirconia-based ceramics tailored for the bone-implant interface. Appl. Surf. Sci. 2021, 545, 149020. [Google Scholar] [CrossRef]
- Jing, W.; Chunxi, Y.; Yizao, W.; Honglin, L.; Fang, H.; Kerong, D.; Yuan, H. Laser Patterning of Bacterial Cellulose Hydrogel and its Modification With Gelatin and Hydroxyapatite for Bone Tissue Engineering. Soft Mater. 2013, 11, 173–180. [Google Scholar] [CrossRef]
- Yan, J.; Huang, Y.; Chrisey, D.B. Laser-assisted printing of alginate long tubes and annular constructs. Biofabrication 2013, 5, 15002. [Google Scholar] [CrossRef]
- Pupilli, F.; Ruffini, A.; Dapporto, M.; Tavoni, M.; Tampieri, A.; Sprio, S. Design Strategies and Biomimetic Approaches for Calcium Phosphate Scaffolds in Bone Tissue Regeneration. Biomimetics 2022, 7, 112. [Google Scholar] [CrossRef]
- Liu, L.; Li, L.; Guo, C.; Ge, Y.; Chen, Y.; Zhang, L. The Design of a Biomimetic Hierarchical Thin-Walled Structure Inspired by a Lotus Leaf and Its Mechanical Performance Analysis. Materials 2023, 16, 4116. [Google Scholar] [CrossRef]
- Meyer, M.; Joel, A.-C. Age-Resilient Stickiness of Capture Threads. Arthropoda 2023, 1, 342–349. [Google Scholar] [CrossRef]
- Takei, H.; Nagata, K.; Frese, N.; Gölzhäuser, A.; Okamoto, T. Surface-Enhanced Raman Spectroscopy for Molecule Characterization: HIM Investigation into Sources of SERS Activity of Silver-Coated Butterfly Scales. Nanomaterials 2021, 11, 1741. [Google Scholar] [CrossRef] [PubMed]
- Jaggessar, A.; Shahali, H.; Mathew, A.; Yarlagadda, P.K.D. V Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants. J. Nanobiotechnol. 2017, 15, 64. [Google Scholar] [CrossRef]
- Liu, K.; Du, J.; Wu, J.; Jiang, L. Superhydrophobic gecko feet with high adhesive forces towards water and their bio-inspired materials. Nanoscale 2012, 4, 768–772. [Google Scholar] [CrossRef]
- Pei, X.; Liu, S.; Wei, A.; Shi, R.; Dai, Z. Bioinspired Rigid-Flexible Coupled Adaptive Compliant Motion Control of Robot Gecko for Space Stations. Biomimetics 2023, 8, 415. [Google Scholar] [CrossRef] [PubMed]
- Mahdavi, A.; Ferreira, L.; Sundback, C.; Nichol, J.W.; Chan, E.P.; Carter, D.J.D.; Bettinger, C.J.; Patanavanich, S.; Chignozha, L.; Ben-Joseph, E.; et al. A biodegradable and biocompatible gecko-inspired tissue adhesive. Proc. Natl. Acad. Sci. USA 2008, 105, 2307–2312. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.Y.; Mina, M.; Carbonneau, M.; Marchand, M.; Tran, S.D. Advancements in Wearable and Implantable Intraocular Pressure Biosensors for Ophthalmology: A Comprehensive Review. Micromachines 2023, 14, 1915. [Google Scholar] [CrossRef]
- Autumn, K.; Liang, Y.A.; Hsieh, S.T.; Zesch, W.; Chan, W.P.; Kenny, T.W.; Fearing, R.; Full, R.J. Adhesive force of a single gecko foot-hair. Nature 2000, 405, 681–685. [Google Scholar] [CrossRef]
- Wang, L.; Hui, Y.; Fu, C.; Wang, Z.; Zhang, M.; Zhang, T. Recent advances in Gecko-inspired adhesive materials and application. J. Adhes. Sci. Technol. 2020, 34, 2275–2291. [Google Scholar] [CrossRef]
- Mengüç, Y.; Röhrig, M.; Abusomwan, U.; Hölscher, H.; Sitti, M. Staying sticky: Contact self-cleaning of gecko-inspired adhesives. J. R. Soc. Interface 2014, 11, 20131205. [Google Scholar] [CrossRef]
- Jeong, J.; Kim, J.; Song, K.; Autumn, K.; Lee, J. Geckoprinting: Assembly of microelectronic devices on unconventional surfaces by transfer printing with isolated gecko setal arrays. J. R. Soc. Interface 2014, 11, 20140627. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liu, Y.; Xie, Z. Gecko-Like Dry Adhesive Surfaces and Their Applications: A Review. J. Bionic Eng. 2021, 18, 1011–1044. [Google Scholar] [CrossRef]
- Frost, S.J.; Mawad, D.; Higgins, M.J.; Ruprai, H.; Kuchel, R.; Tilley, R.D.; Myers, S.; Hook, J.M.; Lauto, A. Gecko-inspired chitosan adhesive for tissue repair. NPG Asia Mater. 2016, 8, e280. [Google Scholar] [CrossRef]
- Whitesides, G.M.; Ostuni, E.; Takayama, S.; Jiang, X.; Ingber, D.E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 2001, 3, 335–373. [Google Scholar] [CrossRef]
- Xia, Y.; Whitesides, G.M. Soft Lithography. Angew. Chem. Int. Ed. 1998, 37, 550–575. [Google Scholar] [CrossRef]
- Glassmaker, N.J.; Himeno, T.; Hui, C.-Y.; Kim, J. Design of biomimetic fibrillar interfaces: 1. Making contact. J. R. Soc. Interface 2004, 1, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Sitti, M.; Fearing, R.S. Synthetic gecko foot-hair micro/nano-structures as dry adhesives. J. Adhes. Sci. Technol. 2003, 17, 1055–1073. [Google Scholar] [CrossRef]
- Peressadko, A.; Gorb, S.N. WHEN LESS IS MORE: EXPERIMENTAL EVIDENCE FOR TENACITY ENHANCEMENT BY DIVISION OF CONTACT AREA. J. Adhes. 2004, 80, 247–261. [Google Scholar] [CrossRef]
- Badge, I.; Stark, A.Y.; Paoloni, E.L.; Niewiarowski, P.H.; Dhinojwala, A. The Role of Surface Chemistry in Adhesion and Wetting of Gecko Toe Pads. Sci. Rep. 2014, 4, 6643. [Google Scholar] [CrossRef] [PubMed]
- Gebeshuber, I.C. Biotribology inspires new technologies. Nano Today 2007, 2, 30–37. [Google Scholar] [CrossRef]
- del Campo, A.; Greiner, C.; Arzt, E. Contact Shape Controls Adhesion of Bioinspired Fibrillar Surfaces. Langmuir 2007, 23, 10235–10243. [Google Scholar] [CrossRef]
- Arzt, E.; Gorb, S.; Spolenak, R. From micro to nano contacts in biological attachment devices. Proc. Natl. Acad. Sci. USA 2003, 100, 10603–10606. [Google Scholar] [CrossRef]
- Aksak, B.; Murphy, M.P.; Sitti, M. Adhesion of Biologically Inspired Vertical and Angled Polymer Microfiber Arrays. Langmuir 2007, 23, 3322–3332. [Google Scholar] [CrossRef]
- Gao, H.; Wang, X.; Yao, H.; Gorb, S.; Arzt, E. Mechanics of hierarchical adhesion structures of geckos. Mech. Mater. 2005, 37, 275–285. [Google Scholar] [CrossRef]
- Bharat Bhushan, A.G.P.; Kim, T.-W. Adhesion analysis of two-level hierarchical morphology in natural attachment systems for “smart adhesion”. J. Adhes. Sci. Technol. 2006, 20, 1475–1491. [Google Scholar] [CrossRef]
- Kim, Y.; Chung, Y.; Tsao, A.; Maboudian, R. Tuning Micropillar Tapering for Optimal Friction Performance of Thermoplastic Gecko-Inspired Adhesive. ACS Appl. Mater. Interfaces 2014, 6, 6936–6943. [Google Scholar] [CrossRef]
- Kwak, M.K.; Pang, C.; Jeong, H.-E.; Kim, H.-N.; Yoon, H.; Jung, H.-S.; Suh, K.-Y. Towards the Next Level of Bioinspired Dry Adhesives: New Designs and Applications. Adv. Funct. Mater. 2011, 21, 3606–3616. [Google Scholar] [CrossRef]
- Geim, A.K.; Dubonos, S.V.; Grigorieva, I.V.; Novoselov, K.S.; Zhukov, A.A.; Shapoval, S.Y. Microfabricated adhesive mimicking gecko foot-hair. Nat. Mater. 2003, 2, 461–463. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, J.S.; Kamperman, M.; De Souza, E.J.; Schick, B.; Arzt, E. Adhesion of Biocompatible and Biodegradable Micropatterned Surfaces. Int. J. Artif. Organs 2011, 34, 180–184. [Google Scholar] [CrossRef]
- van Dam, J.P.B.; Abrahami, S.T.; Yilmaz, A.; Gonzalez-Garcia, Y.; Terryn, H.; Mol, J.M.C. Effect of surface roughness and chemistry on the adhesion and durability of a steel-epoxy adhesive interface. Int. J. Adhes. Adhes. 2020, 96, 102450. [Google Scholar] [CrossRef]
- Asbeck, A.; Dastoor, S.; Parness, A.; Fullerton, L.; Esparza, N.; Soto, D.; Heyneman, B.; Cutkosky, M. Climbing rough vertical surfaces with hierarchical directional adhesion. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 2675–2680. [Google Scholar]
- Hui, C.-Y.; Glassmaker, N.J.; Tang, T.; Jagota, A. Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion. J. R. Soc. Interface 2004, 1, 35–48. [Google Scholar] [CrossRef]
- Wang, Z.; Gu, P.; Wu, X. Gecko-inspired bidirectional double-sided adhesives. Soft Matter 2014, 10, 3301–3310. [Google Scholar] [CrossRef]
- Carlson, A.; Kim-Lee, H.-J.; Wu, J.; Elvikis, P.; Cheng, H.; Kovalsky, A.; Elgan, S.; Yu, Q.; Ferreira, P.M.; Huang, Y.; et al. Shear-enhanced adhesiveless transfer printing for use in deterministic materials assembly. Appl. Phys. Lett. 2011, 98, 264104. [Google Scholar] [CrossRef]
- Stark, A.Y.; Sullivan, T.W.; Niewiarowski, P.H. The effect of surface water and wetting on gecko adhesion. J. Exp. Biol. 2012, 215, 3080–3086. [Google Scholar] [CrossRef]
- Glass, P.; Cheung, E.; Sitti, M. A Legged Anchoring Mechanism for Capsule Endoscopes Using Micropatterned Adhesives. IEEE Trans. Biomed. Eng. 2008, 55, 2759–2767. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.H.; Kim, H.J.; Kim, K.; Yoon, G.; Wang, Y.; Choi, G.-S.; Lee, H.; Park, J.S. Multipurpose Intraperitoneal Adhesive Patches. Adv. Funct. Mater. 2019, 29, 1900495. [Google Scholar] [CrossRef]
- Xu, K.; Wu, X.; Zhang, X.; Xing, M. Bridging wounds: Tissue adhesives’ essential mechanisms, synthesis and characterization, bioinspired adhesives and future perspectives. Burns Trauma 2022, 10, tkac033. [Google Scholar] [CrossRef] [PubMed]
- Kharaziha, M.; Scheibel, T.; Salehi, S. Multifunctional naturally derived bioadhesives: From strategic molecular design toward advanced biomedical applications. Prog. Polym. Sci. 2024, 150, 101792. [Google Scholar] [CrossRef]
- Lee, H.; Lee, B.P.; Messersmith, P.B. A reversible wet/dry adhesive inspired by mussels and geckos. Nature 2007, 448, 338–341. [Google Scholar] [CrossRef]
- Borkner, C.B.; Elsner, M.B.; Scheibel, T. Coatings and Films Made of Silk Proteins. ACS Appl. Mater. Interfaces 2014, 6, 15611–15625. [Google Scholar] [CrossRef] [PubMed]
- Franco, A.R.; Fernandes, E.M.; Rodrigues, M.T.; Rodrigues, F.J.; Gomes, M.E.; Leonor, I.B.; Kaplan, D.L.; Reis, R.L. Antimicrobial coating of spider silk to prevent bacterial attachment on silk surgical sutures. Acta Biomater. 2019, 99, 236–246. [Google Scholar] [CrossRef]
- Gustafsson, L.; Jansson, R.; Hedhammar, M.; van der Wijngaart, W. Structuring of Functional Spider Silk Wires, Coatings, and Sheets by Self-Assembly on Superhydrophobic Pillar Surfaces. Adv. Mater. 2018, 30, 1704325. [Google Scholar] [CrossRef]
- Salehi, S.; Koeck, K.; Scheibel, T. Spider Silk for Tissue Engineering Applications. Molecules 2020, 25, 737. [Google Scholar] [CrossRef]
- Miroiu, F.M.; Socol, G.; Visan, A.; Stefan, N.; Craciun, D.; Craciun, V.; Dorcioman, G.; Mihailescu, I.N.; Sima, L.E.; Petrescu, S.M.; et al. Composite biocompatible hydroxyapatite–silk fibroin coatings for medical implants obtained by Matrix Assisted Pulsed Laser Evaporation. Mater. Sci. Eng. B 2010, 169, 151–158. [Google Scholar] [CrossRef]
- Miroiu, F.M.; Stefan, N.; Visan, A.I.; Nita, C.; Luculescu, C.R.; Rasoga, O.; Socol, M.; Zgura, I.; Cristescu, R.; Craciun, D.; et al. Composite biodegradable biopolymer coatings of silk fibroin—Poly(3-hydroxybutyric-acid-co-3-hydroxyvaleric-acid) for biomedical applications. Appl. Surf. Sci. 2015, 355, 1123–1131. [Google Scholar] [CrossRef]
- Ma, J.; Sun, Y.; Gleichauf, K.; Lou, J.; Li, Q. Nanostructure on Taro Leaves Resists Fouling by Colloids and Bacteria under Submerged Conditions. Langmuir 2011, 27, 10035–10040. [Google Scholar] [CrossRef] [PubMed]
- Dongre, G.; Rajurkar, A.; Raut, R.; Jangam, S. Preparation of super-hydrophobic textures by using nanosecond pulsed laser. Mater. Today Proc. 2021, 42, 1145–1151. [Google Scholar] [CrossRef]
- Bai, H.; Zhang, L.; Gu, D. Micrometer-sized spherulites as building blocks for lotus leaf-like superhydrophobic coatings. Appl. Surf. Sci. 2018, 459, 54–62. [Google Scholar] [CrossRef]
- Xu, P.; Sui, X.; Wang, S.; Liu, G.; Ge, A.; Coyle, T.W.; Mostaghimi, J. Superhydrophobic ceramic coatings with lotus leaf-like hierarchical surface structures deposited via suspension plasma spray process. Surf. Interfaces 2023, 38, 102780. [Google Scholar] [CrossRef]
- Hanh, V.T.H.; Truong, M.X.; Tan, T.Q.; Nguyen, T.-B. Nature-inspired slippery polymer thin film for ice-repellent applications. Bioinspired Biomim. Nanobiomater. 2021, 10, 107–113. [Google Scholar] [CrossRef]
- Cheng, Y.T.; Rodak, D.E.; Wong, C.A.; Hayden, C.A. Effects of micro- and nano-structures on the self-cleaning behaviour of lotus leaves. Nanotechnology 2006, 17, 1359. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, T.; Bian, R.; Wang, G.; Liu, H. Robust Superhydrophobic Carbon Nanotube Film with Lotus Leaf Mimetic Multiscale Hierarchical Structures. ACS Nano 2017, 11, 12385–12391. [Google Scholar] [CrossRef]
- Elbaz, A.; Gao, B.; He, Z.; Gu, Z. Hepatocyte Aggregate Formation on Chitin-Based Anisotropic Microstructures of Butterfly Wings. Biomimetics 2018, 3, 2. [Google Scholar] [CrossRef]
- Diu, T.; Faruqui, N.; Sjöström, T.; Lamarre, B.; Jenkinson, H.F.; Su, B.; Ryadnov, M.G. Cicada-inspired cell-instructive nanopatterned arrays. Sci. Rep. 2014, 4, 7122. [Google Scholar] [CrossRef]
- Hasan, J.; Webb, H.K.; Truong, V.K.; Pogodin, S.; Baulin, V.A.; Watson, G.S.; Watson, J.A.; Crawford, R.J.; Ivanova, E.P. Selective bactericidal activity of nanopatterned superhydrophobic cicada Psaltoda claripennis wing surfaces. Appl. Microbiol. Biotechnol. 2013, 97, 9257–9262. [Google Scholar] [CrossRef] [PubMed]
- Bixler, G.D.; Theiss, A.; Bhushan, B.; Lee, S.C. Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves and butterfly wings. J. Colloid Interface Sci. 2014, 419, 114–133. [Google Scholar] [CrossRef]
- Osotsi, M.I.; Zhang, W.; Zada, I.; Gu, J.; Liu, Q.; Zhang, D. Butterfly wing architectures inspire sensor and energy applications. Natl. Sci. Rev. 2021, 8, nwaa107. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, H.; Wei, H.; Cheng, H.; Cai, J.; Chen, X.; Xia, L.; Wang, H.; Chai, R. Scaffolds with anisotropic structure for neural tissue engineering. Eng. Regen. 2022, 3, 154–162. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, L.; Hao, Z.; Liu, Y.; Ma, Y.; Li, W.; Yang, T.; Teng, W. 3D-printing bionic-patterned zirconia via stereolithography promotes soft tissue integration for ceramic implants. Ceram. Int. 2023, 49, 21602–21612. [Google Scholar] [CrossRef]
- Hasan, J.; Crawford, R.J.; Ivanova, E.P. Antibacterial surfaces: The quest for a new generation of biomaterials. Trends Biotechnol. 2013, 31, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; de Groot, K.; Wang, D.; Hu, Q.; Wismeijer, D.; Liu, Y. A review paper on biomimetic calcium phosphate coatings. Open Biomed. Eng. J. 2015, 9, 56–64. [Google Scholar] [CrossRef]
- Visan, A.; Stan, G.E.; Ristoscu, C.; Popescu-Pelin, G.; Sopronyi, M.; Besleaga, C.; Luculescu, C.; Chifiriuc, M.C.; Hussien, M.D.; Marsan, O.; et al. Combinatorial MAPLE deposition of antimicrobial orthopedic maps fabricated from chitosan and biomimetic apatite powders. Int. J. Pharm. 2016, 511, 505–515. [Google Scholar] [CrossRef]
Advantages | Limitations | References |
---|---|---|
PRECISION: Laser techniques allow for high level of accuracy, ensuring precise surface structuring or deposition of coatings. | COST: Laser deposition/structuring methods are expensive due to the need for high-end technical equipment. | [34] |
SURFACE QUALITY: The technique results in excellent surface quality essential for medical purposes. | SKILL REQUIREMENT: Operation of laser equipment requires trained professionals, limiting its widespread use. | [35] |
VERSATILIY: These techniques allow the processing of various materials, thus allowing the obtaining of biomimetic surfaces | EQUIPMENT SIZE: The equipment used for laser deposition/structuring is generally large and not suitable for small operations. | [36] |
PROCESS CONTROL: Enable strict control of the structuring and deposition process resulting in surfaces with desired properties. | HEAT: Laser techniques produce high levels of heat which could cause damage to sensitive materials. | [37] |
RAPID PROTOTYPING: Laser techniques enable fast fabrication for rapid testing and deployment. | COMPATIBILITY: Some materials may not be compatible with laser deposition/structuring techniques. | [38] |
ENVIRONMENT FRIENDLY: Most laser techniques do not use harmful chemicals. | SCALABILITY: Scaling up the production could be challenging and expensive (factors such as cost, processing speed, and resolution may also impact the feasibility of laser patterning for certain applications). Also, the potential for thermal damage to the material being processed, limited depth of focus leading to difficulty in patterning complex structures, and restrictions on the types of materials that can be effectively patterned using laser technology. | [39] |
Type of Surface Functionalization | Laser Technique | Applicability | Types of Lasers Used for Fabrication of Biomimetic Coatings | Ref. |
---|---|---|---|---|
Biomimetic coatings deposition | Pulsed Laser Deposition—(PLD) [51,52,53] | Implantable medical devices, wound healing, tissue engineering, drug delivery | Nd:YAG, UV Excimer (e.g., ArF* and KrF*) | [35,37,54,55,56,57] |
Matrix Assisted Pulsed Laser Evaporation (MAPLE) [51,58] | ||||
Laser surface structuring (micro- or nanoscale) | Two-Photon Lithography [59] | Implantable medical devices (e.g., cardiovascular bare-metal stents [60], orthopedic applications [61]), tissue engineering, drug delivery | CO2 UV Excimer, Diode laser | [62,63,64,65]; [21,66,67,68,69,70]; [71,72,73] |
Direct Laser Interference Patterning (DLIP) [74,75,76] | ||||
Laser-Induced Periodic Surface Structure (LIPSS) [77,78] | ||||
Direct Laser Writing (DLW) [79,80] | ||||
Laser-Induced Forward Transfer (LIFT) [81,82] | ||||
Femtosecond Laser Ablation of Metals in Organic Solvents—(FLAMOS) [83,84] |
Biomimetic Surfaces | Medical Application as Nature-Inspired Biomimetic Surfaces | References |
---|---|---|
Gecko-inspired Surfaces | Geckos’ ability to stick and unstick their feet on surfaces has inspired the development of surfaces with similar properties. These could be used for bandages, wound healing dressings, or to create bio-adhesive materials for medical equipment or wound closure. | [22,164,165,166,167,168,169] |
Spider Silk-inspired Surfaces | Extremely strong and lightweight, spider silk-inspired surfaces have been studied for potential use in sutures, ligament/tendon repair, or as a medium for drug delivery. | [170,171,172,173,174,175] |
Lotus Leaf-inspired Surfaces | The water-repellent and self-cleaning properties of lotus leaf have inspired the development of laser structured/patterned surfaces with anti-fouling, bacteriostatic effect for implants functionalization, or to reduce microbial contamination on various medical tools. | [89,155,176,177,178,179,180,181] |
Insects Wing-inspired Surfaces | The structure of butterfly wings can be mimicked to develop surfaces with unique optical properties. These structures could be used in medical imaging and sensing applications, or for creating visually appealing prosthetics or therapeutic devices. | [89,182,183,184,185,186,187] |
Tissue-like-inspired surfaces | The laser-structured surfaces and the biomimetic coatings based on synthetic or natural origin apatite (e.g., bovine, marine-derived hydroxyapatite, mussels), polymers, etc., emulate the unique structural and functional properties found in nature, leading to innovations in the biomedical fields. Laser induced 3D micro-channels or cavities of various shapes and sizes, enables the development of vascular networks that closely resemble those found in living organisms. | [51,58,149, 188,189,190,191,192,193,194] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visan, A.I.; Popescu-Pelin, G.F. Advanced Laser Techniques for the Development of Nature-Inspired Biomimetic Surfaces Applied in the Medical Field. Coatings 2024, 14, 1290. https://doi.org/10.3390/coatings14101290
Visan AI, Popescu-Pelin GF. Advanced Laser Techniques for the Development of Nature-Inspired Biomimetic Surfaces Applied in the Medical Field. Coatings. 2024; 14(10):1290. https://doi.org/10.3390/coatings14101290
Chicago/Turabian StyleVisan, Anita Ioana, and Gianina Florentina Popescu-Pelin. 2024. "Advanced Laser Techniques for the Development of Nature-Inspired Biomimetic Surfaces Applied in the Medical Field" Coatings 14, no. 10: 1290. https://doi.org/10.3390/coatings14101290
APA StyleVisan, A. I., & Popescu-Pelin, G. F. (2024). Advanced Laser Techniques for the Development of Nature-Inspired Biomimetic Surfaces Applied in the Medical Field. Coatings, 14(10), 1290. https://doi.org/10.3390/coatings14101290