Development of Pericarp-Based Coatings from Corn Nixtamalization Residue for Stone Fruits: Applications for Peach and Tejocote
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Nixtamalization
2.3. Preparation of Film
2.4. Films Characterization
2.4.1. Scanning Electron Microscopy (SEM) and Image Analysis
2.4.2. Color
2.4.3. Determination of Moisture Content
2.4.4. Water Solubility
2.4.5. Water Adsorption Capacity (WA)
2.4.6. Mechanical Properties
2.5. Fruit Treatment
2.5.1. Color Analysis of Peel and Mesocarp
2.5.2. Weight Loss
2.5.3. Fruits Firmness
2.5.4. Total Soluble Solids and Titratable Acidity
2.5.5. Total and Reducing Sugars
3. Results
3.1. Film Characterization
3.1.1. Structural Characterization
3.1.2. Color
3.1.3. Mechanical and Barrier Properties
3.2. Fruits Characterization
3.2.1. Color of Mesocarp Films and Peel of Coated Fruits
3.2.2. Fruit Weight Loss
3.2.3. Mechanical Properties of Fruits
3.2.4. Total Soluble Solids (TSS) and Titratable Acidity (TA)
3.2.5. Total and Reducing Sugars
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rojas-Candelas, L.E.; Díaz-Ramírez, M.; Rayas-Amor, A.A.; Cruz-Monterrosa, R.G.; Méndez-Méndez, J.V.; Salgado-Cruz, M.D.l.P.; Calderón-Domínguez, G.; Cortés-Sánchez, A.D.J.; González-Vázquez, M. Development of Biodegradable Films Produced from Residues of Nixtamalization of Popcorn. Appl. Sci. 2023, 13, 8436. [Google Scholar] [CrossRef]
- Riva, S.C.; Opara, U.O.; Fawole, O.A. Recent developments on postharvest application of edible coatings on stone fruit: A review. Sci. Hortic. 2020, 262, 109074. [Google Scholar] [CrossRef]
- Velickova, E.; Winkelhausen, E.; Kuzmanova, S.; Alves, V.D.; Moldão-Martins, M. Impact of Chitosan-Beeswax Edible Coatings on the Quality of Fresh Strawberries (Fragaria ananassa Cv Camarosa) under Commercial Storage Conditions. LWT 2013, 52, 80–92. [Google Scholar] [CrossRef]
- Ruzaina, I.; Norizzah, A.R.; Zahrah Halimahton, M.S.; Cheow, C.S.; Adi, M.S.; Noorakmar, A.W.; Mohd Zhaid, A. Utilisation of Palm-Based and Beeswax Coating on the Postharvest-Life of Guava (Psidium guajava L.) during Ambient and Chilled Storage. Int. Food Res. J. 2013, 20, 265. [Google Scholar]
- Hernández-Varela, J.D.; Chanona-Pérez, J.J.; Resendis-Hernández, P.; Gonzalez Victoriano, L.; Méndez-Méndez, J.V.; Cárdenas-Pérez, S.; Calderón Benavides, H.A. Development and Characterization of Biopolymers Films Mechanically Reinforced with Garlic Skin Waste for Fabrication of Compostable Dishes. Food Hydrocoll. 2022, 124, 107252. [Google Scholar] [CrossRef]
- Colussi, R.; Pinto, V.Z.; Lisie, S.; El Halal, M.; Da, E.; Zavareze, R.; Renato, A.; Dias, G. Physical, Mechanical, and Thermal Properties of Biodegradables Films of Rice Starch. Curr. Agric. Sci. Technol. 2014, 20. [Google Scholar]
- Abdullah, Z.W.; Dong, Y. Biodegradable and Water Resistant Poly(Vinyl) Alcohol (PVA)/Starch (ST)/Glycerol (GL)/Halloysite Nanotube (HNT) Nanocomposite Films for Sustainable Food Packaging. Front. Mater. 2019, 6, 58. [Google Scholar] [CrossRef]
- Guillard, V.; Gaucel, S.; Fornaciari, C.; Angellier-Coussy, H.; Buche, P.; Gontard, N. The next generation of sustainable food packaging to preserve our environment in a circular economy context. Front. Nutr. 2018, 5, 121. [Google Scholar] [CrossRef]
- Niño-Medina, G.; Carvajal-Millán, E.; Lizardi, J.; Rascon-Chu, A.; Marquez-Escalante, J.A.; Gardea, A.; Martinez-Lopez, A.L.; Guerrero, V. Maize processing wastewater arabinoxylans: Gelling capability and cross-linking content. Food Chem. 2009, 115, 1286–1290. [Google Scholar] [CrossRef]
- Rojas-Candelas, L.E.; Díaz-Ramírez, M.; Rayas-Amor, A.A.; Cruz-Monterrosa, R.G.; Méndez-Méndez, J.V.; Villanueva-Carvajal, A.; Cortés-Sánchez, A.D.J. Nanomechanical, Structural and Antioxidant Characterization of Nixtamalized Popcorn Pericarp. Appl. Sci. 2022, 12, 6789. [Google Scholar] [CrossRef]
- Haug, W.; Lantzsch, H.J. Sensitive method for the rapid determination of phytate in cereals and cereal products. J. Sci. Food Agric. 1983, 34, 1423–1426. [Google Scholar] [CrossRef]
- Coco, M.G., Jr.; Vinson, J.A. Analysis of popcorn (Zea mays L. var. everta) for antioxidant capacity and total phenolic content. Antioxidants 2019, 8, 22. [Google Scholar] [CrossRef] [PubMed]
- Arredondo-Tamayo, B.; Méndez-Méndez, J.V.; Chanona-Pérez, J.J.; Hernández-Varela, J.D.; González-Victoriano, L.; Gallegos-Cerda, S.D.; Martínez-Mercado, E. Study of gellan gum films reinforced with eggshell nanoparticles for the elaboration of eco-friendly packaging. Food Struct. 2022, 34, 100297. [Google Scholar] [CrossRef]
- Official Methods of Analysis; AOAC International: Gaithersburg, MD, USA, 2005.
- E8/E8M−13a; Standard Test Method for Tensile Properties of Plastics. Standard Test Method International: Conshohocken, PA, USA, 2015.
- D638-14; Standard Test Method for Tensile Properties of Plastics. Standard Test Method International: Conshohocken, PA, USA, 2015.
- Thakur, S.; Kumar, R.; Vikal, Y.; Vyas, P.; Sheikh, I.; Dhaliwal, H.S. Molecular mapping of popping volume QTL in popcorn (Zea maize L.). J. Plant Biochem. Biotechnol. 2021, 30, 496–503. [Google Scholar] [CrossRef]
- Karababa, E. Physical properties of popcorn kernels. J. Food Eng. 2006, 72, 100–107. [Google Scholar] [CrossRef]
- Sweley, J.C.; Rose, D.J.; Jackson, D.S. Quality Traits and Popping Performance Considerations for Popcorn (Zea mays Everta). Food Rev. Int. 2013, 29, 157–177. [Google Scholar] [CrossRef]
- Billmeyer, F.W.; Wiley, J. Text Polymer Book, 3rd ed; A Wiley-Interscience Publication: Hoboken, NJ, USA, 1984; pp. 246–253. [Google Scholar]
- Goulao, L.F.; Oliveira, C.M. Cell wall modifications during fruit ripening: When a fruit is not the fruit. Trends Food Sci. Technol. 2008, 19, 4–25. [Google Scholar] [CrossRef]
- Sakurai, N.; Nevins, D.J. Relationship between Fruit Softening and Wall Polysaccharides in Avocado (Persea americana Mill) Mesocarp Tissues. Plant Cell Physiol. 1997, 38, 603–610. [Google Scholar] [CrossRef]
- Gaona-Sánchez, V.A.; Calderón-Domínguez, G.; Morales-Sánchez, E.; Chanona-Pérez, J.J.; Arzate-Vázquez, I.; Terrés-Rojas, E. Pectin-based films produced by electrospraying. Appl. Polym. Sci. 2016, 133, 43779. [Google Scholar] [CrossRef]
- Rhim, J.W.; Park, H.M.; Ha, C.S. Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 2013, 38, 1629–1652. [Google Scholar] [CrossRef]
- Galus, S.; Lenart, A. Development and characterization of composite edible films based on sodium alginate and pectin. J. Food Eng. 2013, 115, 459–465. [Google Scholar] [CrossRef]
- Ghanbarzadeh, B.; Almasi, H.; Entezami, A.A. Physical properties of edible modified starch/carboxymethyl cellulose films. Innov. Food Sci. Emerg. Technol. 2010, 11, 697–702. [Google Scholar] [CrossRef]
- Paschoalick, T.M.; Garcia, F.T.; Sobral, P.J.A.; Habitante, A.M.Q.B. Characterization of some functional properties of edible films based on muscle proteins of Nile Tilapia. Food Hydrocoll. 2003, 17, 419–427. [Google Scholar] [CrossRef]
- Bátori, V.; Jabbari, M.; Åkesson, D.; Lennartsson, P.R.; Taherzadeh, M.J.; Zamani, A. Production of Pectin-Cellulose Biofilms: A New Approach for Citrus Waste Recycling. Int. J. Polym. Sci. 2017, 2017, 9732329. [Google Scholar] [CrossRef]
- Diyana, Z.N.; Jumaidin, R.; Selamat, M.Z.; Suan, M.S.M. Thermoplastic starch / beeswax blend: Characterization on thermal mechanical and moisture absorption properties. Int. J. Biol. Macromol. 2021, 190, 224–232. [Google Scholar] [CrossRef]
- Mederos-Torres, Y.; Bernabe-Galloway, P.; Ramirez-Arrebato, M.A. Polysaccharide-based films as biodegradable coatings in fruits postharvest. Cultiv. Trop. 2020, 41, e09. [Google Scholar]
- Li, C.; Tao, J.; Zhang, H. Peach gum polysaccharides-based edible coatings extend shelf life of cherry tomatoes. Biotech 2017, 7, 168. [Google Scholar] [CrossRef]
Sample | M (g/100 g) | WS (g/100 g) | WA (g/100 g) |
---|---|---|---|
Film | 10.60 ± 0.78 | 22.00 ± 1.20 | 162.00 ± 1.28 |
Parameter | Avocados | Peach | Tejocote | ||||
---|---|---|---|---|---|---|---|
Day | Control | Pericarp | Control | Pericarp | Control | Pericarp | |
TA (g acid/100 g) | 0 | 0.11 ± 0.01 | 0.11 ± 0.01 | 0.83 ± 0.04 | 0.83 ± 0.04 | 3.98 ± 0.04 | 3.98 ± 0.04 |
3 | 0.07 ± 0.01 a | 0.09 ± 0.01 a | 0.83 ± 0.04 a | 0.75 ± 0.03 a | 3.91 ± 0.04 a | 3.88 ± 0.01 a | |
7 | 0.07 ± 0.01 | 0.07 ± 0.01 | 0.69 ± 0.04 | 0.70 ± 0.04 | 3.55 ± 0.01 | 3.55 ± 0.01 | |
TSS (°Brix) | 0 | 0.65 ± 0.07 | 0.65 ± 0.01 | 0.66 ± 0.05 | 0.66 ± 0.05 | 1.33 ± 0.05 | 1.33 ± 0.05 |
3 | 1.13 ± 0.05 a | 0.3 ± 0.01 a | 0.75 ± 0.07 a | 0.97 ± 0.1 a | 1.66 ± 0.05 a | 1.83 ± 0.05 a | |
7 | 1.2 ± 0.01 a | 1.4 ± 0.05 a | 1.40 ± 0.01 b | 0.83 ± 0.05 b | 1.60 ± 0.01 | 1.60 ± 0.02 |
Parameter | Avocados | Peach | Tejocote | ||||
---|---|---|---|---|---|---|---|
Day | Control | Pericarp | Control | Pericarp | Control | Pericarp | |
Total sugar (%) | 0 | 29.80 ± 0.43 | 29.80 ± 0.43 | 16.90 ± 0.84 | 16.90 ± 0.84 | 45 ± 1.35 | 45.60 ± 1.35 |
3 | 22.30 ± 1.50 a | 28.50 ± 0.49 a | 36.30 ± 1.50 a | 62.20 ± 2.86 a | 58.60 ± 0.28 a | 48.10 ± 2.55 a | |
7 | 23.50 ± 1.76 | 26.00 ± 1.03 | 60.80 ± 1.53 b | 79.30 ± 2.66 b | 67.10 ± 0.80 | 70.00 ± 2.44 | |
Reductor sugar (%) | 0 | 2.30 ± 0.30 | 2.30 ± 0.30 | 3.83 ± 0.12 | 3.83 ± 0.12 | 2.17 ± 0.04 | 2.17 ± 0.04 |
3 | 2.46 ± 0.04 | 3.36 ± 0.21 | 2.01 ± 0.06 | 2.33 ± 0.08 | 1.04 ± 0.10 b | 1.64 ± 0.05 b | |
7 | 3.97 ± 0.13 | 4.30 ± 0.08 | 3.92 ± 0.084 | 2.54 ± 0.03 | 2.84 ± 0.07 c | 4.24 ± 0.22 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas-Candelas, L.E.; Duque-Buitrago, L.F.; Díaz-Ramírez, M.; González-Vázquez, M.; Arredondo-Tamayo, B.; Méndez-Méndez, J.V.; Rentería-Ortega, M.; Quiroz-Estrada, K. Development of Pericarp-Based Coatings from Corn Nixtamalization Residue for Stone Fruits: Applications for Peach and Tejocote. Coatings 2024, 14, 1296. https://doi.org/10.3390/coatings14101296
Rojas-Candelas LE, Duque-Buitrago LF, Díaz-Ramírez M, González-Vázquez M, Arredondo-Tamayo B, Méndez-Méndez JV, Rentería-Ortega M, Quiroz-Estrada K. Development of Pericarp-Based Coatings from Corn Nixtamalization Residue for Stone Fruits: Applications for Peach and Tejocote. Coatings. 2024; 14(10):1296. https://doi.org/10.3390/coatings14101296
Chicago/Turabian StyleRojas-Candelas, Liliana Edith, Luisa Fernanda Duque-Buitrago, Mayra Díaz-Ramírez, Marcela González-Vázquez, Benjamín Arredondo-Tamayo, Juan V. Méndez-Méndez, Minerva Rentería-Ortega, and Karla Quiroz-Estrada. 2024. "Development of Pericarp-Based Coatings from Corn Nixtamalization Residue for Stone Fruits: Applications for Peach and Tejocote" Coatings 14, no. 10: 1296. https://doi.org/10.3390/coatings14101296
APA StyleRojas-Candelas, L. E., Duque-Buitrago, L. F., Díaz-Ramírez, M., González-Vázquez, M., Arredondo-Tamayo, B., Méndez-Méndez, J. V., Rentería-Ortega, M., & Quiroz-Estrada, K. (2024). Development of Pericarp-Based Coatings from Corn Nixtamalization Residue for Stone Fruits: Applications for Peach and Tejocote. Coatings, 14(10), 1296. https://doi.org/10.3390/coatings14101296