Laser Control of Specular and Diffuse Reflectance of Thin Aluminum Film-Isolator-Metal Structures for Anti-Counterfeiting and Plasmonic Color Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication
2.2. Laser Modification
2.3. Characterization
2.4. Electromagnetic Simulations and Color Coordinates Calculation
3. Results and Discussion
3.1. Laser Printing
3.2. Time Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kinoshita, S.; Yoshioka, S.; Miyazaki, J. Physics of structural colors. Rep. Prog. Phys. 2008, 71, 076401. [Google Scholar] [CrossRef]
- Kinoshita, S.; Yoshioka, S.; Kawagoe, K. Mechanisms of structural colour in the Morpho butterfly: Cooperation of regularity and irregularity in an iridescent scale. Proc. R. Soc. B Biol. Sci. 2002, 269, 1417–1421. [Google Scholar] [CrossRef]
- Schultz, T.D.; Rankin, M.A. Developmental Changes in the Interference Reflectors and Colorations of Tiger Beetles (Cicindela). J. Exp. Biol. 1985, 117, 111–117. [Google Scholar] [CrossRef]
- Cai, W.; Chettiar, U.K.; Yuan, H.-K.; de Silva, V.C.; Kildishev, A.V.; Drachev, V.P.; Shalaev, V.M. Metamagnetics with rainbow colors. Opt. Express 2007, 15, 3333. [Google Scholar] [CrossRef]
- Kumar, K.; Duan, H.; Hegde, R.S.; Koh, S.C.W.; Wei, J.N.; Yang, J.K.W. Printing colour at the optical diffraction limit. Nat. Nanotechnol. 2012, 7, 557–561. [Google Scholar] [CrossRef]
- Song, M.; Feng, L.; Huo, P.; Liu, M.; Huang, C.; Yan, F.; Lu, Y.Q.; Xu, T. Versatile full-colour nanopainting enabled by a pixelated plasmonic metasurface. Nat. Nanotechnol. 2023, 18, 71–78. [Google Scholar] [CrossRef]
- Vynck, K.; Pacanowski, R.; Agreda, A.; Dufay, A.; Granier, X.; Lalanne, P. The visual appearances of disordered optical metasurfaces. Nat. Mater. 2022, 21, 1035–1041. [Google Scholar] [CrossRef]
- Heydari, E.; Sperling, J.R.; Neale, S.L.; Clark, A.W. Plasmonic Color Filters as Dual-State Nanopixels for High-Density Microimage Encoding. Adv. Funct. Mater. 2017, 27, 1701866. [Google Scholar] [CrossRef]
- Tan, S.J.; Zhang, L.; Zhu, D.; Goh, X.M.; Wang, Y.M.; Kumar, K.; Qiu, C.W.; Yang, J.K.W. Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett. 2014, 14, 4023–4029. [Google Scholar] [CrossRef]
- Huang, Y.W.; Chen, W.T.; Tsai, W.Y.; Wu, P.C.; Wang, C.M.; Sun, G.; Tsai, D.P. Aluminum plasmonic multicolor meta-Hologram. Nano Lett. 2015, 15, 3122–3127. [Google Scholar] [CrossRef]
- Zhao, J.; Yu, X.; Zhou, K.; Zhang, W.; Yuan, W.; Yu, Y. Polarization-sensitive subtractive structural color used for information encoding and dynamic display. Opt. Lasers Eng. 2021, 138, 106421. [Google Scholar] [CrossRef]
- Ng, R.J.H.; Krishnan, R.V.; Wang, H.; Yang, J.K.W. Darkfield colors from multi-periodic arrays of gap plasmon resonators. Nanophotonics 2020, 9, 533–545. [Google Scholar] [CrossRef]
- Xie, Z.-W.; Yang, J.-H.; Vashistha, V.; Lee, W.; Chen, K.-P. Liquid-crystal tunable color filters based on aluminum metasurfaces. Opt. Express 2017, 25, 30764. [Google Scholar] [CrossRef]
- Zhu, X.; Vannahme, C.; Højlund-Nielsen, E.; Mortensen, N.A.; Kristensen, A. Plasmonic colour laser printing. Nat. Nanotechnol. 2016, 11, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shi, L.; Hu, D.; Chen, S.; Xie, S.; Lu, Y.; Cao, Y.; Zhu, Z.; Jin, L.; Guan, B.-O.; et al. Full-visible multifunctional aluminium metasurfaces by in situ anisotropic thermoplasmonic laser printing. Nanoscale Horiz. 2019, 4, 601–609. [Google Scholar] [CrossRef]
- Wang, H.; Ruan, Q.; Wang, H.; Rezaei, S.D.; Lim, K.T.P.; Liu, H.; Zhang, W.; Trisno, J.; Chan, J.Y.E.; Yang, J.K.W. Full Color and Grayscale Painting with 3D Printed Low-Index Nanopillars. Nano Lett. 2021, 21, 4721–4729. [Google Scholar] [CrossRef]
- Song, M.; Wang, D.; Kudyshev, Z.A.; Xuan, Y.; Wang, Z.; Boltasseva, A.; Shalaev, V.M.; Kildishev, A.V. Enabling Optical Steganography, Data Storage, and Encryption with Plasmonic Colors. Laser Photonics Rev. 2021, 15, 2000343. [Google Scholar] [CrossRef]
- Lee, H.S.; Shim, T.S.; Hwang, H.; Yang, S.M.; Kim, S.H. Colloidal photonic crystals toward structural color palettes for security materials. Chem. Mater. 2013, 25, 2684–2690. [Google Scholar] [CrossRef]
- Dobrowolski, J.A. Versatile computer program for absorbing optical thin film systems. Appl. Opt. 1981, 20, 74. [Google Scholar] [CrossRef]
- Kats, M.A.; Blanchard, R.; Genevet, P.; Capasso, F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 2013, 12, 20–24. [Google Scholar] [CrossRef]
- Roberts, A.S.; Novikov, S.M.; Yang, Y.; Chen, Y.; Boroviks, S.; Beermann, J.; Mortensen, N.A.; Bozhevolnyi, S.I. Laser Writing of Bright Colors on Near-Percolation Plasmonic Reflector Arrays. ACS Nano 2019, 13, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Nyga, P.; Chowdhury, S.N.; Kudyshev, Z.; Thoreson, M.D.; Kildishev, A.V.; Shalaev, V.M.; Boltasseva, A. Laser-induced color printing on semicontinuous silver films: Red, green and blue. Opt. Mater. Express 2019, 9, 1528. [Google Scholar] [CrossRef]
- Nowak, M.P.; Stępak, B.; Pielach, M.; Stepanenko, Y.; Wojciechowski, T.; Bartosewicz, B.; Chodorow, U.; Wachulak, P.; Nyga, P. Femtosecond laser modification of plasmonic color and diffuse reflectance of semicontinuous aluminum film-insulator-metal mirror structures. In Proceedings SPIE 12131, Nanophotonics IX, 121310W (24 May 2022); SPIE: Bellingham, WA, USA, 2022; p. 90. [Google Scholar] [CrossRef]
- Cencillo-Abad, P.; Franklin, D.; Mastranzo-Ortega, P.; Sanchez-Mondragon, J.; Chanda, D. Ultralight plasmonic structural color paint. Sci. Adv. 2023, 9, eadf7207. [Google Scholar] [CrossRef]
- Chowdhury, S.N.; Nyga, P.; Kudyshev, Z.A.; Bravo, E.G.; Lagutchev, A.S.; Kildishev, A.V.; Shalaev, V.M.; Boltasseva, A. Lithography-Free Plasmonic Color Printing with Femtosecond Laser on Semicontinuous Silver Films. ACS Photonics 2021, 8, 521–530. [Google Scholar] [CrossRef]
- Nyga, P.; Kildishev, A.V.; Chowdhury, S.N.; Boltasseva, A.; Kudyshev, Z.; Shalaev, V.M. Optical Device, Method of Using the Same, and Method of Making the Same. US11733507B2, 22 August 2023. [Google Scholar]
- Chowdhury, S.N.; Simon, J.; Nowak, M.P.; Pagadala, K.; Nyga, P.; Fruhling, C.; Bravo, E.G.; Maćkowski, S.; Shalaev, V.M.; Kildishev, A.V.; et al. Wide-Range Angle-Sensitive Plasmonic Color Printing on Lossy-Resonator Substrates. Adv. Opt. Mater. 2023, 12, 2301678. [Google Scholar] [CrossRef]
- Geng, J.; Xu, L.; Yan, W.; Shi, L.; Qiu, M. High-speed laser writing of structural colors for full-color inkless printing. Nat. Commun. 2023, 14, 565. [Google Scholar] [CrossRef]
- Destouches, N.; Sharma, N.; Vangheluwe, M.; Dalloz, N.; Vocanson, F.; Bugnet, M.; Hébert, M.; Siegel, J. Laser-Empowered Random Metasurfaces for White Light Printed Image Multiplexing. Adv. Funct. Mater. 2021, 31, 2010430. [Google Scholar] [CrossRef]
- Dalloz, N.; Le, V.D.; Hebert, M.; Eles, B.; Figueroa, M.A.F.; Hubert, C.; Ma, H.; Sharma, N.; Vocanson, F.; Ayala, S.; et al. Anti-Counterfeiting White Light Printed Image Multiplexing by Fast Nanosecond Laser Processing. Adv. Mater. 2022, 34, 2104054. [Google Scholar] [CrossRef]
- Kristensen, A.; Yang, J.K.W.; Bozhevolnyi, S.I.; Link, S.; Nordlander, P.; Halas, N.J.; Mortensen, N.A. Plasmonic colour generation. Nat. Rev. Mater. 2016, 2, 16088. [Google Scholar] [CrossRef]
- Song, M.; Wang, D.; Peana, S.; Choudhury, S.; Nyga, P.; Kudyshev, Z.A.; Yu, H.; Boltasseva, A.; Shalaev, V.M.; Kildishev, A.V. Colors with plasmonic nanostructures: A full-spectrum review. Appl. Phys. Rev. 2019, 6, 041308. [Google Scholar] [CrossRef]
- Rezaei, S.D.; Dong, Z.; Chan, J.Y.E.; Trisno, J.; Ng, R.J.H.; Ruan, Q.; Qiu, C.W.; Mortensen, N.A.; Yang, J.K.W. Nanophotonic Structural Colors. ACS Photonics 2021, 8, 18–33. [Google Scholar] [CrossRef]
- Song, M.; Kudyshev, Z.A.; Yu, H.; Boltasseva, A.; Shalaev, V.M.; Kildishev, A.V. Achieving full-color generation with polarization-tunable perfect light absorption. Opt. Mater. Express 2019, 9, 779. [Google Scholar] [CrossRef]
- Feng, R.; Wang, H.; Cao, Y.; Zhang, Y.; Ng, R.J.H.; Tan, Y.S.; Sun, F.; Qiu, C.W.; Yang, J.K.W.; Ding, W. A Modular Design of Continuously Tunable Full Color Plasmonic Pixels with Broken Rotational Symmetry. Adv. Funct. Mater. 2022, 32, 2108437. [Google Scholar] [CrossRef]
- Wang, H.C.; Martin, O.J.F. Polarization-Controlled Chromo-Encryption. Adv. Opt. Mater. 2023, 11, 2202165. [Google Scholar] [CrossRef]
- Bao, Y.; Yu, Y.; Xu, H.; Lin, Q.; Wang, Y.; Li, J.; Zhou, Z.K.; Wang, X.H. Coherent Pixel Design of Metasurfaces for Multidimensional Optical Control of Multiple Printing-Image Switching and Encoding. Adv. Funct. Mater. 2018, 28, 1805306. [Google Scholar] [CrossRef]
- Zijlstra, P.; Chon, J.W.M.; Gu, M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 2009, 459, 410–413. [Google Scholar] [CrossRef]
- Novikov, S.M.; Frydendahl, C.; Beermann, J.; Zenin, V.A.; Stenger, N.; Coello, V.; Mortensen, N.A.; Bozhevolnyi, S.I. White Light Generation and Anisotropic Damage in Gold Films near Percolation Threshold. ACS Photonics 2017, 4, 1207–1215. [Google Scholar] [CrossRef]
- Rezaei, S.D.; Dong, Z.; Wang, H.; Xu, J.; Wang, H.; Yaraki, M.T.; Goh, K.C.H.; Zhang, W.; Ghorbani, S.R.; Liu, X.; et al. Tri-functional metasurface enhanced with a physically unclonable function. Mater. Today 2023, 62, 51–61. [Google Scholar] [CrossRef]
- Liu, H.; Xu, J.; Wang, H.; Liu, Y.; Ruan, Q.; Wu, Y.; Liu, X.; Yang, J.K.W. Tunable Resonator-Upconverted Emission (TRUE) Color Printing and Applications in Optical Security. Adv. Mater. 2019, 31, 1807900. [Google Scholar] [CrossRef]
- Yagil, Y.; Gadenne, P.; Julien, C.; Deutscher, G. Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm. Phys. Rev. B 1992, 46, 2503–2511. [Google Scholar] [CrossRef]
- Nyga, P.; Drachev, V.P.; Thoreson, M.D.; Shalaev, V.M. Mid-IR plasmonics and photomodification with Ag films. Appl. Phys. B 2008, 93, 59–68. [Google Scholar] [CrossRef]
- Chettiar, U.K.; Nyga, P.; Thoreson, M.D.; Kildishev, A.V.; Drachev, V.P.; Shalaev, V.M. FDTD modeling of realistic semicontinuous metal films. Appl. Phys. B 2010, 100, 159–168. [Google Scholar] [CrossRef]
- Ooms, M.D.; Jeyaram, Y.; Sinton, D. Disposable Plasmonics: Rapid and Inexpensive Large Area Patterning of Plasmonic Structures with CO2 Laser Annealing. Langmuir 2015, 31, 5252–5258. [Google Scholar] [CrossRef] [PubMed]
- Janicki, V.; Amotchkina, T.V.; Sancho-Parramon, J.; Zorc, H.; Trubetskov, M.K.; Tikhonravov, A.V. Design and production of bicolour reflecting coatings with Au metal island films. Opt. Express 2011, 19, 25521. [Google Scholar] [CrossRef]
- Shalaev, V.M. Electromagnetic properties of small-particle composites. Phys. Rep. 1996, 272, 61–137. [Google Scholar] [CrossRef]
- Genov, D.A.; Sarychev, A.K.; Shalaev, V.M. Metal-dielectric composite filters with controlled spectral windows of transparency. J. Nonlinear Opt. Phys. Mater. 2003, 12, 419–440. [Google Scholar] [CrossRef]
- Søndergaard, T.; Bozhevolnyi, S. Slow-plasmon resonant nanostructures: Scattering and field enhancements. Phys. Rev. B-Condens. Matter Mater. Phys. 2007, 75, 073402. [Google Scholar] [CrossRef]
- Sarychev, A.K.; Barbillon, G.; Ivanov, A. Nanogap Plasmon Resonator: An Analytical Model. Appl. Sci. 2023, 13, 12882. [Google Scholar] [CrossRef]
- Zhu, X.; Engelberg, J.; Remennik, S.; Zhou, B.; Pedersen, J.N.; Jepsen, P.U.; Levy, U.; Kristensen, A. Resonant Laser Printing of Optical Metasurfaces. Nano Lett. 2022, 22, 2786–2792. [Google Scholar] [CrossRef]
- Seo, M.; Kim, J.; Oh, H.; Kim, M.; Baek, I.U.; Choi, K.D.; Byun, J.Y.; Lee, M. Printing of Highly Vivid Structural Colors on Metal Substrates with a Metal-Dielectric Double Layer. Adv. Opt. Mater. 2019, 7, 1900196. [Google Scholar] [CrossRef]
- Vorobyev, A.Y.; Guo, C. Enhanced absorptance of gold following multipulse femtosecond laser ablation. Phys. Rev. B 2005, 72, 195422. [Google Scholar] [CrossRef]
- Guay, J.-M.; Lesina, A.C.; Côté, G.; Charron, M.; Poitras, D.; Ramunno, L.; Berini, P.; Weck, A. Laser-induced plasmonic colours on metals. Nat. Commun. 2017, 8, 16095. [Google Scholar] [CrossRef]
- West, P.R.; Ishii, S.; Naik, G.V.; Emani, N.K.; Shalaev, V.M.; Boltasseva, A. Searching for better plasmonic materials. Laser Photonics Rev. 2010, 4, 795–808. [Google Scholar] [CrossRef]
- Yokogawa, S.; Burgos, S.P.; Atwater, H.A. Plasmonic color filters for CMOS image sensor applications. Nano Lett. 2012, 12, 4349–4354. [Google Scholar] [CrossRef]
- Ayas, S.; Topal, A.E.; Cupallari, A.; Güner, H.; Bakan, G.; Dana, A. Exploiting Native Al2O3 for Multispectral Aluminum Plasmonics. ACS Photonics 2014, 1, 1313–1321. [Google Scholar] [CrossRef]
- Knight, M.W.; King, N.S.; Liu, L.; Everitt, H.O.; Nordlander, P.; Halas, N.J. Aluminum for plasmonics. ACS Nano 2014, 8, 834–840. [Google Scholar] [CrossRef]
- Olson, J.; Manjavacas, A.; Liu, L.; Chang, W.S.; Foerster, B.; King, N.S.; Knight, M.W.; Nordlander, P.; Halas, N.J.; Link, S. Vivid, full-color aluminum plasmonic pixels. Proc. Natl. Acad. Sci. USA 2014, 111, 14348–14353. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, V.R.; Lee, S.-S.; Kim, E.-S.; Choi, D.-Y. Aluminum Plasmonics Based Highly Transmissive Polarization-Independent Subtractive Color Filters Exploiting a Nanopatch Array. Nano Lett. 2014, 14, 6672–6678. [Google Scholar] [CrossRef]
- Pascoe, K. Reflectivity and Transmissivity through Layered, Lossy Media: A User-Friendly Approach. 2001. Available online: https://community.ptc.com/sejnu66972/attachments/sejnu66972/PTCMathcad/85134/1/ADA389099%20Reflectivity%20and%20Transmissivity%20through%20Layered,%20Lossy%20Media=%20A%20User-Friendly%20Approach.pdf (accessed on 14 September 2020).
- Ohta, N.; Robertson, A.R. Colorimetry: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2006; Available online: https://books.google.com/books/about/Colorimetry.html?id=U8jeh1uhSHgC (accessed on 31 March 2023).
- CIE 2022; CIE Standard Illuminant D65. International Commission on Illumination (CIE): Vienna, Austria, 2022. [CrossRef]
- Available online: https://www.pngegg.com/pl/png-dbtme (accessed on 14 May 2021).
- Okoshi, M.; Iwai, K.; Nojiri, H.; Inoue, N. F2-laser-induced modification of aluminum thin films into transparent aluminum oxide. Jpn. J. Appl. Phys. 2012, 51, 122701. [Google Scholar] [CrossRef]
- Fan, P.; Sun, Z.; Wilkes, G.C.; Gupta, M.C. Low-temperature laser generated ultrathin aluminum oxide layers for effective c-Si surface passivation. Appl. Surf. Sci. 2019, 480, 35–42. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, M.P.; Stępak, B.; Pielach, M.; Stepanenko, Y.; Wojciechowski, T.; Bartosewicz, B.; Chodorow, U.; Jakubaszek, M.; Wachulak, P.; Nyga, P. Laser Control of Specular and Diffuse Reflectance of Thin Aluminum Film-Isolator-Metal Structures for Anti-Counterfeiting and Plasmonic Color Applications. Coatings 2024, 14, 1298. https://doi.org/10.3390/coatings14101298
Nowak MP, Stępak B, Pielach M, Stepanenko Y, Wojciechowski T, Bartosewicz B, Chodorow U, Jakubaszek M, Wachulak P, Nyga P. Laser Control of Specular and Diffuse Reflectance of Thin Aluminum Film-Isolator-Metal Structures for Anti-Counterfeiting and Plasmonic Color Applications. Coatings. 2024; 14(10):1298. https://doi.org/10.3390/coatings14101298
Chicago/Turabian StyleNowak, Michał P., Bogusz Stępak, Mateusz Pielach, Yuriy Stepanenko, Tomasz Wojciechowski, Bartosz Bartosewicz, Urszula Chodorow, Marcin Jakubaszek, Przemysław Wachulak, and Piotr Nyga. 2024. "Laser Control of Specular and Diffuse Reflectance of Thin Aluminum Film-Isolator-Metal Structures for Anti-Counterfeiting and Plasmonic Color Applications" Coatings 14, no. 10: 1298. https://doi.org/10.3390/coatings14101298
APA StyleNowak, M. P., Stępak, B., Pielach, M., Stepanenko, Y., Wojciechowski, T., Bartosewicz, B., Chodorow, U., Jakubaszek, M., Wachulak, P., & Nyga, P. (2024). Laser Control of Specular and Diffuse Reflectance of Thin Aluminum Film-Isolator-Metal Structures for Anti-Counterfeiting and Plasmonic Color Applications. Coatings, 14(10), 1298. https://doi.org/10.3390/coatings14101298