The Effect of Shot Blasting Abrasive Particles on the Microstructure of Thermal Barrier Coatings Containing Ni-Based Superalloy
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Coating Fabrication
2.2. Microstructure Characterization
2.3. Thermal Fatigue Test
3. Results
3.1. Surface Characterization
3.2. Spallation Resistance
3.3. Interface Microstructure
3.4. Subsurface Hardening Induced by Alumina Particles
4. Discussion
4.1. Effect of Alumina Particles on the TGO Growth
4.2. Effect of Alumina Particles on the Interfacial Microstructure
5. Conclusions
- As the abrasive particle size increases from ~20 μm to ~50 μm, the likelihood of cracks starting from the concave regions of the thermally grown oxide layer towards BC also increases. In the sample containing small grit particles (<20 μm), the fractures developed to a depth of approximately 10 μm within the BC. These cracks then extended vertically up to the interface between the BC and substrate by linking the empty spaces in the BC with larger grit particles with size of ~50 μm.
- When the particle size exceeds a critical threshold ranging from 30 μm to 50 μm, the interface between the alumina particles and bonding coat cannot withstand the strain incompatibility caused by thermal mismatch. This results in the initiation of cracks near the large particles of size > 50 μm. This is supported by the SEM observation that cracks arise and propagate clearly near large grit particles (~50 μm).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mousavi, B.; Farvizi, M.; Rahimipour, M.; Shamsipoor, A.; Pan, W. Evaluation of high temperature oxidation behavior of LZ, CSZ, and LZ-CSZ composite thermal barrier coatings. Ceram. Int. 2023, 49, 40601–40615. [Google Scholar] [CrossRef]
- Baskaran, T.; Arya, S.B. Role of thermally grown oxide and oxidation resistance of samarium strontium aluminate based air plasma sprayed ceramic thermal barrier coatings. Surf. Coat. Technol. 2017, 326, 299–309. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, C.-J.; Li, Y.; Zhang, S.-L.; Wang, X.-R.; Yang, G.-J.; Li, C.-X. Thermal Failure of Nanostructured Thermal Barrier Coatings with Cold-Sprayed Nanostructured NiCrAlY Bond Coat. J. Therm. Spray Technol. 2008, 17, 838–845. [Google Scholar] [CrossRef]
- Karaoglanli, A.C.; Ozgurluk, Y.; Gulec, A.; Ozkan, D.; Binal, G. Effect of coating degradation on the hot corrosion behavior of yttria-stabilized zirconia (YSZ) and blast furnace slag (BFS) coatings. Surf. Coat. Technol. 2023, 473, 130000. [Google Scholar] [CrossRef]
- Sigaroodi, M.R.J.; Poursaeidi, E.; Rahimi, J.; Jamalabad, Y.Y. Heat treatment effect on coating shock resistance of thermal barrier coating system with different types of bond coat. J. Eur. Ceram. Soc. 2023, 43, 3658–3675. [Google Scholar] [CrossRef]
- Jiang, P.; Yang, L.; Sun, Y.; Li, D.; Wang, T. Local residual stress evolution of highly irregular thermally grown oxide layer in thermal barrier coatings. Ceram. Int. 2021, 47, 10990–10995. [Google Scholar] [CrossRef]
- Varacalle, D.J.; Guillen, D.P.; Deason, D.M.; Rhodaberger, W.; Sampson, E. Effect of grit-blasting on substrate roughness and coating adhesion. J. Therm. Spray Technol. 2006, 15, 348–355. [Google Scholar] [CrossRef]
- Sen, D.; Chavan, N.M.; Rao, D.S.; Sundararajan, G. Influence of Grit Blasting on the Roughness and the Bond Strength of Detonation Sprayed Coating. J. Therm. Spray Technol. 2010, 19, 805–815. [Google Scholar] [CrossRef]
- Giouse, J.-B.; White, K.; Tromas, C. Nanoindentation characterization of the surface mechanical properties of a 17-4PH stainless steel substrate treated with grit blasting and coated with a Cr3C2-NiCr coating. Surf. Coat. Technol. 2019, 368, 119–125. [Google Scholar] [CrossRef]
- Ramsay, J.; Evans, H.; Child, D.; Taylor, M.; Hardy, M. The influence of stress on the oxidation of a Ni-based superalloy. Corros. Sci. 2019, 154, 277–285. [Google Scholar] [CrossRef]
- Chen, M.; Shen, M.; Zhu, S.; Wang, F.; Wang, X. Effect of sand blasting and glass matrix composite coating on oxidation resistance of a nickel-based superalloy at 1000 °C. Corros. Sci. 2013, 73, 331–341. [Google Scholar] [CrossRef]
- Nowak, W.J.; Serafin, D.; Wierzba, B. Effect of surface mechanical treatment on the oxidation behavior of FeAl-model alloy. J. Mater. Sci. 2019, 54, 9185–9196. [Google Scholar] [CrossRef]
- Nowak, W.J.; Ochał, K.; Wierzba, P.; Gancarczyk, K.; Wierzba, B. Effect of Substrate Roughness on Oxidation Resistance of an Aluminized Ni-Base Superalloy. Metals 2019, 9, 782. [Google Scholar] [CrossRef]
- Xu, Z.; Huang, G.; He, L.; Mu, R.; Wang, K.; Dai, J. Effect of grit blasting on the thermal cycling behavior of diffusion aluminide/YSZ TBCs. J. Alloys Compd. 2014, 586, 1–9. [Google Scholar] [CrossRef]
- Ni, L.; Zhou, C. Effects of surface modification on thermal cycling lifetime of thermal barrier coatings with HVOF NiCrAlY bond coat. Prog. Nat. Sci. Mater. Int. 2012, 22, 237–243. [Google Scholar] [CrossRef]
- Barriuso, S.; Chao, J.; Jiménez, J.; García, S.; González-Carrasco, J. Fatigue behavior of Ti6Al4V and 316 LVM blasted with ceramic particles of interest for medical devices. J. Mech. Behav. Biomed. Mater. 2014, 30, 30–40. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, M.; Zou, T.; Wang, Q.; Wu, H.; Pei, Y.; Zhang, H.; Liu, Y.; Wang, Q. Numerical simulation and high cycle fatigue behaviour study on shot peening of MAR-M247 nickel-based alloy. Int. J. Fatigue 2024, 182, 108161. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, Y.; Liu, M.; Zou, T.; Wang, Q.; Wu, H.; Pei, Y.; Liu, Y.; Wang, Q. The effect of laser shock peening with different power density on the microstructure evolution and mechanical properties of MAR-M247 nickel-base alloy. J. Mater. Res. Technol. 2024, 30, 3340–3354. [Google Scholar] [CrossRef]
- ISO 14188:2012; Metallic and Other Inorganic Coatings—Test Methods for Measuring Thermal Cycle Resistance and Thermal Shock Resistance for Thermal Barrier Coatings. Korean Agency for Technology and Standards: Eumseong-gun, Republic of Korea, 2012.
- Pan, Y.; Liang, B.; Niu, Y.; Tian, J.; Han, D.; Zhong, X.; Xie, L.; Zheng, X. Thermal shock behaviors of plasma sprayed YSZ/TiAlCrY system on TiAl alloys. Ceram. Int. 2022, 48, 6199–6207. [Google Scholar] [CrossRef]
- Ashofteh, A.; Mashhadi, M.M.; Amadeh, A.; Seifollahpour, S. Effect of layer thickness on thermal shock behavior in double-layer micro- and nano-structured ceramic top coat APS TBCs. Ceram. Int. 2017, 43, 13547–13559. [Google Scholar] [CrossRef]
- Saremi, M.; Afrasiabi, A.; Kobayashi, A. Microstructural analysis of YSZ and YSZ/Al2O3 plasma sprayed thermal barrier coatings after high temperature oxidation. Surf. Coat. Technol. 2008, 202, 3233–3238. [Google Scholar] [CrossRef]
- Khan, A.; Lu, J. Behavior of air plasma sprayed thermal barrier coatings, subject to intense thermal cycling. Surf. Coat. Technol. 2003, 166, 37–43. [Google Scholar] [CrossRef]
- Webler, R.; Ziener, M.; Neumeier, S.; Terberger, P.J.; Vaßen, R.; Göken, M. Evolution of microstructure and mechanical properties of coated Co-base superalloys during heat treatment and thermal exposure. Mater. Sci. Eng. A 2015, 628, 374–381. [Google Scholar] [CrossRef]
- Yang, L.; Zou, Z.; Kou, Z.; Chen, Y.; Zhao, G.; Zhao, X.; Guo, F.; Xiao, P. High temperature stress and its influence on surface rumpling in NiCoCrAlY bond coat. Acta Mater. 2017, 139, 122–137. [Google Scholar] [CrossRef]
- Sun, Y.; Li, J.; Zhang, W.; Wang, T.J. Local stress evolution in thermal barrier coating system during isothermal growth of irregular oxide layer. Surf. Coat. Technol. 2013, 216, 237–250. [Google Scholar] [CrossRef]
- Bobzin, K.; Öte, M.; Linke, T.F.; Sommer, J.; Liao, X. Influence of Process Parameter on Grit Blasting as a Pretreatment Process for Thermal Spraying. J. Therm. Spray Technol. 2016, 25, 3–11. [Google Scholar] [CrossRef]
- Nowak, W.J.; Wierzba, B. Effect of Surface Treatment on High-Temperature Oxidation Behavior of IN 713C. J. Mater. Eng. Perform. 2018, 27, 5280–5290. [Google Scholar] [CrossRef]
- Bahbou, M.F.; Nylén, P.; Wigren, J. Effect of grit blasting and spraying angle on the adhesion strength of a plasma-sprayed coating. J. Therm. Spray Technol. 2004, 13, 508–514. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, W.; Dou, M.; Chong, K.; Wu, D.; Zou, Y. A new strategy for improving TBCs performance through tailoring the bond coating interface with laser texturing. Mater. Today Commun. 2024, 38, 108121. [Google Scholar] [CrossRef]
- Yang, M.; Wang, X.; Feng, W.; Fu, Y.; Jiang, Y.; Chen, F.; Li, M.; Chen, Y. Effects of TGO growth on the interface stress distribution based on 3D pores in TBC ceramics layer. Mater. Today Commun. 2024, 38, 107878. [Google Scholar] [CrossRef]
- Slámečka, K.; Skalka, P.; Pokluda, J.; Čelko, L. Finite element simulation of stresses in a plasma-sprayed thermal barrier coating with an irregular top-coat/bond-coat interface. Surf. Coat. Technol. 2016, 304, 574–583. [Google Scholar] [CrossRef]
- Xu, B.; Luo, L.; Lu, J.; Zhao, X.; Xiao, P. Effect of residual stress on the spallation of the thermally-grown oxide formed on NiCoCrAlY coating. Surf. Coat. Technol. 2020, 381, 125112. [Google Scholar] [CrossRef]
- Weeks, M.D.; Subramanian, R.; Vaidya, A.; Mumm, D.R. Defining optimal morphology of the bond coat–thermal barrier coating interface of air-plasma sprayed thermal barrier coating systems. Surf. Coat. Technol. 2015, 273, 50–59. [Google Scholar] [CrossRef]
- Wei, Z.-Y.; Cai, H.-N.; Zhao, S.-D.; Li, G.-R.; Zhang, W.-W.; Tahir, A. Dynamic multi-crack evolution and coupling TBC failure together induced by continuous TGO growth and ceramic sintering. Ceram. Int. 2022, 48, 15913–15924. [Google Scholar] [CrossRef]
- Price, T.S.; Shipway, P.H.; McCartney, D.G. Effect of Cold Spray Deposition of a Titanium Coating on Fatigue Behavior of a Titanium Alloy. J. Therm. Spray Technol. 2006, 15, 507–512. [Google Scholar] [CrossRef]
- Chai, Y.; Yang, X.; Li, Y.; Ogawa, K. Stress development in thermal barrier coatings with morphology-controlled thermally grown oxide. Ceram. Int. 2019, 45, 20435–20445. [Google Scholar] [CrossRef]
- Begg, H.; Riley, M.; Lovelock, H.d.V. Mechanization of the Grit Blasting Process for Thermal Spray Coating Applications: A Parameter Study. J. Therm. Spray Technol. 2016, 25, 12–20. [Google Scholar] [CrossRef]
Sample | Blasting Angle | Blasting Pressure | Nozzle Moving Velocity | Blasting Distance | Grit Mass Feeding Rate |
---|---|---|---|---|---|
A | 30° | 0.3 MPa | 5 mm/s | 200 mm | 3 kg/min |
B | 90° | 0.5 MPa | 5 mm/s | 200 mm | 3 kg/min |
Sample | Co | Cr | W | Al | Ta | Mo | Ti | Hf | C | Ni | Y |
---|---|---|---|---|---|---|---|---|---|---|---|
A | 10.2 | 8.2 | 9.8 | 5.7 | 2.9 | 0.81 | 0.96 | 1.5 | 0.15 | Bal. | - |
B | 9.9 | 8.5 | 10.2 | 5.5 | 2.8 | 0.76 | 0.91 | 1.2 | 0.13 | ||
Bond coat | Bal. | 21 | - | 8 | - | - | - | - | - | 32 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, J.; Shen, X.; Yuan, X.; Li, D.; Gong, X.; Zhao, F.; Liao, X.; Yu, J. The Effect of Shot Blasting Abrasive Particles on the Microstructure of Thermal Barrier Coatings Containing Ni-Based Superalloy. Coatings 2024, 14, 1312. https://doi.org/10.3390/coatings14101312
Lai J, Shen X, Yuan X, Li D, Gong X, Zhao F, Liao X, Yu J. The Effect of Shot Blasting Abrasive Particles on the Microstructure of Thermal Barrier Coatings Containing Ni-Based Superalloy. Coatings. 2024; 14(10):1312. https://doi.org/10.3390/coatings14101312
Chicago/Turabian StyleLai, Jianping, Xin Shen, Xiaohu Yuan, Dingjun Li, Xiufang Gong, Fei Zhao, Xiaobo Liao, and Jiaxin Yu. 2024. "The Effect of Shot Blasting Abrasive Particles on the Microstructure of Thermal Barrier Coatings Containing Ni-Based Superalloy" Coatings 14, no. 10: 1312. https://doi.org/10.3390/coatings14101312
APA StyleLai, J., Shen, X., Yuan, X., Li, D., Gong, X., Zhao, F., Liao, X., & Yu, J. (2024). The Effect of Shot Blasting Abrasive Particles on the Microstructure of Thermal Barrier Coatings Containing Ni-Based Superalloy. Coatings, 14(10), 1312. https://doi.org/10.3390/coatings14101312